In [12]:
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams
import seaborn as sns
from sys import argv
In [13]:
gene_dict = {
'Phosphate': ['VF_A1087', 'VF_A1090', 'VF_1611', 'VF_A1057', 'VF_1610', 'VF_1613', 'VF_1612', 'VF_A1089'],
'Flagellar': ['VF_1851', 'VF_2079', 'VF_1842', 'VF_2317', 'VF_1843', 'VF_1863', 'VF_1841'],
'LipidPerox': ['VF_1081', 'VF_1082', 'VF_1083', 'VF_A1049', 'VF_A1050'],
'LuxOperon': ['VF_A0918', 'VF_A0919', 'VF_A0920', 'VF_A0924', 'VF_A0921', 'VF_A0922', 'VF_A0923', 'VF_A0924'],
'LuxIregulated': ['VF_A0985', 'VF_1161', 'VF_1162', 'VF_1725', 'VF_A0090', 'VF_A0622', 'VF_A1058'],
'GGDEFdomain': ['VF_A0879', 'VF_A0343', 'VF_A0342', 'VF_A0476'],
# 'TMAOreductase': ['VF_A0188', 'VF_A0189'],
# 'FatCatabolism': ['VF_0533'],
# 'AminoAcid': ['VF_1585', 'VF_1586', 'VF_A0840'],
# 'PTSsugars': ['VF_A0747', 'VF_A1189', 'VF_A0941', 'VF_A0942'],
# 'NonPTSsugars': ['VF_A0799']
}
In [14]:
path = 'results_plk_swt_vnt.csv' # argv[8]
In [15]:
df = pd.read_csv(path, index_col=0)
In [16]:
with open("ko_plk_vnt_kiel.txt", "w") as text_file:
for pathway in gene_dict.keys():
for gene in gene_dict[pathway]:
if df['Plk-vs-Vnt_log2fc'][gene] > 0:
text_file.write('%s #2c6fbb\n' % df['KO_number'][gene]) # medium blue
else:
text_file.write('%s #39ad48\n' % df['KO_number'][gene]) # medium green
In [17]:
with open("ko_plk_vnt_padj001.txt", "w") as text_file:
for row in df.iterrows():
gene = row[0]
if df['Plk-vs-Swt_padj'][gene] < 0.001:
if df['Plk-vs-Vnt_log2fc'][gene] > 0:
text_file.write('%s #2c6fbb\n' % df['KO_number'][gene]) # medium blue
else:
text_file.write('%s #39ad48\n' % df['KO_number'][gene]) # medium green
In [18]:
with open("ko_plk_vnt_padj001_log2fc3.txt", "w") as text_file:
for row in df.iterrows():
gene = row[0]
if (df['Plk-vs-Swt_padj'][gene] < 0.001) & (df['Plk-vs-Swt_log2fc'][gene] > 3):
if df['Plk-vs-Vnt_log2fc'][gene] > 0:
text_file.write('%s #2c6fbb\n' % df['KO_number'][gene]) # medium blue
else:
text_file.write('%s #39ad48\n' % df['KO_number'][gene]) # medium green
In [ ]: