In [1]:
# While looking at the data the analyst sees something interesting. There's a slight dip in sales on Sundays over the last few weeks.
data = []
shoes_type = ['lightweight trainer', 'cross-trainer', 'trail']
for i in range(len(shoes_type)):
for j in range(1,8):
sales = 1000
if j == 1:
if rd.random() <= .8:
sales = sales * rd.random()
else:
sales *= (1+rd.random())
data.append([shoes_type[i], j, sales])
df = pd.DataFrame(data, columns=['shoes_type', 'day of week', 'sales'])
# df.to_csv('csv_output/ch14_fig3.csv', index=False)
df = pd.read_csv('csv_output/ch14_fig3.csv')
df.head()
Out[1]:
In [2]:
df = pd.read_csv('csv_output/ch14_fig3.csv')
shoes_type = ['lightweight trainer', 'cross-trainer', 'trail']
%matplotlib inline
sns.set_style("white")
f, ax = plt.subplots(1,1, figsize=(8,6))
cm = sns.color_palette("Blues", 3)
mean = df.groupby('day of week').sales.mean()
x = 0
for i in shoes_type:
ax.plot(df[df['shoes_type']==i]['day of week'], df[df['shoes_type']==i].sales, 'o-', color=cm[x])
x+=1
ax.plot(np.arange(1,8), mean, 'o--', color='black');
leg = shoes_type
leg.append('average')
ax.legend(leg);
ax.set_xticklabels(['Sun', 'Mon', 'Tue', 'Wed','Thu', 'Fri', 'Sat']);
ax.set_title('total sales by shoe types and average across all types by day of week');
f.savefig('svg_output/ch14_fig3.svg', format='svg')
Averagely, all types has slight decline in total sales dollars on Sunday, but different types peak on different day of the week.