In [1]:
%matplotlib inline
import numpy
import matplotlib.pyplot as plt
import time
import multiprocessing
In [2]:
def lehmer_prng(seed):
value = seed
while True:
value = (7**5 * value) % (2**31 - 1)
yield value
def scale_prn(x, maxv):
return int(maxv * x / 0x7FFFFFFF)
In [3]:
default_n1 = 2
default_seed = 2000
def L(n, k, n1 = default_n1, seed = default_seed):
prng = lehmer_prng(seed)
p_tbl = [ p % (n - k) for p in range(k * n1)]
matrix = [[] for _ in range(n - k)]
t = 0
for col in range(k):
for h in range(n1):
i = t
while i < k * n1 and col in matrix[p_tbl[i]]:
i += 1
if i >= k * n1:
while True:
row = scale_prn(next(prng), n - k)
if col not in matrix[row]:
break
matrix[row].append(col)
else:
while True:
p = scale_prn(next(prng), k * n1 - t) + t
if col not in matrix[p_tbl[p]]:
break
matrix[p_tbl[p]].append(col)
p_tbl[p] = p_tbl[t]
t += 1
for row in range(n - k):
degree = len(matrix[row])
if degree == 0:
col = scale_prn(next(prng), k)
matrix[row].append(col)
if degree <= 1:
while True:
col = scale_prn(next(prng), k)
if col not in matrix[row]:
break
matrix[row].append(col)
return matrix
def identity_scheme(n, k, n1 = default_n1, seed = default_seed):
matrix = L(n, k, n1, seed)
for row in range(n-k):
matrix[row].append(k + row)
return matrix
def staircase_scheme(n, k, n1 = default_n1, seed = default_seed):
matrix = L(n, k, n1, seed)
for row in range(n-k):
if row != 0:
matrix[row].append(k + row - 1)
matrix[row].append(k + row)
return matrix
def triangle_scheme(n, k, n1 = default_n1, seed = default_seed):
matrix = L(n, k, n1, seed)
for row in range(n-k):
for col in range(k, k+row+1):
matrix[row].append(col)
return matrix
def list_to_GF2_matrix(matrix, n, k):
A = Matrix(GF(2), n-k, n)
for i, row in enumerate(matrix):
for j in row:
A[i,j] = 1
return A
In [4]:
def erasure_submatrix(matrix, erasures):
s = set(erasures)
return [[col for col in row if col in s] for row in matrix]
In [5]:
def is_decodable(matrix, erasures, n, k):
return list_to_GF2_matrix(erasure_submatrix(matrix, erasures), n, k).rank() == len(erasures)
In [6]:
def is_simple_decodable(matrix, erasures):
m = erasure_submatrix(matrix, erasures)
while True:
if numpy.all([len(row) == 0 for row in m]):
return True
try:
e = next((row[0] for row in m if len(row) == 1))
except StopIteration:
return False
m = [[col for col in row if col != e] for row in m]
In [7]:
def random_erasures(n, p):
return [j for j in range(n) if numpy.random.binomial(1, p)]
def random_erasures_optimized(n, p):
erasures = list()
e = numpy.random.binomial(n, p)
for _ in range(e):
while True:
j = numpy.random.randint(n)
if j not in erasures:
erasures.append(j)
break
return erasures
In [8]:
def printing_range(n, every = 100000):
j = 0
while j < n:
if not j % every:
print("{} {}".format(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), j))
yield j
j += 1
def decode_probability(matrix, n, k, erasure_probability, trials = 1000000):
print('decode_probability p = {}'.format(erasure_probability))
return sum((is_decodable(matrix, random_erasures_optimized(n, erasure_probability), n, k) for _ in printing_range(trials)))/trials
def simple_decode_probability(matrix, n, k, erasure_probability, trials = 1000000):
print('simple_decode_probability p = {}'.format(erasure_probability))
return sum((is_simple_decodable(matrix, random_erasures_optimized(n, erasure_probability)) for _ in printing_range(trials)))/trials
In [9]:
def compute(n, k):
ps = numpy.logspace(-3,-1,11)
h = identity_scheme(n,k)
dp_identity = [decode_probability(h, n, k, p) for p in ps]
dp_simple_identity = [simple_decode_probability(h, n, k, p) for p in ps]
h = staircase_scheme(n,k)
dp_staircase = [decode_probability(h, n, k, p) for p in ps]
dp_simple_staircase = [simple_decode_probability(h, n, k, p) for p in ps]
h = triangle_scheme(n,k)
dp_triangle = [decode_probability(h, n, k, p) for p in ps]
dp_simple_triangle = [simple_decode_probability(h, n, k, p) for p in ps]
save((dp_identity, dp_simple_identity, dp_staircase, dp_simple_staircase, dp_triangle, dp_simple_triangle), '{}_{}'.format(n,k))
The calculations below take many hours to run. The results are saved in some files. Uncomment them to rerun the calculations and regenerate these files.
In [10]:
# compute(n = 600, k = 500)
In [11]:
# compute(n = 1000, k = 833)
In [14]:
def make_plot(n, k):
ps = numpy.logspace(-3,-1,11)
dp_identity, dp_simple_identity, dp_staircase, dp_simple_staircase, dp_triangle, dp_simple_triangle = load('{}_{}'.format(n,k))
plt.loglog(ps, [1-p for p in dp_identity], 'b-', alpha=0.5, label = 'Identity')
plt.loglog(ps, [1-p for p in dp_simple_identity], 'b--', label = 'Identity (iterative)')
plt.loglog(ps, [1-p for p in dp_staircase], 'g-', alpha=0.5, label = 'Staircase')
plt.loglog(ps, [1-p for p in dp_simple_staircase], 'g--', label = 'Staircase (iterative)')
plt.loglog(ps, [1-p for p in dp_triangle], 'r-', alpha=0.5, label = 'Triangle')
plt.loglog(ps, [1-p for p in dp_simple_triangle], 'r--', label = 'Triangle (iterative)')
plt.xlabel('Erasure rate')
plt.ylabel('Codeword error rate')
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.title('LDPC codeword error rate (n = {}, k = {})'.format(n,k));
In [15]:
make_plot(n = 600, k = 500)
In [16]:
make_plot(n = 1000, k = 833)