Do I understand how responses work?

I don't think I do, because I can't make the flux models match up. So let's figure this out!


In [26]:
%matplotlib notebook
import matplotlib.pyplot as plt
import seaborn as sns

import numpy as np
import pandas as pd
import astropy.io.fits as fits
import sherpa.astro.ui as ui

First, let's load the fake0 spectrum that Victoria gave me. At the moment, I'm only using the first order of the HEG spectrum, so we're only going to load that:


In [2]:
datadir = "/Users/danielahuppenkothen/work/repositories/shiftylines/data/cygx1_sims/"

ui.load_data(id="f0_heg_p1", filename=datadir+"fake_heg_p1_5ks_ident0_src.pha")
#sherpa.astro.ui.load_data(id="f0_heg_m1", filename=datadir+"fake_heg_m1_5ks_ident0_src.pha")
#sherpa.astro.ui.load_data(id="f0_meg_p1", filename=datadir+"fake_meg_p1_5ks_ident0_src.pha")
#sherpa.astro.ui.load_data(id="f0_meg_m1", filename=datadir+"fake_meg_m1_5ks_ident0_src.pha")


WARNING: systematic errors were not found in file '/Users/danielahuppenkothen/work/repositories/shiftylines/data/cygx1_sims/fake_heg_p1_5ks_ident0_src.pha'
statistical errors were found in file '/Users/danielahuppenkothen/work/repositories/shiftylines/data/cygx1_sims/fake_heg_p1_5ks_ident0_src.pha' 
but not used; to use them, re-read with use_errors=True
read ARF file /Users/danielahuppenkothen/work/repositories/shiftylines/data/cygx1_sims/heg_p1.arf
read RMF file /Users/danielahuppenkothen/work/repositories/shiftylines/data/cygx1_sims/heg_p1.rmf

We'll also need the lines (note: they're in Angstrom!):


In [3]:
lines = np.loadtxt("../data/si_lines.txt")

To convert to keV, let's use a simple conversion factor:


In [4]:
c = 12.3984191
lines_kev = c/lines

Let's load the data into an actual variable so we can play around with it:


In [5]:
d = ui.get_data("f0_heg_p1")

We're only looking at a small part of the spectrum, so we want to cut out that part:


In [6]:
min_e = 6.0499997575723086
max_e = 7.100000097785645

# same in keV, because that's what our spectrum is in!
min_kev = c/max_e
max_kev = c/min_e

We need

  • the bin edges (low and high)
  • the counts
  • the arf

In [15]:
# sorted indices
idx_heg = d.bin_lo.argsort()

# the low bin edges
bin_lo = d.bin_lo[idx_heg]
# the upper bin edges
bin_hi = d.bin_hi[idx_heg]
# the counts array
counts = d.counts[idx_heg]

# Let's also make the mid-points for plotting
bin_mid = bin_lo + (bin_hi - bin_lo)/2.0

Now we can to cut out the parts of the spectrum we actually need:


In [16]:
min_idx = bin_lo.searchsorted(min_kev)
max_idx = bin_hi.searchsorted(max_kev)

bl_small = bin_lo[min_idx:max_idx]
bh_small = bin_hi[min_idx:max_idx]
bm_small = bin_mid[min_idx:max_idx]

c_small = counts[min_idx:max_idx]

Next, let's also load the ARF and cut that into the part we need:


In [14]:
arf = d.get_arf()
specresp = arf.specresp

specresp_small = specresp[min_idx:max_idx]

Let's plot the part of the spectrum we need:


In [20]:
plt.figure(figsize=(10,5))
plt.plot(bm_small, c_small, linestyle="steps-mid")
plt.xlim(bm_small[0], bm_small[-1])
plt.ylim(0, 50)


Out[20]:
(0, 50)

Okay, let's convert that into flux space. Let's try to divide the observed spectrum by the ARF:


In [22]:
c_arf = counts/specresp
c_arf_small = c_arf[min_idx:max_idx]

In [23]:
plt.figure(figsize=(10,5))
plt.plot(bm_small, c_arf_small)


Out[23]:
[<matplotlib.lines.Line2D at 0x10b8faba8>]

Test 1

In this first test, we're running only the HEG_P spectrum, and we're printing out what the model looks like at every stage in the analysis.

Let's load the model:


In [77]:
samples = np.loadtxt("../data/tests/test1_posterior_sample.txt")
print("There are %i samples."%len(samples))


There are 423 samples.

What is the distribution of Doppler shifts?


In [78]:
s = pd.Series(samples[:, 10]).value_counts()
plt.figure()
sns.barplot(s.index, s.values)


Out[78]:
<matplotlib.axes._subplots.AxesSubplot at 0x11439ae48>

In [79]:
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(6,6))
ax1.hist(samples[samples[:,11]!=0.0,11], bins=100, histtype="stepfilled")
ax2.hist(samples[samples[:,12]!=0.0,12], bins=100, histtype="stepfilled")
ax3.hist(samples[samples[:,13]!=0.0,13], bins=100, histtype="stepfilled")
ax4.hist(samples[samples[:,14]!=0.0,14], bins=100, histtype="stepfilled");
#ax1.hist(samples[:,12], bins=100, histtype="stepfilled")
#ax2.hist(samples[:,13], bins=100, histtype="stepfilled")
#ax3.hist(samples[:,14], bins=100, histtype="stepfilled")
#ax4.hist(samples[:,15], bins=100, histtype="stepfilled");


Let's plot the data and the model together. In order to do that, we're going to need to get the right arrays out of the file. I've stored the model in various forms:

  • the lines only
  • lines + background
  • (lines + background) x ARF
  • (lines + background) x ARF x exp(OU process)
  • [(lines + background) x ARF x exp(OU process)] convolved with the RMF

In [80]:
len_small = len(c_small)

full_model = samples[:, -len_small:]
model_with_ou = samples[:, -2*len_small:-len_small]
model_with_arf = samples[:, -3*len_small:-2*len_small]
model_with_bkg = samples[:, -4*len_small:-3*len_small]
model_with_lines = samples[:, -5*len_small:-4*len_small]
ou_process = samples[:, -6*len_small:-5*len_small]

Let's plot all of those to see what they look like:


In [101]:
plt.figure(figsize=(10,5))
plt.plot(bm_small, model_with_lines.T[:,:1])
plt.title("Model with lines only")

plt.figure(figsize=(10,5))
plt.plot(bm_small, model_with_bkg.T[:,:1])
plt.title("Model with bkg")

plt.figure(figsize=(10,5))
plt.plot(bm_small, model_with_arf.T[:,:1])
plt.title("Model with ARF")

plt.figure(figsize=(10,5))
plt.plot(bm_small, model_with_ou.T[:,:1])
plt.title("Model with OU process")

plt.figure(figsize=(10,5))
plt.plot(bm_small, full_model.T[:,:1])
plt.title("Full model")

plt.figure(figsize=(10,5))
plt.plot(bm_small, np.exp(ou_process.T[:,:1]))
plt.title("OU process only")


Out[101]:
<matplotlib.text.Text at 0x11be6e160>

Let's plot the full model against the data:


In [57]:
plt.figure(figsize=(10,5))
plt.plot(bm_small, c_small, linestyle="steps-mid")
for f in full_model:
    plt.plot(bm_small, f, c=sns.color_palette()[1], alpha=0.1)