Where:
In [11]:
from sympy import symbols, collect, expand, latex, simplify
D, x, x_0, E, I, w, y_0, L, y, t = symbols('Delta x x_0 E I w y_0 L y t')
from sympy import init_printing
init_printing(use_unicode=True)
D = w/(2*E*I)*((x-x_0)**4/12-L*(x-x_0)**3/6+L**3/12*(x-x_0)+2*y_0*E*I/w)
D
Out[11]:
In [2]:
E = expand(D)
E
Out[2]:
In [3]:
F = collect(E,x)
F
Out[3]:
In [4]:
latex(F)
Out[4]:
The following calculations were done in an effort to determine what the loacation of the supports needed to be if they did not move in the drawing when the beam deflects. This is necessary due to the simplifiaction made where the ends of the beam centerline do not move when the bem deflects.
In [8]:
G = simplify(F)
G
Out[8]:
In [33]:
from sympy import diff,sqrt, roots
T = diff(G,x)
T
Out[33]:
In [26]:
H = sqrt(t**2/4-(x-x_0)**2)*T #+ (x-x_0)
J = H**2
In [32]:
K = collect(expand((J - (x_0-x)**2)/(w**2/(12*E**2*I**2))),x)
K
Out[32]:
In [43]:
c = -12*E**2/w**2*I**2*x_0**2 + L**6*t**2/192 - L**6*x_0**2/48 -L**4*t**2/16*x_0**2\
+L**4*x_0**4/4 - L**3*t**2/24*x_0**3 + L**3*x_0**5/6 + 3*L**2/16*t**2*x_0**4 \
-3*L**2/4*x_0**6 + L*t**2/4*x_0**5 - L*x_0**7 + t**2*x_0**6/12 - x_0**8/3
K-c
Out[43]: