In [1]:
import time
import numpy as np
import tensorflow as tf
In [2]:
def reset_graph(seed=42):
"""
Utility function to reset current tensorflow computation graph
and set the random seed
"""
# to make results reproducible across runs
tf.reset_default_graph()
tf.set_random_seed(seed)
np.random.seed(seed)
In [3]:
def my_func(w,x):
f_0 = tf.exp(w[0,0] + w[0,1]*x)
f_1 = tf.exp(w[1,0] + w[1,1]*f_0)
f_2 = tf.exp(w[2,0] + w[2,1]*f_1)
return f_0, f_1, f_2
In [4]:
def my_func(w,x):
with tf.name_scope("f_0_level") as scope_0:
f_0 = tf.exp(w[0,0] + w[0,1]*x)
with tf.name_scope("f_1_level") as scope_1:
f_1 = tf.exp(w[1,0] + w[1,1]*f_0)
with tf.name_scope("f_2_level") as scope_2:
f_2 = tf.exp(w[2,0] + w[2,1]*f_1)
return f_0, f_1, f_2
In [5]:
w_0 = np.vstack( (np.zeros(3), np.ones(3)) ).T
In [6]:
w_0
Out[6]:
In [7]:
w = tf.Variable(w_0, name="w", dtype=tf.float32)
x = tf.Variable(1.0, name="x", dtype=tf.float32, trainable=False)
In [8]:
f_0, f_1, f_2 = my_func(w, x)
In [9]:
grads = tf.gradients(f_2, w)
In [10]:
grads
Out[10]:
In [11]:
init = tf.global_variables_initializer()
In [ ]:
In [12]:
t0 = time.time()
with tf.Session() as sess:
sess.run(init)
gradients, function_vals = sess.run([grads, [f_0, f_1, f_2]])
t1 = time.time()
dt = t1-t0
print("Function values: {}".format(function_vals))
print("Gradients: {}".format(gradients))
In [13]:
from IPython.display import clear_output, Image, display, HTML
def strip_consts(graph_def, max_const_size=32):
"""Strip large constant values from graph_def."""
strip_def = tf.GraphDef()
for n0 in graph_def.node:
n = strip_def.node.add()
n.MergeFrom(n0)
if n.op == 'Const':
tensor = n.attr['value'].tensor
size = len(tensor.tensor_content)
if size > max_const_size:
tensor.tensor_content = "<stripped %d bytes>"%size
return strip_def
def show_graph(graph_def, max_const_size=32):
"""Visualize TensorFlow graph."""
if hasattr(graph_def, 'as_graph_def'):
graph_def = graph_def.as_graph_def()
strip_def = strip_consts(graph_def, max_const_size=max_const_size)
code = """
<script>
function load() {{
document.getElementById("{id}").pbtxt = {data};
}}
</script>
<link rel="import" href="https://tensorboard.appspot.com/tf-graph-basic.build.html" onload=load()>
<div style="height:600px">
<tf-graph-basic id="{id}"></tf-graph-basic>
</div>
""".format(data=repr(str(strip_def)), id='graph'+str(np.random.rand()))
iframe = """
<iframe seamless style="width:1200px;height:620px;border:0" srcdoc="{}"></iframe>
""".format(code.replace('"', '"'))
display(HTML(iframe))
In [14]:
show_graph(tf.get_default_graph().as_graph_def())
In [ ]: