In [1]:
    
from tfs.models import LeNet
from tfs.dataset import Mnist
net = LeNet()
dataset = Mnist()
    
In [2]:
    
from tfs.core.optimizer import GradientDecentOptimizer
from tfs.core.regularizers import L1
net.optimizer = GradientDecentOptimizer(net)
net.regularizer = L1(net,l1=0.001)
net.build()
    
    Out[2]:
In [3]:
    
net.fit(dataset,batch_size=200,n_epoch=1,max_step=100)
    
    
    Out[3]:
In [4]:
    
net.save('lenet_epoch_1')
    
In [5]:
    
!ls ./
    
    
In [6]:
    
from tfs.network import Network
net2 = Network()
net2.load('lenet_epoch_1')
    
In [7]:
    
print net2
    
    
In [8]:
    
print net2.optimizer
    
    
In [9]:
    
print net2.initializer
    
    
In [10]:
    
print net2.losser
    
    
In [11]:
    
print 'accuracy',net2.score(dataset.test)
    
    
In [12]:
    
net2.fit(dataset,batch_size=200,n_epoch=1,max_step=100)
    
    
    Out[12]:
In [13]:
    
net2.score(dataset.test)
    
    Out[13]:
In [ ]: