____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
lstm_1 (LSTM) (1, 1, 200) 240800 lstm_input_1[0][0]
____________________________________________________________________________________________________
dropout_1 (Dropout) (1, 1, 200) 0 lstm_1[0][0]
____________________________________________________________________________________________________
lstm_2 (LSTM) (1, 1, 100) 120400 dropout_1[0][0]
____________________________________________________________________________________________________
dropout_2 (Dropout) (1, 1, 100) 0 lstm_2[0][0]
____________________________________________________________________________________________________
lstm_3 (LSTM) (1, 50) 30200 dropout_2[0][0]
____________________________________________________________________________________________________
dropout_3 (Dropout) (1, 50) 0 lstm_3[0][0]
____________________________________________________________________________________________________
dense_1 (Dense) (1, 50) 2550 dropout_3[0][0]
____________________________________________________________________________________________________
dropout_4 (Dropout) (1, 50) 0 dense_1[0][0]
____________________________________________________________________________________________________
dense_2 (Dense) (1, 20) 1020 dropout_4[0][0]
____________________________________________________________________________________________________
dropout_5 (Dropout) (1, 20) 0 dense_2[0][0]
____________________________________________________________________________________________________
dense_3 (Dense) (1, 5) 105 dropout_5[0][0]
====================================================================================================
Total params: 395075
____________________________________________________________________________________________________
None
('Epoch', 1, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 1.2689 - acc: 0.5023Epoch 00000: val_acc improved from -inf to 0.25077, saving model to activity.weights--3lstmaudio.best.hdf5
3503/3503 [==============================] - 62s - loss: 1.2693 - acc: 0.5021 - val_loss: 1.9646 - val_acc: 0.2508
Performance of model on test set ----------------------------
Accuracy:
0.251805985552
Kappa:
0.0468951594851
Confusion matrix:
[[ 0 0 0 0 122]
[ 0 144 0 0 118]
[ 0 125 0 0 118]
[ 0 35 0 0 133]
[ 0 74 0 0 100]]
AUC score:
0.659596465468
('Epoch', 2, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 1.1570 - acc: 0.5485Epoch 00000: val_acc improved from 0.25077 to 0.30857, saving model to activity.weights--3lstmaudio.best.hdf5
3503/3503 [==============================] - 70s - loss: 1.1573 - acc: 0.5484 - val_loss: 1.8879 - val_acc: 0.3086
Performance of model on test set ----------------------------
Accuracy:
0.310629514964
Kappa:
0.13378172582
Confusion matrix:
[[116 1 5 0 0]
[ 75 143 44 0 0]
[ 69 132 42 0 0]
[120 36 12 0 0]
[ 45 91 38 0 0]]
AUC score:
0.61159059271
('Epoch', 3, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 1.0809 - acc: 0.5914Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 81s - loss: 1.0812 - acc: 0.5912 - val_loss: 2.0865 - val_acc: 0.2797
Performance of model on test set ----------------------------
Accuracy:
0.28689370485
Kappa:
0.0940494391752
Confusion matrix:
[[109 0 13 0 0]
[ 29 121 112 0 0]
[ 74 121 48 0 0]
[106 33 29 0 0]
[ 28 55 91 0 0]]
AUC score:
0.586630974546
('Epoch', 4, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 1.0058 - acc: 0.6325Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 84s - loss: 1.0058 - acc: 0.6323 - val_loss: 2.0634 - val_acc: 0.3034
Performance of model on test set ----------------------------
Accuracy:
0.301341589267
Kappa:
0.10439465924
Confusion matrix:
[[101 0 21 0 0]
[ 17 97 145 0 3]
[ 45 104 94 0 0]
[ 99 24 44 0 1]
[ 15 28 131 0 0]]
AUC score:
0.595045966039
('Epoch', 5, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.9295 - acc: 0.6710Epoch 00000: val_acc improved from 0.30857 to 0.32611, saving model to activity.weights--3lstmaudio.best.hdf5
3503/3503 [==============================] - 85s - loss: 0.9295 - acc: 0.6709 - val_loss: 1.8770 - val_acc: 0.3261
Performance of model on test set ----------------------------
Accuracy:
0.334365325077
Kappa:
0.134203002144
Confusion matrix:
[[ 93 0 23 0 6]
[ 12 124 98 0 28]
[ 16 131 95 0 1]
[ 47 31 87 0 3]
[ 12 74 76 0 12]]
AUC score:
0.671039582073
('Epoch', 6, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.8512 - acc: 0.7013Epoch 00000: val_acc improved from 0.32611 to 0.35913, saving model to activity.weights--3lstmaudio.best.hdf5
3503/3503 [==============================] - 90s - loss: 0.8511 - acc: 0.7014 - val_loss: 2.1873 - val_acc: 0.3591
Performance of model on test set ----------------------------
Accuracy:
0.37048503612
Kappa:
0.195028183342
Confusion matrix:
[[105 3 10 0 4]
[ 25 41 191 0 5]
[ 33 11 199 0 0]
[ 78 17 73 0 0]
[ 19 46 95 0 14]]
AUC score:
0.636614370532
('Epoch', 7, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.7602 - acc: 0.7479Epoch 00000: val_acc improved from 0.35913 to 0.37771, saving model to activity.weights--3lstmaudio.best.hdf5
3503/3503 [==============================] - 92s - loss: 0.7601 - acc: 0.7479 - val_loss: 1.9019 - val_acc: 0.3777
Performance of model on test set ----------------------------
Accuracy:
0.37048503612
Kappa:
0.186228848269
Confusion matrix:
[[ 84 1 31 6 0]
[ 4 64 146 23 25]
[ 13 48 172 6 4]
[ 42 29 83 6 8]
[ 6 59 66 10 33]]
AUC score:
0.702416028237
('Epoch', 8, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.7144 - acc: 0.7676Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 94s - loss: 0.7143 - acc: 0.7676 - val_loss: 1.9181 - val_acc: 0.3560
Performance of model on test set ----------------------------
Accuracy:
0.355005159959
Kappa:
0.161198151831
Confusion matrix:
[[ 83 2 36 0 1]
[ 4 62 178 4 14]
[ 12 57 169 0 5]
[ 47 31 82 2 6]
[ 6 73 64 3 28]]
AUC score:
0.675981713055
('Epoch', 9, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.6623 - acc: 0.7864Epoch 00000: val_acc improved from 0.37771 to 0.38803, saving model to activity.weights--3lstmaudio.best.hdf5
3503/3503 [==============================] - 92s - loss: 0.6621 - acc: 0.7865 - val_loss: 2.2118 - val_acc: 0.3880
Performance of model on test set ----------------------------
Accuracy:
0.391124871001
Kappa:
0.217428441195
Confusion matrix:
[[ 94 2 22 0 4]
[ 8 26 197 6 25]
[ 14 6 217 0 6]
[ 54 9 89 7 9]
[ 7 18 109 5 35]]
AUC score:
0.679616741276
('Epoch', 10, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.6179 - acc: 0.7975Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 93s - loss: 0.6185 - acc: 0.7973 - val_loss: 2.1570 - val_acc: 0.3860
Performance of model on test set ----------------------------
Accuracy:
0.418988648091
Kappa:
0.253274768474
Confusion matrix:
[[ 85 13 21 2 1]
[ 11 118 80 4 49]
[ 14 79 132 3 15]
[ 46 20 62 15 25]
[ 10 42 62 4 56]]
AUC score:
0.701809581521
('Epoch', 11, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.5884 - acc: 0.8067Epoch 00000: val_acc improved from 0.38803 to 0.46233, saving model to activity.weights--3lstmaudio.best.hdf5
3503/3503 [==============================] - 89s - loss: 0.5883 - acc: 0.8067 - val_loss: 1.8456 - val_acc: 0.4623
Performance of model on test set ----------------------------
Accuracy:
0.468524251806
Kappa:
0.323859448503
Confusion matrix:
[[ 82 11 18 4 7]
[ 13 101 71 19 58]
[ 15 41 161 6 20]
[ 50 31 35 29 23]
[ 8 37 34 14 81]]
AUC score:
0.727081838647
('Epoch', 12, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.5101 - acc: 0.8452Epoch 00000: val_acc improved from 0.46233 to 0.47472, saving model to activity.weights--3lstmaudio.best.hdf5
3503/3503 [==============================] - 88s - loss: 0.5100 - acc: 0.8453 - val_loss: 1.9867 - val_acc: 0.4747
Performance of model on test set ----------------------------
Accuracy:
0.479876160991
Kappa:
0.338037599794
Confusion matrix:
[[ 97 6 15 1 3]
[ 20 108 80 6 48]
[ 20 25 186 1 11]
[ 62 29 26 18 33]
[ 16 64 34 4 56]]
AUC score:
0.736110166754
('Epoch', 13, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.4865 - acc: 0.8555Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 87s - loss: 0.4864 - acc: 0.8556 - val_loss: 2.2015 - val_acc: 0.4231
Performance of model on test set ----------------------------
Accuracy:
0.422084623323
Kappa:
0.264623774237
Confusion matrix:
[[ 88 5 25 1 3]
[ 22 78 99 16 47]
[ 21 23 177 7 15]
[ 54 23 54 8 29]
[ 12 40 52 12 58]]
AUC score:
0.714565790409
('Epoch', 14, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.4324 - acc: 0.8675Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 90s - loss: 0.4323 - acc: 0.8675 - val_loss: 2.2272 - val_acc: 0.4303
Performance of model on test set ----------------------------
Accuracy:
0.43137254902
Kappa:
0.277056605306
Confusion matrix:
[[ 96 7 10 3 6]
[ 8 74 113 11 56]
[ 24 16 183 9 11]
[ 66 23 33 17 29]
[ 7 50 61 8 48]]
AUC score:
0.715783232956
('Epoch', 15, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.4402 - acc: 0.8601Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 92s - loss: 0.4401 - acc: 0.8601 - val_loss: 2.3535 - val_acc: 0.3953
Performance of model on test set ----------------------------
Accuracy:
0.389060887513
Kappa:
0.229362382973
Confusion matrix:
[[ 83 1 26 4 8]
[ 14 31 144 16 57]
[ 21 12 178 20 12]
[ 69 8 34 25 32]
[ 13 19 62 20 60]]
AUC score:
0.711972590191
('Epoch', 16, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.4029 - acc: 0.8789Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 97s - loss: 0.4028 - acc: 0.8790 - val_loss: 2.0671 - val_acc: 0.4685
Performance of model on test set ----------------------------
Accuracy:
0.463364293086
Kappa:
0.323050384301
Confusion matrix:
[[ 92 6 11 4 9]
[ 12 127 28 16 79]
[ 22 68 122 11 20]
[ 54 20 6 29 59]
[ 18 52 17 8 79]]
AUC score:
0.741876928989
('Epoch', 17, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.3576 - acc: 0.8992Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 88s - loss: 0.3575 - acc: 0.8992 - val_loss: 2.1797 - val_acc: 0.4737
Performance of model on test set ----------------------------
Accuracy:
0.488132094943
Kappa:
0.352124295339
Confusion matrix:
[[ 86 9 12 12 3]
[ 7 98 76 6 75]
[ 18 18 173 13 21]
[ 54 21 20 42 31]
[ 12 43 32 13 74]]
AUC score:
0.749655365107
('Epoch', 18, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.3204 - acc: 0.9118Epoch 00000: val_acc improved from 0.47472 to 0.48400, saving model to activity.weights--3lstmaudio.best.hdf5
3503/3503 [==============================] - 80s - loss: 0.3204 - acc: 0.9118 - val_loss: 2.1297 - val_acc: 0.4840
Performance of model on test set ----------------------------
Accuracy:
0.486068111455
Kappa:
0.351600836294
Confusion matrix:
[[ 95 5 5 8 9]
[ 10 93 80 13 66]
[ 19 26 170 16 12]
[ 55 23 6 39 45]
[ 16 46 26 12 74]]
AUC score:
0.747603640693
('Epoch', 19, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.3161 - acc: 0.9121Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 76s - loss: 0.3160 - acc: 0.9121 - val_loss: 2.3955 - val_acc: 0.4696
Performance of model on test set ----------------------------
Accuracy:
0.470588235294
Kappa:
0.332975956932
Confusion matrix:
[[ 89 1 11 12 9]
[ 4 62 105 31 60]
[ 19 17 171 15 21]
[ 41 13 11 58 45]
[ 8 34 37 19 76]]
AUC score:
0.740531586247
('Epoch', 20, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.3217 - acc: 0.9132Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 86s - loss: 0.3217 - acc: 0.9132 - val_loss: 2.5254 - val_acc: 0.4087
Performance of model on test set ----------------------------
Accuracy:
0.410732714138
Kappa:
0.252878172877
Confusion matrix:
[[ 93 3 18 4 4]
[ 12 64 120 11 55]
[ 24 37 163 4 15]
[ 57 22 38 7 44]
[ 15 27 52 9 71]]
AUC score:
0.691995854452
('Epoch', 21, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.2961 - acc: 0.9163Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 85s - loss: 0.2961 - acc: 0.9164 - val_loss: 2.4601 - val_acc: 0.4293
Performance of model on test set ----------------------------
Accuracy:
0.434468524252
Kappa:
0.285308784043
Confusion matrix:
[[ 89 7 8 15 3]
[ 5 121 49 29 58]
[ 18 94 78 43 10]
[ 46 28 13 60 21]
[ 17 36 30 18 73]]
AUC score:
0.703658205573
('Epoch', 22, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.2719 - acc: 0.9243Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 90s - loss: 0.2718 - acc: 0.9244 - val_loss: 2.4873 - val_acc: 0.4613
Performance of model on test set ----------------------------
Accuracy:
0.458204334365
Kappa:
0.316805595285
Confusion matrix:
[[100 4 12 3 3]
[ 15 75 87 24 61]
[ 18 21 177 14 13]
[ 57 17 38 27 29]
[ 25 32 38 14 65]]
AUC score:
0.730885216947
('Epoch', 23, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.3155 - acc: 0.9058Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 84s - loss: 0.3154 - acc: 0.9058 - val_loss: 2.5323 - val_acc: 0.4417
Performance of model on test set ----------------------------
Accuracy:
0.433436532508
Kappa:
0.283551395576
Confusion matrix:
[[ 91 2 11 14 4]
[ 4 79 89 27 63]
[ 13 26 158 24 22]
[ 58 17 36 36 21]
[ 8 34 50 26 56]]
AUC score:
0.70685528936
('Epoch', 24, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.2954 - acc: 0.9218Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 75s - loss: 0.2954 - acc: 0.9218 - val_loss: 2.6807 - val_acc: 0.4159
Performance of model on test set ----------------------------
Accuracy:
0.412796697626
Kappa:
0.261869954617
Confusion matrix:
[[ 88 5 9 17 3]
[ 13 79 72 39 59]
[ 16 49 116 42 20]
[ 60 23 18 42 25]
[ 9 21 52 17 75]]
AUC score:
0.691513256187
('Epoch', 25, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.2528 - acc: 0.9249Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 77s - loss: 0.2528 - acc: 0.9249 - val_loss: 2.5991 - val_acc: 0.4644
Performance of model on test set ----------------------------
Accuracy:
0.457172342621
Kappa:
0.305813421371
Confusion matrix:
[[ 73 6 17 21 5]
[ 3 96 98 20 45]
[ 8 18 176 23 18]
[ 37 30 34 53 14]
[ 4 50 50 25 45]]
AUC score:
0.717191200676
('Epoch', 26, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.2623 - acc: 0.9300Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 79s - loss: 0.2622 - acc: 0.9301 - val_loss: 2.4574 - val_acc: 0.4623
Performance of model on test set ----------------------------
Accuracy:
0.460268317853
Kappa:
0.31829224329
Confusion matrix:
[[ 81 3 15 16 7]
[ 4 78 69 58 53]
[ 12 29 171 18 13]
[ 44 17 36 43 28]
[ 12 18 44 27 73]]
AUC score:
0.734716951012
('Epoch', 27, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.2352 - acc: 0.9372Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 75s - loss: 0.2351 - acc: 0.9372 - val_loss: 2.5326 - val_acc: 0.4716
Performance of model on test set ----------------------------
Accuracy:
0.476780185759
Kappa:
0.342620989756
Confusion matrix:
[[ 96 1 10 9 6]
[ 8 80 77 43 54]
[ 17 26 164 26 10]
[ 57 16 19 50 26]
[ 16 23 37 26 72]]
AUC score:
0.736181016801
('Epoch', 28, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.2137 - acc: 0.9403Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 74s - loss: 0.2137 - acc: 0.9403 - val_loss: 2.7601 - val_acc: 0.4293
Performance of model on test set ----------------------------
Accuracy:
0.427244582043
Kappa:
0.277780463632
Confusion matrix:
[[ 94 4 6 4 14]
[ 8 104 50 45 55]
[ 18 74 120 19 12]
[ 60 27 14 28 39]
[ 12 40 21 33 68]]
AUC score:
0.71564146057
('Epoch', 29, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1976 - acc: 0.9475Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 79s - loss: 0.1975 - acc: 0.9475 - val_loss: 2.5526 - val_acc: 0.4551
Performance of model on test set ----------------------------
Accuracy:
0.449948400413
Kappa:
0.307021333691
Confusion matrix:
[[ 90 6 11 7 8]
[ 7 114 32 29 80]
[ 12 64 113 30 24]
[ 59 25 14 32 38]
[ 8 38 21 20 87]]
AUC score:
0.74238387623
('Epoch', 30, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.2145 - acc: 0.9412Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 76s - loss: 0.2144 - acc: 0.9412 - val_loss: 3.0161 - val_acc: 0.4107
Performance of model on test set ----------------------------
Accuracy:
0.407636738906
Kappa:
0.248012568141
Confusion matrix:
[[ 80 3 18 4 17]
[ 5 97 65 17 78]
[ 13 64 125 22 19]
[ 51 29 21 19 48]
[ 5 38 44 13 74]]
AUC score:
0.691911408302
('Epoch', 31, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1923 - acc: 0.9477Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 76s - loss: 0.1923 - acc: 0.9478 - val_loss: 3.3254 - val_acc: 0.3870
Performance of model on test set ----------------------------
Accuracy:
0.385964912281
Kappa:
0.219209804652
Confusion matrix:
[[ 80 4 14 16 8]
[ 3 91 101 22 45]
[ 14 75 102 29 23]
[ 44 20 23 35 46]
[ 7 31 62 8 66]]
AUC score:
0.670595952919
('Epoch', 32, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1932 - acc: 0.9492Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 80s - loss: 0.1932 - acc: 0.9492 - val_loss: 3.1076 - val_acc: 0.3953
Performance of model on test set ----------------------------
Accuracy:
0.393188854489
Kappa:
0.233533546326
Confusion matrix:
[[82 7 16 9 8]
[ 5 94 72 36 55]
[14 77 91 42 19]
[47 17 20 48 36]
[ 8 19 51 30 66]]
AUC score:
0.67551089819
('Epoch', 33, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1770 - acc: 0.9512Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 78s - loss: 0.1770 - acc: 0.9512 - val_loss: 3.0118 - val_acc: 0.4283
Performance of model on test set ----------------------------
Accuracy:
0.424148606811
Kappa:
0.268624838529
Confusion matrix:
[[ 81 2 19 9 11]
[ 4 85 91 26 56]
[ 10 42 150 30 11]
[ 44 19 29 31 45]
[ 8 33 51 18 64]]
AUC score:
0.697893063474
('Epoch', 34, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1919 - acc: 0.9472Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 80s - loss: 0.1918 - acc: 0.9472 - val_loss: 2.8548 - val_acc: 0.4458
Performance of model on test set ----------------------------
Accuracy:
0.443756449948
Kappa:
0.300646742187
Confusion matrix:
[[ 98 4 8 6 6]
[ 10 99 51 22 80]
[ 14 55 126 27 21]
[ 50 15 21 23 59]
[ 12 29 25 24 84]]
AUC score:
0.728607362262
('Epoch', 35, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1896 - acc: 0.9472Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 76s - loss: 0.1896 - acc: 0.9472 - val_loss: 2.8639 - val_acc: 0.4469
Performance of model on test set ----------------------------
Accuracy:
0.446852425181
Kappa:
0.301112280296
Confusion matrix:
[[ 93 2 14 5 8]
[ 16 129 29 15 73]
[ 16 70 119 26 12]
[ 60 25 21 20 42]
[ 12 48 18 24 72]]
AUC score:
0.735153043969
('Epoch', 36, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1767 - acc: 0.9523Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 75s - loss: 0.1767 - acc: 0.9523 - val_loss: 2.9662 - val_acc: 0.4190
Performance of model on test set ----------------------------
Accuracy:
0.414860681115
Kappa:
0.258340285258
Confusion matrix:
[[ 81 2 27 8 4]
[ 25 102 83 17 35]
[ 15 74 109 31 14]
[ 52 20 18 48 30]
[ 13 39 40 20 62]]
AUC score:
0.716509742014
('Epoch', 37, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1676 - acc: 0.9609Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 74s - loss: 0.1675 - acc: 0.9609 - val_loss: 3.0033 - val_acc: 0.4190
Performance of model on test set ----------------------------
Accuracy:
0.410732714138
Kappa:
0.246411493029
Confusion matrix:
[[ 77 2 24 10 9]
[ 12 115 79 8 48]
[ 14 87 107 22 13]
[ 39 29 33 28 39]
[ 8 47 43 5 71]]
AUC score:
0.699252473417
('Epoch', 38, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1655 - acc: 0.9572Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 75s - loss: 0.1655 - acc: 0.9572 - val_loss: 2.8768 - val_acc: 0.4396
Performance of model on test set ----------------------------
Accuracy:
0.43653250774
Kappa:
0.284735497303
Confusion matrix:
[[ 80 2 17 17 6]
[ 10 85 103 10 54]
[ 10 40 146 23 24]
[ 35 18 33 37 45]
[ 13 32 40 14 75]]
AUC score:
0.717027330355
('Epoch', 39, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1443 - acc: 0.9597Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 79s - loss: 0.1443 - acc: 0.9597 - val_loss: 3.3124 - val_acc: 0.4149
Performance of model on test set ----------------------------
Accuracy:
0.410732714138
Kappa:
0.253119208221
Confusion matrix:
[[ 93 3 11 9 6]
[ 13 81 114 12 42]
[ 17 52 128 28 18]
[ 41 23 30 30 44]
[ 13 34 41 20 66]]
AUC score:
0.697017441994
('Epoch', 40, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1620 - acc: 0.9572Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 76s - loss: 0.1620 - acc: 0.9572 - val_loss: 3.2233 - val_acc: 0.4045
Performance of model on test set ----------------------------
Accuracy:
0.399380804954
Kappa:
0.242569171075
Confusion matrix:
[[ 84 0 13 17 8]
[ 13 72 101 20 56]
[ 11 65 104 43 20]
[ 39 22 19 48 40]
[ 14 26 35 20 79]]
AUC score:
0.702387456147
('Epoch', 41, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1660 - acc: 0.9532Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 73s - loss: 0.1660 - acc: 0.9532 - val_loss: 3.0240 - val_acc: 0.4252
Performance of model on test set ----------------------------
Accuracy:
0.422084623323
Kappa:
0.269892483245
Confusion matrix:
[[ 82 3 13 13 11]
[ 12 86 89 15 60]
[ 16 63 120 24 20]
[ 46 20 17 35 50]
[ 11 27 35 15 86]]
AUC score:
0.704468215194
('Epoch', 42, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1678 - acc: 0.9560Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 74s - loss: 0.1677 - acc: 0.9560 - val_loss: 3.2347 - val_acc: 0.4241
Performance of model on test set ----------------------------
Accuracy:
0.420020639835
Kappa:
0.267296786389
Confusion matrix:
[[ 94 5 6 11 6]
[ 18 71 109 6 58]
[ 16 53 135 17 22]
[ 44 22 21 32 49]
[ 17 31 39 12 75]]
AUC score:
0.701138227437
('Epoch', 43, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1431 - acc: 0.9657Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 77s - loss: 0.1430 - acc: 0.9657 - val_loss: 3.0899 - val_acc: 0.4469
Performance of model on test set ----------------------------
Accuracy:
0.437564499484
Kappa:
0.288552006208
Confusion matrix:
[[ 86 2 11 14 9]
[ 16 68 116 15 47]
[ 15 35 155 21 17]
[ 43 23 22 43 37]
[ 16 30 43 13 72]]
AUC score:
0.711970712901
('Epoch', 44, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1434 - acc: 0.9632Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 74s - loss: 0.1434 - acc: 0.9632 - val_loss: 3.1590 - val_acc: 0.4685
Performance of model on test set ----------------------------
Accuracy:
0.465428276574
Kappa:
0.322269659826
Confusion matrix:
[[ 87 2 14 12 7]
[ 18 92 91 11 50]
[ 12 44 163 8 16]
[ 57 21 35 34 21]
[ 15 24 44 16 75]]
AUC score:
0.710476513411
('Epoch', 45, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1470 - acc: 0.9629Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 79s - loss: 0.1469 - acc: 0.9629 - val_loss: 3.3880 - val_acc: 0.4180
Performance of model on test set ----------------------------
Accuracy:
0.41382868937
Kappa:
0.255978684777
Confusion matrix:
[[ 92 0 16 9 5]
[ 16 71 116 10 49]
[ 14 49 147 20 13]
[ 57 27 32 34 18]
[ 12 28 61 16 57]]
AUC score:
0.672356573874
('Epoch', 46, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1335 - acc: 0.9683Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 75s - loss: 0.1334 - acc: 0.9683 - val_loss: 3.5998 - val_acc: 0.3983
Performance of model on test set ----------------------------
Accuracy:
0.398348813209
Kappa:
0.236434485723
Confusion matrix:
[[ 87 0 18 8 9]
[ 12 81 96 19 54]
[ 16 65 118 25 19]
[ 46 30 34 33 25]
[ 8 29 51 19 67]]
AUC score:
0.682599329885
('Epoch', 47, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1346 - acc: 0.9686Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 74s - loss: 0.1345 - acc: 0.9686 - val_loss: 2.9412 - val_acc: 0.4489
Performance of model on test set ----------------------------
Accuracy:
0.452012383901
Kappa:
0.307003248555
Confusion matrix:
[[ 87 4 9 11 11]
[ 9 125 43 21 64]
[ 17 76 109 25 16]
[ 49 27 23 44 25]
[ 9 36 19 37 73]]
AUC score:
0.723529399899
('Epoch', 48, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1388 - acc: 0.9666Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 73s - loss: 0.1387 - acc: 0.9666 - val_loss: 3.3838 - val_acc: 0.4097
Performance of model on test set ----------------------------
Accuracy:
0.410732714138
Kappa:
0.255604168517
Confusion matrix:
[[ 90 1 8 16 7]
[ 8 88 81 30 55]
[ 20 66 123 18 16]
[ 52 19 39 33 25]
[ 16 24 40 30 64]]
AUC score:
0.701055124781
('Epoch', 49, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0901 - acc: 0.9769Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 75s - loss: 0.0901 - acc: 0.9769 - val_loss: 3.5546 - val_acc: 0.4314
Performance of model on test set ----------------------------
Accuracy:
0.429308565531
Kappa:
0.277630913785
Confusion matrix:
[[ 82 4 16 11 9]
[ 2 84 64 16 96]
[ 10 67 126 26 14]
[ 47 17 36 34 34]
[ 6 25 40 13 90]]
AUC score:
0.708887821817
('Epoch', 86, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0948 - acc: 0.9734Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 78s - loss: 0.0948 - acc: 0.9735 - val_loss: 3.5034 - val_acc: 0.4499
Performance of model on test set ----------------------------
Accuracy:
0.444788441692
Kappa:
0.29603497936
Confusion matrix:
[[ 87 3 13 12 7]
[ 4 89 74 15 80]
[ 10 58 138 21 16]
[ 53 21 30 38 26]
[ 4 31 47 13 79]]
AUC score:
0.702348491006
('Epoch', 87, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0603 - acc: 0.9849Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 76s - loss: 0.0603 - acc: 0.9849 - val_loss: 3.7005 - val_acc: 0.4572
Performance of model on test set ----------------------------
Accuracy:
0.448916408669
Kappa:
0.302762158469
Confusion matrix:
[[ 86 6 9 16 5]
[ 5 83 70 18 86]
[ 9 60 131 25 18]
[ 44 19 26 50 29]
[ 6 33 40 10 85]]
AUC score:
0.709917452895
('Epoch', 88, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0893 - acc: 0.9792Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 80s - loss: 0.0892 - acc: 0.9792 - val_loss: 3.4982 - val_acc: 0.4582
Performance of model on test set ----------------------------
Accuracy:
0.450980392157
Kappa:
0.306294255856
Confusion matrix:
[[ 80 1 16 14 11]
[ 6 83 54 20 99]
[ 11 63 129 24 16]
[ 41 18 22 53 34]
[ 5 37 34 6 92]]
AUC score:
0.729690534037
('Epoch', 89, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0950 - acc: 0.9769Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 79s - loss: 0.0950 - acc: 0.9769 - val_loss: 3.6014 - val_acc: 0.4241
Performance of model on test set ----------------------------
Accuracy:
0.422084623323
Kappa:
0.265586195229
Confusion matrix:
[[ 84 5 16 9 8]
[ 11 95 59 18 79]
[ 11 82 118 20 12]
[ 43 25 37 34 29]
[ 6 45 30 15 78]]
AUC score:
0.700645718717
('Epoch', 90, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.1143 - acc: 0.9740Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 74s - loss: 0.1143 - acc: 0.9740 - val_loss: 3.2175 - val_acc: 0.4696
Performance of model on test set ----------------------------
Accuracy:
0.470588235294
Kappa:
0.329044283884
Confusion matrix:
[[ 86 6 9 13 8]
[ 5 81 83 5 88]
[ 14 33 166 14 16]
[ 55 22 24 40 27]
[ 4 41 42 4 83]]
AUC score:
0.723035850452
('Epoch', 91, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0923 - acc: 0.9777Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 78s - loss: 0.0923 - acc: 0.9777 - val_loss: 3.1113 - val_acc: 0.4799
Performance of model on test set ----------------------------
Accuracy:
0.477812177503
Kappa:
0.336182760469
Confusion matrix:
[[ 87 8 14 10 3]
[ 6 107 65 21 63]
[ 10 59 142 20 12]
[ 49 22 23 47 27]
[ 3 48 31 12 80]]
AUC score:
0.734920181861
('Epoch', 92, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0957 - acc: 0.9774Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 79s - loss: 0.0957 - acc: 0.9774 - val_loss: 3.1677 - val_acc: 0.4871
Performance of model on test set ----------------------------
Accuracy:
0.482972136223
Kappa:
0.348723053456
Confusion matrix:
[[ 94 2 11 9 6]
[ 12 79 69 13 89]
[ 16 41 158 18 10]
[ 57 19 15 48 29]
[ 7 38 29 11 89]]
AUC score:
0.740744312834
('Epoch', 93, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0715 - acc: 0.9843Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 75s - loss: 0.0715 - acc: 0.9843 - val_loss: 3.4666 - val_acc: 0.4634
Performance of model on test set ----------------------------
Accuracy:
0.459236326109
Kappa:
0.317834831325
Confusion matrix:
[[ 88 5 8 12 9]
[ 14 95 51 14 88]
[ 16 65 130 18 14]
[ 52 24 16 49 27]
[ 8 40 24 19 83]]
AUC score:
0.720746407954
('Epoch', 94, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0793 - acc: 0.9803Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 77s - loss: 0.0793 - acc: 0.9803 - val_loss: 3.4702 - val_acc: 0.4747
Performance of model on test set ----------------------------
Accuracy:
0.46955624355
Kappa:
0.329625676511
Confusion matrix:
[[ 84 4 11 16 7]
[ 8 67 90 19 78]
[ 10 30 170 19 14]
[ 46 24 18 58 22]
[ 5 32 35 26 76]]
AUC score:
0.734806406736
('Epoch', 95, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0771 - acc: 0.9814Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 76s - loss: 0.0771 - acc: 0.9814 - val_loss: 3.3863 - val_acc: 0.4757
Performance of model on test set ----------------------------
Accuracy:
0.471620227038
Kappa:
0.332851030183
Confusion matrix:
[[ 85 4 10 10 13]
[ 10 80 80 13 79]
[ 9 43 143 25 23]
[ 42 25 16 54 31]
[ 7 26 36 10 95]]
AUC score:
0.714918326632
('Epoch', 96, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0836 - acc: 0.9812Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 80s - loss: 0.0835 - acc: 0.9812 - val_loss: 3.4266 - val_acc: 0.4561
Performance of model on test set ----------------------------
Accuracy:
0.450980392157
Kappa:
0.305018617932
Confusion matrix:
[[ 86 3 13 10 10]
[ 18 83 71 11 79]
[ 12 40 155 21 15]
[ 47 26 28 40 27]
[ 6 42 36 17 73]]
AUC score:
0.72127870954
('Epoch', 97, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0810 - acc: 0.9814Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 79s - loss: 0.0810 - acc: 0.9814 - val_loss: 3.5782 - val_acc: 0.4665
Performance of model on test set ----------------------------
Accuracy:
0.463364293086
Kappa:
0.316727484267
Confusion matrix:
[[ 86 4 10 14 8]
[ 12 95 85 11 59]
[ 10 49 151 20 13]
[ 41 31 18 56 22]
[ 6 51 46 10 61]]
AUC score:
0.708913341916
('Epoch', 98, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0773 - acc: 0.9832Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 77s - loss: 0.0773 - acc: 0.9832 - val_loss: 3.6385 - val_acc: 0.4499
Performance of model on test set ----------------------------
Accuracy:
0.440660474716
Kappa:
0.287797588375
Confusion matrix:
[[ 77 4 15 19 7]
[ 9 87 95 21 50]
[ 9 41 147 32 14]
[ 35 25 27 57 24]
[ 4 42 53 16 59]]
AUC score:
0.690753100627
('Epoch', 99, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0764 - acc: 0.9834Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 79s - loss: 0.0764 - acc: 0.9834 - val_loss: 3.5415 - val_acc: 0.4634
Performance of model on test set ----------------------------
Accuracy:
0.457172342621
Kappa:
0.317764565102
Confusion matrix:
[[ 90 2 11 10 9]
[ 18 85 57 29 73]
[ 17 36 142 33 15]
[ 51 21 20 53 23]
[ 6 37 27 31 73]]
AUC score:
0.719833632243
('Epoch', 100, '/', 100)
Train on 3503 samples, validate on 969 samples
Epoch 1/1
3502/3503 [============================>.] - ETA: 0s - loss: 0.0619 - acc: 0.9869Epoch 00000: val_acc did not improve
3503/3503 [==============================] - 80s - loss: 0.0619 - acc: 0.9869 - val_loss: 3.6337 - val_acc: 0.4685
Performance of model on test set ----------------------------
Accuracy:
0.462332301342
Kappa:
0.321837845244
Confusion matrix:
[[ 86 3 16 13 4]
[ 13 93 49 26 81]
[ 13 45 138 28 19]
[ 42 20 26 54 26]
[ 6 39 25 27 77]]
AUC score:
0.720621435659
Best validation accuracy: (58, 0.50567595459236325)