This notebook illustrates the gains obtained when using MRC in a SIMO system. It reproduces the results found here.
First we set the Python path and import some libraries.
In [28]:
%matplotlib inline
import numpy as np
from pyphysim.util.conversion import linear2dB
from pyphysim.util.misc import randn_c
Now we set the simulation parameters
In [29]:
all_N = np.arange(1,21) # Number of receive antennas
rep_max = 10000 # Number of iterations
rep_max = 10000 # Number of iteration
In [30]:
SNR_gain_dB = np.empty(all_N.size)
for index in range(all_N.size):
all_gains = np.empty(rep_max)
for rep in range(rep_max):
N = all_N[index]
# Generate the random channel matrix (here a column vector)
H = randn_c(N, 1)
all_gains[rep] = (H.T.conj() @ H)[0,0].real
SNR_gain_dB[index] = linear2dB(np.mean(all_gains))
SNR_gain_dB_theory = linear2dB(all_N)
In [31]:
from matplotlib import pyplot as plt
plt.plot(SNR_gain_dB,'--bs', label='Simulated')
plt.plot(SNR_gain_dB_theory,'--mo', label='Theory')
plt.legend(loc='best')
plt.grid()
plt.show()
In [32]:
# Reset the variables in the workspace
%reset -f
Now lets make some initialization setting the Python path.
In [33]:
# Add parent folder to path and import the required modules
import numpy as np
import sys
sys.path.append('../')
from pyphysim.util.conversion import dB2Linear
from pyphysim.util.misc import randn_c, count_bit_errors
from pyphysim.simulations.progressbar import ProgressbarText,ProgressbarText2
Now we define a function to simulate for the given transmission parameters.
In [34]:
def simulate_MRC(SNR, N, NSymbs, num_reps):
"""Simulate the BPSK transmission with MRC with the given parameters
Params
------
SNR : double
The desired SNR value (in dB)
N : int
The number of receive antennas (the number of transmit antennas is always 1).
NSymbs : int
The number of transmitted symbols at each iteration
num_reps : int
The number of iterations.
"""
bit_errors = 0.0
num_bits = NSymbs * num_reps
for rep in range(num_reps):
# Dependent Variables
noise_var = 1.0 / dB2Linear(SNR)
# Generates random data with 0 and 1
input_data = np.random.randint(0, 2, NSymbs)
# Modulate the data with BPSK
symbols = 1 - 2 * input_data
# Generate the complex channel
h = randn_c(N, 1)
# Pass the data through the channel
received_data = h * symbols + (np.sqrt(noise_var) * randn_c(1, NSymbs)) # This will use numpy broadcasting
# Apply the MRC
improved_received_data = np.dot(h.transpose().conjugate(), received_data)
# Decode the received data
decoded_data = np.zeros(NSymbs, dtype=int)
improved_received_data = np.squeeze(improved_received_data)
decoded_data[improved_received_data < 0] = 1
# Count the number of bit errors
bit_errors += count_bit_errors(input_data, decoded_data)
# Calculate the BER
BER = float(bit_errors) / num_bits
return BER
Now we can finally perform the simulation for varying sets of transmission parameters.
In [42]:
# Transmission parameters
NSymbs = 200 # Number of simulated symbols
NBits = NSymbs
all_SNR = np.linspace(0, 35, 14)
num_reps = 30000
# Number of SNR points
num_points = all_SNR.size
BER_NRx1 = np.zeros(num_points)
BER_NRx2 = np.zeros(num_points)
pbar = ProgressbarText2(num_points, message="Simulating")
for index in range(num_points):
pbar.progress(index)
SNR = all_SNR[index]
BER_NRx1[index] = simulate_MRC(SNR, 1, NSymbs, num_reps)
BER_NRx2[index] = simulate_MRC(SNR, 2, NSymbs, num_reps)
pbar.progress(num_points)
Now we plot the results.
In [41]:
from matplotlib import pyplot as plt
fig, ax = plt.subplots(figsize=(8,6))
ax.semilogy(all_SNR, BER_NRx1, '-ms')
ax.semilogy(all_SNR, BER_NRx2,'-ks')
ax.legend(['N=1', 'N=2'])
ax.set_xlabel("SNR (dB)")
ax.set_ylabel("BER")
ax.grid()
# fig.show()