Notebook 9:

This is an IPython notebook. Most of the code is composed of bash scripts, indicated by %%bash at the top of the cell, otherwise it is IPython code. This notebook includes code to download, assemble and analyze a published RADseq data set.


In [14]:
### Notebook 9
### Data set 9 (Ohomopterus)
### Authors: Takahashi et al. 2014
### Data Location: DRP001067

Download the sequence data

Sequence data for this study are archived on the NCBI sequence read archive (SRA). Below I read in SraRunTable.txt for this project which contains all of the information we need to download the data.


In [15]:
%%bash
## make a new directory for this analysis
mkdir -p empirical_9/fastq/

For each ERS (individuals) get all of the ERR (sequence file accessions).


In [19]:
import os

def wget_download_ddbj(SRR, outdir):
    """ Python function to get sra data from ncbi and write to
    outdir with a new name using bash call wget """
    
    ## create a call string 
    call = "wget -q -r -nH --cut-dirs=9 -P "+outdir+" "+\
           "ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/sra/ByExp/"+\
           "sra/DRX/DRX011/DRX011{:03d}".format(SRR)
    
    ## run wget call 
    ! $call

In [20]:
for ID in range(602,634):
    wget_download_ddbj(ID, "empirical_9/fastq/")

Here we pass the SRR number and the sample name to the wget_download function so that the files are saved with their sample names.


In [21]:
%%bash
## convert sra files to fastq using fastq-dump tool
## output as gzipped into the fastq directory
fastq-dump --gzip -O empirical_9/fastq/ empirical_9/fastq/*.sra

## remove .sra files
rm empirical_9/fastq/*.sra


Read 10248198 spots for empirical_9/fastq/DRR021959.sra
Written 10248198 spots for empirical_9/fastq/DRR021959.sra
Read 7839034 spots for empirical_9/fastq/DRR021960.sra
Written 7839034 spots for empirical_9/fastq/DRR021960.sra
Read 1132781 spots for empirical_9/fastq/DRR021961.sra
Written 1132781 spots for empirical_9/fastq/DRR021961.sra
Read 2609632 spots for empirical_9/fastq/DRR021962.sra
Written 2609632 spots for empirical_9/fastq/DRR021962.sra
Read 5077478 spots for empirical_9/fastq/DRR021963.sra
Written 5077478 spots for empirical_9/fastq/DRR021963.sra
Read 5173478 spots for empirical_9/fastq/DRR021964.sra
Written 5173478 spots for empirical_9/fastq/DRR021964.sra
Read 2077912 spots for empirical_9/fastq/DRR021965.sra
Written 2077912 spots for empirical_9/fastq/DRR021965.sra
Read 4930613 spots for empirical_9/fastq/DRR021966.sra
Written 4930613 spots for empirical_9/fastq/DRR021966.sra
Read 2494972 spots for empirical_9/fastq/DRR021967.sra
Written 2494972 spots for empirical_9/fastq/DRR021967.sra
Read 5276173 spots for empirical_9/fastq/DRR021968.sra
Written 5276173 spots for empirical_9/fastq/DRR021968.sra
Read 6316234 spots for empirical_9/fastq/DRR021969.sra
Written 6316234 spots for empirical_9/fastq/DRR021969.sra
Read 4871618 spots for empirical_9/fastq/DRR021970.sra
Written 4871618 spots for empirical_9/fastq/DRR021970.sra
Read 105160 spots for empirical_9/fastq/DRR021971.sra
Written 105160 spots for empirical_9/fastq/DRR021971.sra
Read 5521722 spots for empirical_9/fastq/DRR021972.sra
Written 5521722 spots for empirical_9/fastq/DRR021972.sra
Read 874466 spots for empirical_9/fastq/DRR021973.sra
Written 874466 spots for empirical_9/fastq/DRR021973.sra
Read 5376366 spots for empirical_9/fastq/DRR021974.sra
Written 5376366 spots for empirical_9/fastq/DRR021974.sra
Read 4715894 spots for empirical_9/fastq/DRR021975.sra
Written 4715894 spots for empirical_9/fastq/DRR021975.sra
Read 9091972 spots for empirical_9/fastq/DRR021976.sra
Written 9091972 spots for empirical_9/fastq/DRR021976.sra
Read 6609431 spots for empirical_9/fastq/DRR021977.sra
Written 6609431 spots for empirical_9/fastq/DRR021977.sra
Read 5827960 spots for empirical_9/fastq/DRR021978.sra
Written 5827960 spots for empirical_9/fastq/DRR021978.sra
Read 4742805 spots for empirical_9/fastq/DRR021979.sra
Written 4742805 spots for empirical_9/fastq/DRR021979.sra
Read 2231410 spots for empirical_9/fastq/DRR021980.sra
Written 2231410 spots for empirical_9/fastq/DRR021980.sra
Read 166474 spots for empirical_9/fastq/DRR021981.sra
Written 166474 spots for empirical_9/fastq/DRR021981.sra
Read 9263783 spots for empirical_9/fastq/DRR021982.sra
Written 9263783 spots for empirical_9/fastq/DRR021982.sra
Read 7912300 spots for empirical_9/fastq/DRR021983.sra
Written 7912300 spots for empirical_9/fastq/DRR021983.sra
Read 8731338 spots for empirical_9/fastq/DRR021984.sra
Written 8731338 spots for empirical_9/fastq/DRR021984.sra
Read 752632 spots for empirical_9/fastq/DRR021985.sra
Written 752632 spots for empirical_9/fastq/DRR021985.sra
Read 1482551 spots for empirical_9/fastq/DRR021986.sra
Written 1482551 spots for empirical_9/fastq/DRR021986.sra
Read 147164 spots for empirical_9/fastq/DRR021987.sra
Written 147164 spots for empirical_9/fastq/DRR021987.sra
Read 337046 spots for empirical_9/fastq/DRR021988.sra
Written 337046 spots for empirical_9/fastq/DRR021988.sra
Read 129310 spots for empirical_9/fastq/DRR021989.sra
Written 129310 spots for empirical_9/fastq/DRR021989.sra
Read 800590 spots for empirical_9/fastq/DRR021990.sra
Written 800590 spots for empirical_9/fastq/DRR021990.sra
Read 132868497 spots total
Written 132868497 spots total

In [22]:
%%bash
ls -lh empirical_9/fastq/


total 11G
-rw-rw-r-- 1 deren deren 801M Nov 28 18:32 DRR021959.fastq.gz
-rw-rw-r-- 1 deren deren 618M Nov 28 18:32 DRR021960.fastq.gz
-rw-rw-r-- 1 deren deren  91M Nov 28 18:32 DRR021961.fastq.gz
-rw-rw-r-- 1 deren deren 206M Nov 28 18:32 DRR021962.fastq.gz
-rw-rw-r-- 1 deren deren 399M Nov 28 18:32 DRR021963.fastq.gz
-rw-rw-r-- 1 deren deren 408M Nov 28 18:32 DRR021964.fastq.gz
-rw-rw-r-- 1 deren deren 167M Nov 28 18:32 DRR021965.fastq.gz
-rw-rw-r-- 1 deren deren 387M Nov 28 18:32 DRR021966.fastq.gz
-rw-rw-r-- 1 deren deren 197M Nov 28 18:32 DRR021967.fastq.gz
-rw-rw-r-- 1 deren deren 418M Nov 28 18:32 DRR021968.fastq.gz
-rw-rw-r-- 1 deren deren 499M Nov 28 18:32 DRR021969.fastq.gz
-rw-rw-r-- 1 deren deren 386M Nov 28 18:32 DRR021970.fastq.gz
-rw-rw-r-- 1 deren deren 8.4M Nov 28 18:32 DRR021971.fastq.gz
-rw-rw-r-- 1 deren deren 439M Nov 28 18:32 DRR021972.fastq.gz
-rw-rw-r-- 1 deren deren  70M Nov 28 18:32 DRR021973.fastq.gz
-rw-rw-r-- 1 deren deren 434M Nov 28 18:32 DRR021974.fastq.gz
-rw-rw-r-- 1 deren deren 375M Nov 28 18:32 DRR021975.fastq.gz
-rw-rw-r-- 1 deren deren 713M Nov 28 18:32 DRR021976.fastq.gz
-rw-rw-r-- 1 deren deren 520M Nov 28 18:32 DRR021977.fastq.gz
-rw-rw-r-- 1 deren deren 473M Nov 28 18:32 DRR021978.fastq.gz
-rw-rw-r-- 1 deren deren 373M Nov 28 18:32 DRR021979.fastq.gz
-rw-rw-r-- 1 deren deren 179M Nov 28 18:32 DRR021980.fastq.gz
-rw-rw-r-- 1 deren deren  14M Nov 28 18:32 DRR021981.fastq.gz
-rw-rw-r-- 1 deren deren 727M Nov 28 18:32 DRR021982.fastq.gz
-rw-rw-r-- 1 deren deren 625M Nov 28 18:32 DRR021983.fastq.gz
-rw-rw-r-- 1 deren deren 697M Nov 28 18:32 DRR021984.fastq.gz
-rw-rw-r-- 1 deren deren  60M Nov 28 18:32 DRR021985.fastq.gz
-rw-rw-r-- 1 deren deren 118M Nov 28 18:32 DRR021986.fastq.gz
-rw-rw-r-- 1 deren deren  13M Nov 28 18:32 DRR021987.fastq.gz
-rw-rw-r-- 1 deren deren  28M Nov 28 18:32 DRR021988.fastq.gz
-rw-rw-r-- 1 deren deren  11M Nov 28 18:32 DRR021989.fastq.gz
-rw-rw-r-- 1 deren deren  63M Nov 28 18:32 DRR021990.fastq.gz

Make a params file


In [23]:
%%bash
pyrad --version


pyRAD 3.0.63

In [24]:
%%bash
## remove old params file if it exists
rm params.txt 

## create a new default params file
pyrad -n


	new params.txt file created

Note:

The data here are from Illumina Casava <1.8, so the phred scores are offset by 64 instead of 33, so we use that in the params file below.


In [25]:
%%bash
## substitute new parameters into file
sed -i '/## 1. /c\empirical_9/           ## 1. working directory ' params.txt
sed -i '/## 6. /c\TGCAG                  ## 6. cutters ' params.txt
sed -i '/## 7. /c\20                     ## 7. N processors      ' params.txt
sed -i '/## 9. /c\6                      ## 9. NQual             ' params.txt
sed -i '/## 10./c\.85                    ## 10. clust threshold  ' params.txt
sed -i '/## 12./c\4                      ## 12. MinCov           ' params.txt
sed -i '/## 13./c\10                     ## 13. maxSH            ' params.txt
sed -i '/## 14./c\empirical_9_m4          ## 14. output name      ' params.txt
sed -i '/## 18./c\empirical_9/fastq/*.gz ## 18. data location    ' params.txt
sed -i '/## 29./c\2,2                    ## 29. trim overhang    ' params.txt
sed -i '/## 30./c\p,n,s                  ## 30. output formats   ' params.txt

In [26]:
cat params.txt


==** parameter inputs for pyRAD version 3.0.63  **======================== affected step ==
empirical_9/           ## 1. working directory 
./*.fastq.gz              ## 2. Loc. of non-demultiplexed files (if not line 18)  (s1)
./*.barcodes              ## 3. Loc. of barcode file (if not line 18)             (s1)
vsearch                   ## 4. command (or path) to call vsearch (or usearch)    (s3,s6)
muscle                    ## 5. command (or path) to call muscle                  (s3,s7)
TGCAG                  ## 6. cutters 
20                     ## 7. N processors      
6                         ## 8. Mindepth: min coverage for a cluster              (s4,s5)
6                      ## 9. NQual             
.85                    ## 10. clust threshold  
rad                       ## 11. Datatype: rad,gbs,pairgbs,pairddrad,(others:see docs)(all)
4                      ## 12. MinCov           
10                     ## 13. maxSH            
empirical_9_m4          ## 14. output name      
==== optional params below this line ===================================  affected step ==
                       ## 15.opt.: select subset (prefix* only selector)            (s2-s7)
                       ## 16.opt.: add-on (outgroup) taxa (list or prefix*)         (s6,s7)
                       ## 17.opt.: exclude taxa (list or prefix*)                   (s7)
empirical_9/fastq/*.gz ## 18. data location    
                       ## 19.opt.: maxM: N mismatches in barcodes (def= 1)          (s1)
                       ## 20.opt.: phred Qscore offset (def= 33)                    (s2)
                       ## 21.opt.: filter: def=0=NQual 1=NQual+adapters. 2=strict   (s2)
                       ## 22.opt.: a priori E,H (def= 0.001,0.01, if not estimated) (s5)
                       ## 23.opt.: maxN: max Ns in a cons seq (def=5)               (s5)
                       ## 24.opt.: maxH: max heterozyg. sites in cons seq (def=5)   (s5)
                       ## 25.opt.: ploidy: max alleles in cons seq (def=2;see docs) (s4,s5)
                       ## 26.opt.: maxSNPs: (def=100). Paired (def=100,100)         (s7)
                       ## 27.opt.: maxIndels: within-clust,across-clust (def. 3,99) (s3,s7)
                       ## 28.opt.: random number seed (def. 112233)              (s3,s6,s7)
2,2                    ## 29. trim overhang    
p,n,s                  ## 30. output formats   
                       ## 31.opt.: maj. base call at depth>x<mindepth (def.x=mindepth) (s5)
                       ## 32.opt.: keep trimmed reads (def=0). Enter min length.    (s2)
                       ## 33.opt.: max stack size (int), def= max(500,mean+2*SD)    (s3)
                       ## 34.opt.: minDerep: exclude dereps with <= N copies, def=1 (s3)
                       ## 35.opt.: use hierarchical clustering (def.=0, 1=yes)      (s6)
                       ## 36.opt.: repeat masking (def.=1='dust' method, 0=no)      (s3,s6)
                       ## 37.opt.: vsearch max threads per job (def.=6; see docs)   (s3,s6)
==== optional: list group/clade assignments below this line (see docs) ==================

Trimming the barcode

In this data set the data were uploaded separated by sample, but with the barcode still attached to the sequences. The python code below will remove the 5bp barcode from each sequence.


In [9]:
os.path.splitext(fil)


Out[9]:
('DRR021982.fastq', '.gz')

In [12]:
import glob
import itertools
import gzip
import os


for infile in glob.glob("empirical_9/fastq/DRR*"):
    iofile = gzip.open(infile, 'rb')
    dire, fil = os.path.split(infile)
    fastq = os.path.splitext(fil)[0]
    outhandle = os.path.join(dire, "T_"+fastq)
    outfile = open(outhandle, 'wb')
    
    data = iter(iofile)
    store = []
    while 1:
        try:
            line = data.next()
        except StopIteration:
            break
        if len(line) < 80:
            store.append(line)
        else:
            store.append(line[5:])
            
        if len(store) == 10000:
            outfile.write("".join(store))
            store = []
            
    iofile.close()
    outfile.close()        
    ! gzip $outhandle

Assemble in pyrad


In [ ]:
%%bash
pyrad -p params.txt -s 234567 >> log.txt 2>&1

In [13]:
%%bash
sed -i '/## 12./c\2                    ## 12. MinCov           ' params.txt
sed -i '/## 14./c\empirical_9_m2       ## 14. output name      ' params.txt

In [47]:
%%bash
pyrad -p params.txt -s 7 >> log.txt 2>&1

Results

We are interested in the relationship between the amount of input (raw) data between any two samples, the average coverage they recover when clustered together, and the phylogenetic distances separating samples.

Raw data amounts

The average number of raw reads per sample is 1.36M.


In [1]:
import pandas as pd
import numpy as np

## read in the data
s2dat = pd.read_table("empirical_9/stats/s2.rawedit.txt", header=0, nrows=32)

## print summary stats
print s2dat["passed.total"].describe()

## find which sample has the most raw data
maxraw = s2dat["passed.total"].max()
print "\nmost raw data in sample:"
print s2dat['sample '][s2dat['passed.total']==maxraw]


count         32.000000
mean     3888871.375000
std      2913183.441258
min        98285.000000
25%      1000709.500000
50%      4518550.000000
75%      5558420.000000
max      9568142.000000
Name: passed.total, dtype: float64

most raw data in sample:
0    T_DRR021959
Name: sample , dtype: object

Look at distributions of coverage

pyrad v.3.0.63 outputs depth information for each sample which I read in here and plot. First let's ask which sample has the highest depth of coverage. The std of coverages is pretty low in this data set compared to several others.


In [3]:
## read in the s3 results
s9dat = pd.read_table("empirical_9/stats/s3.clusters.txt", header=0, nrows=33)

## print summary stats
print "summary of means\n=================="
print s9dat['dpt.me'].describe()

## print summary stats
print "\nsummary of std\n=================="
print s9dat['dpt.sd'].describe()

## print summary stats
print "\nsummary of proportion lowdepth\n=================="
print pd.Series(1-s9dat['d>5.tot']/s9dat["total"]).describe()

## find which sample has the greatest depth of retained loci
max_hiprop = (s9dat["d>5.tot"]/s9dat["total"]).max()
print "\nhighest coverage in sample:"
print s9dat['taxa'][s9dat['d>5.tot']/s9dat["total"]==max_hiprop]


summary of means
==================
count     32.000000
mean      57.046781
std       37.276956
min        5.436000
25%       23.110250
50%       65.631000
75%       77.041000
max      135.646000
Name: dpt.me, dtype: float64

summary of std
==================
count     32.000000
mean     272.580687
std      201.847071
min       16.346000
25%       94.865750
50%      258.018000
75%      399.662500
max      690.205000
Name: dpt.sd, dtype: float64

summary of proportion lowdepth
==================
count    32.000000
mean      0.188730
std       0.161401
min       0.074257
25%       0.085030
50%       0.114366
75%       0.210204
max       0.655746
dtype: float64

highest coverage in sample:
7    T_DRR021966
Name: taxa, dtype: object

In [4]:
maxprop =(s9dat['d>5.tot']/s9dat['total']).max()
print "\nhighest prop coverage in sample:"
print s9dat['taxa'][s9dat['d>5.tot']/s9dat['total']==maxprop]


highest prop coverage in sample:
7    T_DRR021966
Name: taxa, dtype: object

In [5]:
## print mean and std of coverage for the highest coverage sample
with open("empirical_9/clust.85/T_DRR021966.depths", 'rb') as indat:
    depths = np.array(indat.read().strip().split(","), dtype=int)
    
print "Means for sample T_DRR021966"
print depths.mean(), depths.std()
print depths[depths>5].mean(), depths[depths>5].std()


Means for sample T_DRR021966
72.1266330292 439.779736427
77.7021948176 456.619346077

Plot the coverage for the sample with highest mean coverage

Green shows the loci that were discarded and orange the loci that were retained. The majority of data were discarded for being too low of coverage.


In [8]:
import toyplot
import toyplot.svg
import numpy as np

## read in the depth information for this sample
with open("empirical_9/clust.85/T_DRR021966.depths", 'rb') as indat:
    depths = np.array(indat.read().strip().split(","), dtype=int)
    
## make a barplot in Toyplot
canvas = toyplot.Canvas(width=350, height=300)
axes = canvas.axes(xlabel="Depth of coverage (N reads)", 
                   ylabel="N loci", 
                   label="dataset9/sample=T_DRR021966")

## select the loci with depth > 5 (kept)
keeps = depths[depths>5]

## plot kept and discarded loci
edat = np.histogram(depths, range(30)) # density=True)
kdat = np.histogram(keeps, range(30)) #, density=True)
axes.bars(edat)
axes.bars(kdat)

#toyplot.svg.render(canvas, "empirical_9_depthplot.svg")


Out[8]:
<toyplot.mark.BarMagnitudes at 0x7f91f2120590>
0102030Depth of coverage (N reads)050010001500N locidataset9/sample=T_DRR021966

In [26]:
cat empirical_9/stats/empirical_9_m4.stats



76963       ## loci with > minsp containing data
76778       ## loci with > minsp containing data & paralogs removed
76778       ## loci with > minsp containing data & paralogs removed & final filtering

## number of loci recovered in final data set for each taxon.
taxon	nloci
T_DRR021959	40272
T_DRR021960	39500
T_DRR021961	29626
T_DRR021962	38304
T_DRR021963	40251
T_DRR021964	40440
T_DRR021965	37187
T_DRR021966	41059
T_DRR021967	38884
T_DRR021968	42626
T_DRR021969	43490
T_DRR021970	43303
T_DRR021971	5249
T_DRR021972	46589
T_DRR021973	29939
T_DRR021974	47628
T_DRR021975	46705
T_DRR021976	47963
T_DRR021977	47881
T_DRR021978	46731
T_DRR021979	46386
T_DRR021980	41322
T_DRR021981	8509
T_DRR021982	48193
T_DRR021983	47548
T_DRR021984	47715
T_DRR021985	27186
T_DRR021986	36910
T_DRR021987	6636
T_DRR021988	14945
T_DRR021989	6640
T_DRR021990	7699


## nloci = number of loci with data for exactly ntaxa
## ntotal = number of loci for which at least ntaxa have data
ntaxa	nloci	saved	ntotal
1	-
2	-		-
3	-		-
4	8714	*	76778
5	5780	*	68064
6	4454	*	62284
7	3488	*	57830
8	3019	*	54342
9	2568	*	51323
10	2381	*	48755
11	2254	*	46374
12	2153	*	44120
13	2052	*	41967
14	1941	*	39915
15	1933	*	37974
16	1927	*	36041
17	1955	*	34114
18	2016	*	32159
19	2150	*	30143
20	2367	*	27993
21	2645	*	25626
22	3061	*	22981
23	3563	*	19920
24	3957	*	16357
25	4030	*	12400
26	3789	*	8370
27	2673	*	4581
28	1357	*	1908
29	450	*	551
30	91	*	101
31	9	*	10
32	1	*	1


## nvar = number of loci containing n variable sites (pis+autapomorphies).
## sumvar = sum of variable sites (SNPs).
## pis = number of loci containing n parsimony informative sites.
## sumpis = sum of parsimony informative sites.
	nvar	sumvar	PIS	sumPIS
0	967	0	8521	0
1	1685	1685	8479	8479
2	2050	5785	8315	25109
3	2519	13342	7439	47426
4	2935	25082	7082	75754
5	3112	40642	6307	107289
6	3429	61216	5747	141771
7	3555	86101	5016	176883
8	3723	115885	4372	211859
9	3846	150499	3823	246266
10	3664	187139	3017	276436
11	3684	227663	2471	303617
12	3663	271619	1940	326897
13	3536	317587	1360	344577
14	3428	365579	1016	358801
15	3317	415334	705	369376
16	3081	464630	466	376832
17	2976	515222	287	381711
18	2775	565172	175	384861
19	2600	614572	95	386666
20	2356	661692	62	387906
21	2165	707157	36	388662
22	1888	748693	21	389124
23	1679	787310	13	389423
24	1444	821966	7	389591
25	1289	854191	3	389666
26	1099	882765	0	389666
27	890	906795	1	389693
28	763	928159	1	389721
29	609	945820	1	389750
30	511	961150	0	389750
31	370	972620	0	389750
32	293	981996	0	389750
33	272	990972	0	389750
34	186	997296	0	389750
35	132	1001916	0	389750
36	98	1005444	0	389750
37	49	1007257	0	389750
38	55	1009347	0	389750
39	31	1010556	0	389750
40	19	1011316	0	389750
41	18	1012054	0	389750
42	7	1012348	0	389750
43	6	1012606	0	389750
44	1	1012650	0	389750
45	1	1012695	0	389750
46	1	1012741	0	389750
47	0	1012741	0	389750
48	0	1012741	0	389750
49	0	1012741	0	389750
50	0	1012741	0	389750
51	0	1012741	0	389750
52	1	1012793	0	389750
total var= 1012793
total pis= 389750
sampled unlinked SNPs= 75811
sampled unlinked bi-allelic SNPs= 73051

In [9]:
%%bash
head -n 20 empirical_9/stats/empirical_9_m2.stats



119626      ## loci with > minsp containing data
119441      ## loci with > minsp containing data & paralogs removed
119441      ## loci with > minsp containing data & paralogs removed & final filtering

## number of loci recovered in final data set for each taxon.
taxon	nloci
T_DRR021959	45933
T_DRR021960	45128
T_DRR021961	33226
T_DRR021962	41997
T_DRR021963	45401
T_DRR021964	45882
T_DRR021965	40633
T_DRR021966	46239
T_DRR021967	43330
T_DRR021968	47995
T_DRR021969	47919
T_DRR021970	47490

Infer ML phylogeny in raxml as an unrooted tree


In [ ]:
%%bash
## raxml argumement w/ ...
raxmlHPC-PTHREADS-AVX -f a -m GTRGAMMA -N 100 -x 12345 -p 12345 -T 20 \
                      -w /home/deren/Documents/RADmissing/empirical_9/ \
                      -n empirical_9_m4 -s empirical_9/outfiles/empirical_9_m4.phy

In [ ]:
%%bash
## raxml argumement w/ ...
raxmlHPC-PTHREADS-AVX -f a -m GTRGAMMA -N 100 -x 12345 -p 12345 -T 20 \
                      -w /home/deren/Documents/RADmissing/empirical_9/ \
                      -n empirical_9_m2 -s empirical_9/outfiles/empirical_9_m2.phy

In [28]:
%%bash 
head -n 20 empirical_9/RAxML_info.empirical_9_m4



This is RAxML version 8.0.16 released by Alexandros Stamatakis on March 21 2014.

With greatly appreciated code contributions by:
Andre Aberer      (HITS)
Simon Berger      (HITS)
Alexey Kozlov     (HITS)
Nick Pattengale   (Sandia)
Wayne Pfeiffer    (SDSC)
Akifumi S. Tanabe (NRIFS)
David Dao         (KIT)
Charlie Taylor    (UF)


Alignment has 818110 distinct alignment patterns

Proportion of gaps and completely undetermined characters in this alignment: 54.64%

RAxML rapid bootstrapping and subsequent ML search

In [ ]:
%%bash 
head -n 20 empirical_9/RAxML_info.empirical_9_m2

Plot the tree in R using ape


In [10]:
%load_ext rpy2.ipython

In [12]:
%%R -h 800 -w 800
library(ape)
tre <- read.tree("empirical_9/RAxML_bipartitions.empirical_9")
ltre <- ladderize(tre)

par(mfrow=c(1,2))
plot(ltre, use.edge.length=F)
nodelabels(ltre$node.label)

plot(ltre, type='u')


Get phylo distances (GTRgamma dist)


In [13]:
%%R
mean(cophenetic.phylo(ltre))


[1] 0.04027079