In [9]:
import folium
import pandas as pd
import numpy as np
import os
import json
from geopy.geocoders import Nominatim
import matplotlib.pyplot as plt

In [2]:
def read_csv(filename):
    df = pd.read_csv(filename)
    NewLap_idx = df[df.Time == 'New Lap'].index
    df.drop('heartratebpm/value',axis=1, inplace=True)
    df.dropna(how='any',axis=0, inplace=True)
    dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%dT%H:%M:%SZ')
    df['Time'] = df['Time'].apply(lambda x: dateparse(x))
    df['dist'] = \
        haversine_np(df.LongitudeDegrees.shift(), df.LatitudeDegrees.shift(),
                     df.loc[1:, 'LongitudeDegrees'], df.loc[1:, 'LatitudeDegrees'])
    df['cum_dis'] = df.dist.cumsum()
    df['DeltaTime'] = (df.Time - df.Time.shift()).dt.seconds
    df['Speed'] = df.apply(lambda x: x['dist']/x['DeltaTime']*3600 if x['DeltaTime'] else np.NaN, axis=1)
    df['DeltaTime'] = (df.Time - df.Time.shift()).dt.seconds
    df['DeltaAltitude'] = df.AltitudeMeters - df.AltitudeMeters.shift()
    return df, NewLap_idx

In [3]:
def haversine_np(lon1, lat1, lon2, lat2):
    """
    Calculate the great circle distance between two points
    on the earth (specified in decimal degrees)

    All args must be of equal length.    

    """
    lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])

    dlon = lon2 - lon1
    dlat = lat2 - lat1

    a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2

    c = 2 * np.arcsin(np.sqrt(a))
    km = 6367 * c
    return km

In [19]:
path = 'data/csv/'
allFiles = os.listdir(path)
frame = pd.DataFrame(columns=('Date', 'Filename', 'Kilometers', 'Speed', 'Time', 'Climb', 'Lat', 'Long', 'Adress'))
dict_df = dict()
dict_newlap = dict()
for i, file in enumerate(allFiles):
    df, newlap = read_csv(path + file)
    dict_df[df['Time'][0].strftime("%Y-%m-%d")] = df
    dict_newlap[df['Time'][0].strftime("%Y-%m-%d")] = newlap
    geolocator = Nominatim()
    location = geolocator.reverse(str(df.LatitudeDegrees.mean()) + "," + str(df.LongitudeDegrees.mean()))[0]
    frame.loc[i] = [df['Time'][0], file, df.cum_dis.max(), df.Speed.mean(), df.DeltaTime.sum()/60,
                    df['DeltaAltitude'][df['DeltaAltitude'] > 0].sum(),
                    df.LatitudeDegrees.mean(), df.LongitudeDegrees.mean(), location]

In [20]:
dict_df['2016-10-08'].head()


Out[20]:
Time LatitudeDegrees LongitudeDegrees AltitudeMeters dist cum_dis DeltaTime Speed DeltaAltitude
0 2016-10-08 05:20:17 36.460728 25.390005 194.0 NaN NaN NaN NaN NaN
1 2016-10-08 05:20:18 36.460728 25.390005 195.0 0.000000 0.000000 1.0 0.000000 1.0
2 2016-10-08 05:20:19 36.460728 25.390005 195.0 0.000000 0.000000 1.0 0.000000 0.0
3 2016-10-08 05:20:20 36.460730 25.390005 195.0 0.000222 0.000222 1.0 0.800101 0.0
4 2016-10-08 05:20:20 36.460730 25.390005 195.0 0.000000 0.000222 0.0 NaN 0.0

In [26]:
mean_lat = np.mean([i[0] for i in [[float(v.LatitudeDegrees), float(v.LongitudeDegrees)] for k,v in dict_df['2016-10-08'].iterrows()]])
mean_long = np.mean([i[1] for i in [[float(v.LatitudeDegrees), float(v.LongitudeDegrees)] for k,v in dict_df['2016-10-08'].iterrows()]])

m = folium.Map(location=[mean_lat, mean_long ], zoom_start=13, tiles='OpenStreetMap')
folium.PolyLine([[float(v.LatitudeDegrees), float(v.LongitudeDegrees)] for k,v in dict_df['2016-10-08'].iterrows()],
                color='blue', opacity=1).add_to(m)
for i in dict_newlap['2016-10-08']:
    folium.Marker([dict_df['2016-10-08'].iloc[i-len(dict_newlap['2016-10-08'])]['LatitudeDegrees'], 
                   dict_df['2016-10-08'].iloc[i-len(dict_newlap['2016-10-08'])]['LongitudeDegrees'] ],
                  popup=str(i)).add_to(m)
m


Out[26]:

In [29]:
m.save('output/santorini.html')

Altitude vs Speed


In [32]:
df_resampled = pd.concat([dict_df['2016-10-08'][['Speed', 'AltitudeMeters']].rolling(window=10).mean(), dict_df['2016-10-08']['Time']], axis=1).resample('30s', on='Time').mean().reset_index()

In [55]:
plt.figure(figsize=(15,3))
ax1 = plt.axes()
ax2 = ax1.twinx()
ax1.plot(df_resampled['Speed'].fillna(0).round(1).values.tolist())
ax2.plot(df_resampled['AltitudeMeters'].fillna(0).round(1).values.tolist(), 'r')
ax1.set_ylabel('Speed')
ax2.set_ylabel('Altitud')
plt.show()


Distance interval


In [59]:
df_interval = dict_df['2016-10-08'].groupby(dict_df['2016-10-08']['cum_dis'].apply(lambda x: np.ceil(x))).agg({'DeltaTime' : sum, 'Speed': np.mean, 'DeltaAltitude' : np.sum}).reset_index()

In [75]:
plt.figure(figsize=(15,3))
ax1 = plt.axes()
ax2 = ax1.twinx()
ax1.set_ylabel('Speed')
ax2.set_ylabel('Altitud')
ax2.plot(df_interval.cum_dis, df_interval.DeltaAltitude, color='r')
ax1.bar(df_interval.cum_dis, df_interval.Speed)
plt.show()



In [156]:
df_interval


Out[156]:
cum_dis DeltaTime Speed DeltaAltitude
0 0.0 2.0 0.000000 1.0
1 1.0 451.0 7.988852 98.0
2 2.0 385.0 9.330590 -15.0
3 3.0 313.0 11.524092 -26.0
4 4.0 546.0 6.600975 90.0
5 5.0 314.0 11.455841 -49.0
6 6.0 485.0 7.432455 66.0
7 7.0 391.0 9.187743 1.0
8 8.0 419.0 8.592033 5.0
9 9.0 390.0 9.245032 -6.0
10 10.0 279.0 12.901060 -79.0
11 11.0 431.0 8.353954 57.0
12 12.0 317.0 11.339269 -99.0
13 13.0 423.0 8.529605 31.0
14 14.0 523.0 6.878390 25.0
15 15.0 305.0 11.802708 -101.0
16 16.0 38.0 2.884297 -4.0

Altitude distance from min to max


In [170]:
list_df[number]['AltitudeMeters'].max() - list_df[number]['AltitudeMeters'].min()


Out[170]:
189.0

Cumulated climb altitude


In [178]:
list_df[number]['DeltaAltitude'][list_df[number]['DeltaAltitude'] > 0].sum()


Out[178]:
1486.0

Mean speed


In [183]:
list_df[number]['Speed'].mean()


Out[183]:
9.0038812861360356

Export to csv


In [76]:
with open('output/satorini.json', 'w') as outfile:
    json.dump({'AltSpeed': {'Speed': df_resampled['Speed'].fillna(0).round(1).values.tolist(),
               'Altitude': df_resampled['AltitudeMeters'].round(1).values.tolist(),
               'Time': df_resampled['Time'].apply(lambda d: "%.2d:%.2d:%.2d" % ((d - df_resampled['Time'][0]).seconds//3600,((d - df_resampled['Time'][0]).seconds//60)%60, (d - df_resampled['Time'][0]).seconds%60)).values.tolist()
                },
               'Interval': {'Speed': df_interval['Speed'].fillna(0).round(2).values.tolist(),
                            'Altitude': df_interval['DeltaAltitude'].fillna(0).round(2).values.tolist(),
                            'Distance': df_interval['cum_dis'].fillna(0).round(0).values.tolist()
                           }
              }, outfile, indent=1)