In [1]:
from __future__ import print_function
import numpy as np
import tensorflow as tf
In [2]:
from datetime import date
date.today()
Out[2]:
In [3]:
author = "kyubyong. https://github.com/Kyubyong/tensorflow-exercises"
In [4]:
tf.__version__
Out[4]:
In [5]:
np.__version__
Out[5]:
Q1-3. You are to implement the graph below. Complete the code.
<img src="figs/fig1.png",width=500>
In [6]:
# Q1. Create a graph
g = ...
with g.as_default():
# Define inputs
with tf.name_scope("inputs"):
a = tf.constant(2, tf.int32, name="a")
b = tf.constant(3, tf.int32, name="b")
# Ops
with tf.name_scope("ops"):
c = tf.multiply(a, b, name="c")
d = tf.add(a, b, name="d")
e = tf.subtract(c, d, name="e")
# Q2. Start a session
sess = ...
# Q3. Fetch c, d, e
_c, _d, _e = ...
print("c =", _c)
print("d =", _d)
print("e =", _e)
# Close the session
sess.close()
Q4-8. You are to implement the graph below. Complete the code.
<img src="figs/fig3.png",width=500>
In [7]:
tf.reset_default_graph()
In [8]:
# Define inputs
a = tf.Variable(tf.random_uniform([]))
b_pl = tf.placeholder(tf.float32, [None])
# Ops
c = a * b_pl
d = a + b_pl
e = tf.reduce_sum(c)
f = tf.reduce_mean(d)
g = e - f
# initialize variable(s)
init = tf.global_variables_initializer()
# Update variable
update_op = tf.assign(a, a + g)
# Q4. Create a (summary) writer to `asset`
writer = ...
#Q5. Add `a` to summary.scalar
...
#Q6. Add `c` and `d` to summary.histogram
...
#Q7. Merge all summaries.
summaries = ...
# Start a session
sess = tf.Session()
# Initialize Variable(s)
sess.run(init)
# Fetch the value of c, d, and e.
for step in range(5):
_b = np.arange(10, dtype=np.float32)
_, summaries_proto = sess.run([update_op, summaries], {b_pl:_b})
# Q8. Attach summaries_proto to TensorBoard.
...
# Close the session
sess.close()
In [ ]: