Predicting with LSTMs -- Second round

i.e., full dataset, transformed to PCA

Data preparation


In [1]:
import numpy
import pandas
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.cross_validation import cross_val_score
from sklearn.preprocessing import LabelEncoder
from sklearn.cross_validation import StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

# fix random seed for reproducibility
seed = 67
numpy.random.seed(seed)

data = pandas.read_csv("../data/processed/train.csv")
notnull_data = data[data.notnull().all(axis=1)]
train = notnull_data.values
data2 = pandas.read_csv("../data/processed/test.csv")
notnull_data2 = data2[data2.notnull().all(axis=1)]
test = notnull_data2.values


Using Theano backend.

In [2]:
X_train = train[:,3:7558].astype(float)
Y_trainA = train[:,7558] #Activity
Y_trainS = train[:,7559] #Social
X_test = test[:,3:7558].astype(float)
Y_testA = test[:,7558]
Y_testS = test[:,7559]

# One hot encoding of the response variable (using dummy variables)
from keras.utils.np_utils import to_categorical

# encode class values as integers
encoderA = LabelEncoder()
encoderA.fit(Y_trainA)
encoded_Y_trainA = encoderA.transform(Y_trainA)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y_trainA = to_categorical(encoded_Y_trainA)
encoderA.fit(Y_testA)
encoded_Y_testA = encoderA.transform(Y_testA)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y_testA = to_categorical(encoded_Y_testA)

# encode class values as integers
encoderS = LabelEncoder()
encoderS.fit(Y_trainS)
encoded_Y_trainS = encoderS.transform(Y_trainS)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y_trainS = to_categorical(encoded_Y_trainS)
encoderS.fit(Y_testS)
encoded_Y_testS = encoderS.transform(Y_testS)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y_testS = to_categorical(encoded_Y_testS)

# We standardize on the basis of the training data
scaler = StandardScaler().fit(X_train)
X_train_st = scaler.transform(X_train)
X_test_st = scaler.transform(X_test)

# Number of components to extract from the dataset
n_components = 100

from sklearn import decomposition
print 'Reducing dataset with PCA',n_components
pca = decomposition.PCA(n_components=n_components)
X_train_pca = pca.fit_transform(X_train_st)
X_test_pca = pca.transform(X_test_st)

#print 'Variance explained:'
#print pca.explained_variance_ratio_
print 'Total variance explained by %d components:',n_components
print sum(pca.explained_variance_ratio_)

trainX = numpy.reshape(X_train_pca, (X_train_pca.shape[0], 1, X_train_pca.shape[1]))
testX = numpy.reshape(X_test_pca, (X_test_pca.shape[0], 1, X_test_pca.shape[1]))


Reducing dataset with PCA 100
Total variance explained by %d components: 100
0.630815671837

In [3]:
from keras.layers import Dropout
from keras.layers import LSTM
from keras.constraints import maxnorm
from keras.optimizers import SGD

# This is our winning architecture so far
def create_LSTM3_PCA(n_outputs, batch_size = 1, trainShape1=100):
    # create and fit the LSTM network
    model = Sequential()
    # stateful LSTM!
    model.add(LSTM(200, batch_input_shape=(batch_size, 1, trainShape1), 
                   return_sequences=True, stateful=True))
    model.add(Dropout(0.2))
    model.add(LSTM(100, 
                   return_sequences=True, stateful=True))
    model.add(Dropout(0.2))
    model.add(LSTM(50, 
                   return_sequences=False, stateful=True))
    model.add(Dropout(0.2))
    model.add(Dense(50, activation='tanh'))
    model.add(Dropout(0.2))
    model.add(Dense(20, activation='tanh'))
    model.add(Dropout(0.2))
    model.add(Dense(n_outputs, activation='softmax'))
    # Compile model
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model

def create_LSTM2_PCA(n_outputs, batch_size = 1, trainShape1=100):
    # create and fit the LSTM network
    model = Sequential()
    # stateful LSTM!
    model.add(LSTM(300, batch_input_shape=(batch_size, 1, trainShape1), 
                   return_sequences=True, stateful=True))
    model.add(Dropout(0.2))
    model.add(LSTM(50, 
                   return_sequences=False, stateful=True))
    model.add(Dropout(0.2))
    model.add(Dense(50, activation='tanh'))
    model.add(Dropout(0.2))
    model.add(Dense(20, activation='tanh'))
    model.add(Dropout(0.2))
    model.add(Dense(n_outputs, activation='softmax'))
    # Compile model
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model

def create_LSTM1_PCA(n_outputs, batch_size = 1, trainShape1=100):
    # create and fit the LSTM network
    model = Sequential()
    # stateful LSTM!
    model.add(LSTM(400, batch_input_shape=(batch_size, 1, trainShape1), 
                   return_sequences=False, stateful=True))
    model.add(Dropout(0.2))
    model.add(Dense(50, activation='tanh'))
    model.add(Dropout(0.2))
    model.add(Dense(20, activation='tanh'))
    model.add(Dropout(0.2))
    model.add(Dense(n_outputs, activation='softmax'))
    # Compile model
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model

from keras.callbacks import ModelCheckpoint
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, roc_auc_score, accuracy_score, cohen_kappa_score

def printValStats(model, testX, dummy_y_test, batch=1):
    # Other performance/accuracy metrics
    Y_pred = model.predict(testX, batch_size=batch)
    model.reset_states()
    print 'Performance of model on test set ----------------------------'
    # Accuracy
    print('Accuracy:')
    print(accuracy_score(numpy.argmax(dummy_y_test, axis=1), numpy.argmax(Y_pred, axis=1)))
    # Kappa
    print('Kappa:')
    kappa = cohen_kappa_score(numpy.argmax(dummy_y_test, axis=1), numpy.argmax(Y_pred, axis=1))
    print(kappa)
    # Confusion matrix
    cm = confusion_matrix(numpy.argmax(dummy_y_test, axis=1), numpy.argmax(Y_pred, axis=1))
    numpy.set_printoptions(precision=2)
    print('Confusion matrix:')
    print(cm)
    # AUC
    roc = roc_auc_score(dummy_y_test, Y_pred, average='macro')
    print('AUC score:')
    print(roc)
    return kappa, roc

def plot_training(accs, val_accs, losss, val_losss, kappas, aucs):
    # summarize history for accuracy
    plt.plot(accs)
    plt.plot(val_accs)
    plt.title('model accuracy')
    plt.ylabel('accuracy')
    plt.xlabel('epoch')
    plt.legend(['train','test'], loc='upper left')
    plt.show()
    # summarize history for loss
    plt.plot(losss)
    plt.plot(val_losss)
    plt.title('model loss')
    plt.ylabel('loss')
    plt.xlabel('epoch')
    plt.legend(['train','test'], loc='upper left')
    plt.show()
    # summarize kappa and auc
    plt.plot(kappas)
    plt.plot(aucs)
    plt.title('Other performance')
    plt.ylabel('metric')
    plt.xlabel('epoch')
    plt.legend(['Kappa','AUC'], loc='upper left')
    plt.show()
    
    
import operator

def get_max_values(list):
    index, value = max(enumerate(list), key=operator.itemgetter(1))
    return index, value

print 'Ready for training!'


/usr/local/lib/python2.7/dist-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.
  warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')
Ready for training!

Predicting Social

3-layer LSTM


In [ ]:
# Create the model and parameters for training
numpy.random.seed(seed)

batch = 1
epochs = 100

modelS3 = create_LSTM3_PCA(dummy_y_trainS.shape[1], batch_size = batch, trainShape1=n_components)
print modelS3.summary()

# To save the best model
# serialize model to JSON
modelS3_json = modelS3.to_json()
with open("social.model--3lstmbis.json", "w") as json_file:
    json_file.write(modelS3_json)
filepathS3="social.weights--3lstmbis.best.hdf5"
# Define that the accuracy in cv is monitored, and that weights are stored in a file when max accuracy is achieved
checkpointS3 = ModelCheckpoint(filepathS3, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
callbacks_listS3 = [checkpointS3]

# Fit the model
accs =[]
val_accs =[]
losss =[]
val_losss =[]
kappas = []
aucs = []

# Manually create epochs and reset between sessions
for i in range(epochs):
    # Single epoch. Remember to not shuffle the data!
    print('Epoch', i+1, '/', epochs)
    history = modelS3.fit(trainX, dummy_y_trainS, validation_data=(testX, dummy_y_testS), 
                        nb_epoch=1, batch_size=batch, shuffle=False, 
                        verbose=1, callbacks=callbacks_listS3)
    modelS3.reset_states()
    kappa, auc = printValStats(modelS3, testX, dummy_y_testS, batch=batch)
    accs.append(history.history['acc'][0])
    val_accs.append(history.history['val_acc'][0])
    losss.append(history.history['loss'][0])
    val_losss.append(history.history['val_loss'][0])
    kappas.append(kappa)
    aucs.append(auc)
    
print 'Best validation accuracy: ', get_max_values(val_accs)
plot_training(accs, val_accs, losss, val_losss, kappas, aucs)


____________________________________________________________________________________________________
Layer (type)                       Output Shape        Param #     Connected to                     
====================================================================================================
lstm_1 (LSTM)                      (1, 1, 200)         240800      lstm_input_1[0][0]               
____________________________________________________________________________________________________
dropout_1 (Dropout)                (1, 1, 200)         0           lstm_1[0][0]                     
____________________________________________________________________________________________________
lstm_2 (LSTM)                      (1, 1, 100)         120400      dropout_1[0][0]                  
____________________________________________________________________________________________________
dropout_2 (Dropout)                (1, 1, 100)         0           lstm_2[0][0]                     
____________________________________________________________________________________________________
lstm_3 (LSTM)                      (1, 50)             30200       dropout_2[0][0]                  
____________________________________________________________________________________________________
dropout_3 (Dropout)                (1, 50)             0           lstm_3[0][0]                     
____________________________________________________________________________________________________
dense_1 (Dense)                    (1, 50)             2550        dropout_3[0][0]                  
____________________________________________________________________________________________________
dropout_4 (Dropout)                (1, 50)             0           dense_1[0][0]                    
____________________________________________________________________________________________________
dense_2 (Dense)                    (1, 20)             1020        dropout_4[0][0]                  
____________________________________________________________________________________________________
dropout_5 (Dropout)                (1, 20)             0           dense_2[0][0]                    
____________________________________________________________________________________________________
dense_3 (Dense)                    (1, 4)              84          dropout_5[0][0]                  
====================================================================================================
Total params: 395054
____________________________________________________________________________________________________
None
('Epoch', 1, '/', 100)
WARNING (theano.tensor.blas): We did not found a dynamic library into the library_dir of the library we use for blas. If you use ATLAS, make sure to compile it with dynamics library.
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.9178 - acc: 0.6442Epoch 00000: val_acc improved from -inf to 0.61590, saving model to social.weights--3lstmbis.best.hdf5
4472/4472 [==============================] - 74s - loss: 0.9179 - acc: 0.6440 - val_loss: 1.2108 - val_acc: 0.6159
Performance of model on test set ----------------------------
Accuracy:
0.614942528736
Kappa:
0.0206493254958
Confusion matrix:
[[642   0   5   0]
 [218   0   0   1]
 [ 23   0   0   1]
 [138   0  16   0]]
AUC score:
0.565920196673
('Epoch', 2, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.7643 - acc: 0.7332Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 106s - loss: 0.7645 - acc: 0.7330 - val_loss: 1.3155 - val_acc: 0.5939
Performance of model on test set ----------------------------
Accuracy:
0.592911877395
Kappa:
0.14246784496
Confusion matrix:
[[612   0  28   7]
 [134   0  75  10]
 [ 18   0   6   0]
 [111   0  42   1]]
AUC score:
0.653253856512
('Epoch', 3, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.6712 - acc: 0.7685Epoch 00000: val_acc improved from 0.61590 to 0.62069, saving model to social.weights--3lstmbis.best.hdf5
4472/4472 [==============================] - 115s - loss: 0.6713 - acc: 0.7683 - val_loss: 1.2572 - val_acc: 0.6207
Performance of model on test set ----------------------------
Accuracy:
0.619731800766
Kappa:
0.211507364272
Confusion matrix:
[[626   0   0  21]
 [ 94   0  43  82]
 [ 16   0   0   8]
 [102   0  31  21]]
AUC score:
0.756358338882
('Epoch', 4, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.5947 - acc: 0.8135Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 116s - loss: 0.5946 - acc: 0.8135 - val_loss: 1.2053 - val_acc: 0.5785
Performance of model on test set ----------------------------
Accuracy:
0.577586206897
Kappa:
0.223698897608
Confusion matrix:
[[563   0   1  83]
 [ 42   0   0 177]
 [  9   0   1  14]
 [ 78   0  37  39]]
AUC score:
0.75570603511
('Epoch', 5, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.5299 - acc: 0.8369Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 117s - loss: 0.5299 - acc: 0.8370 - val_loss: 1.2391 - val_acc: 0.5776
Performance of model on test set ----------------------------
Accuracy:
0.580459770115
Kappa:
0.301543175462
Confusion matrix:
[[493   0   1 153]
 [ 14   0   0 205]
 [  9   0   0  15]
 [ 41   0   0 113]]
AUC score:
0.758055431814
('Epoch', 6, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.4749 - acc: 0.8537Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 74s - loss: 0.4748 - acc: 0.8538 - val_loss: 1.1929 - val_acc: 0.5891
Performance of model on test set ----------------------------
Accuracy:
0.58908045977
Kappa:
0.310566492567
Confusion matrix:
[[506   0   0 141]
 [ 13   0   0 206]
 [  3   0   0  21]
 [ 45   0   0 109]]
AUC score:
0.773285297389
('Epoch', 7, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.4500 - acc: 0.8624Epoch 00000: val_acc improved from 0.62069 to 0.65134, saving model to social.weights--3lstmbis.best.hdf5
4472/4472 [==============================] - 76s - loss: 0.4501 - acc: 0.8625 - val_loss: 1.0722 - val_acc: 0.6513
Performance of model on test set ----------------------------
Accuracy:
0.650383141762
Kappa:
0.269228630221
Confusion matrix:
[[622   0   0  25]
 [ 94   0   0 125]
 [ 14   0   0  10]
 [ 97   0   0  57]]
AUC score:
0.806006921925
('Epoch', 8, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.4061 - acc: 0.8862Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 78s - loss: 0.4060 - acc: 0.8862 - val_loss: 1.2512 - val_acc: 0.6169
Performance of model on test set ----------------------------
Accuracy:
0.616858237548
Kappa:
0.341684191277
Confusion matrix:
[[527   0   0 120]
 [ 26   0   0 193]
 [  8   0   0  16]
 [ 37   0   0 117]]
AUC score:
0.762742364163
('Epoch', 9, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.3849 - acc: 0.8870Epoch 00000: val_acc improved from 0.65134 to 0.66188, saving model to social.weights--3lstmbis.best.hdf5
4472/4472 [==============================] - 80s - loss: 0.3848 - acc: 0.8871 - val_loss: 0.9987 - val_acc: 0.6619
Performance of model on test set ----------------------------
Accuracy:
0.663793103448
Kappa:
0.42894187719
Confusion matrix:
[[510   3   0 134]
 [ 19  65   0 135]
 [  8   3   1  12]
 [ 37   0   0 117]]
AUC score:
0.813903053697
('Epoch', 10, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.3564 - acc: 0.9032Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 83s - loss: 0.3563 - acc: 0.9032 - val_loss: 1.1583 - val_acc: 0.6025
Performance of model on test set ----------------------------
Accuracy:
0.603448275862
Kappa:
0.331629221041
Confusion matrix:
[[509   0   0 138]
 [ 25   0   0 194]
 [  6   0   0  18]
 [ 33   0   0 121]]
AUC score:
0.802900212063
('Epoch', 11, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.3151 - acc: 0.9148Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 84s - loss: 0.3151 - acc: 0.9148 - val_loss: 1.2242 - val_acc: 0.6216
Performance of model on test set ----------------------------
Accuracy:
0.624521072797
Kappa:
0.364211742993
Confusion matrix:
[[519   1   0 127]
 [ 22  11   0 186]
 [  7   0   0  17]
 [ 30   0   2 122]]
AUC score:
0.769104954466
('Epoch', 12, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2705 - acc: 0.9300Epoch 00000: val_acc improved from 0.66188 to 0.78640, saving model to social.weights--3lstmbis.best.hdf5
4472/4472 [==============================] - 88s - loss: 0.2705 - acc: 0.9300 - val_loss: 0.8785 - val_acc: 0.7864
Performance of model on test set ----------------------------
Accuracy:
0.787356321839
Kappa:
0.590323367519
Confusion matrix:
[[590  27   1  29]
 [ 69 130   0  20]
 [ 10   7   1   6]
 [ 48   1   4 101]]
AUC score:
0.821636801488
('Epoch', 13, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2652 - acc: 0.9304Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 88s - loss: 0.2651 - acc: 0.9305 - val_loss: 1.0482 - val_acc: 0.7241
Performance of model on test set ----------------------------
Accuracy:
0.725095785441
Kappa:
0.506690989555
Confusion matrix:
[[546   9   0  92]
 [ 38 102   0  79]
 [  9   7   0   8]
 [ 44   1   0 109]]
AUC score:
0.797891591575
('Epoch', 14, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2469 - acc: 0.9394Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 92s - loss: 0.2469 - acc: 0.9394 - val_loss: 0.9155 - val_acc: 0.7385
Performance of model on test set ----------------------------
Accuracy:
0.738505747126
Kappa:
0.542057441253
Confusion matrix:
[[527  28   0  92]
 [ 25 137   0  57]
 [  8  15   0   1]
 [ 40   1   6 107]]
AUC score:
0.812778758629
('Epoch', 15, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2395 - acc: 0.9418Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 93s - loss: 0.2395 - acc: 0.9419 - val_loss: 0.8632 - val_acc: 0.7605
Performance of model on test set ----------------------------
Accuracy:
0.760536398467
Kappa:
0.553647011744
Confusion matrix:
[[564  21   0  62]
 [ 48 137   0  34]
 [  9  13   0   2]
 [ 56   1   4  93]]
AUC score:
0.837869303651
('Epoch', 16, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2188 - acc: 0.9454Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 113s - loss: 0.2188 - acc: 0.9454 - val_loss: 0.8180 - val_acc: 0.7739
Performance of model on test set ----------------------------
Accuracy:
0.774904214559
Kappa:
0.583561067186
Confusion matrix:
[[568  16   1  62]
 [ 54 132   0  33]
 [  8   9   1   6]
 [ 39   6   1 108]]
AUC score:
0.754077413133
('Epoch', 17, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2154 - acc: 0.9477Epoch 00000: val_acc improved from 0.78640 to 0.78736, saving model to social.weights--3lstmbis.best.hdf5
4472/4472 [==============================] - 113s - loss: 0.2153 - acc: 0.9477 - val_loss: 1.0201 - val_acc: 0.7874
Performance of model on test set ----------------------------
Accuracy:
0.788314176245
Kappa:
0.575158861537
Confusion matrix:
[[610  22   1  14]
 [ 80 132   1   6]
 [  9  11   0   4]
 [ 65   0   8  81]]
AUC score:
0.832339768188
('Epoch', 18, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2010 - acc: 0.9537Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 119s - loss: 0.2009 - acc: 0.9537 - val_loss: 1.1119 - val_acc: 0.7462
Performance of model on test set ----------------------------
Accuracy:
0.746168582375
Kappa:
0.491148529966
Confusion matrix:
[[598  31   2  16]
 [ 74 134   2   9]
 [  7  13   0   4]
 [ 86   0  21  47]]
AUC score:
0.810773193842
('Epoch', 19, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2062 - acc: 0.9486Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 109s - loss: 0.2061 - acc: 0.9486 - val_loss: 0.9504 - val_acc: 0.7519
Performance of model on test set ----------------------------
Accuracy:
0.750957854406
Kappa:
0.526362901917
Confusion matrix:
[[563  61   1  22]
 [ 63 149   0   7]
 [  8  13   0   3]
 [ 62   6  14  72]]
AUC score:
0.751583139704
('Epoch', 20, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1840 - acc: 0.9586Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 110s - loss: 0.1839 - acc: 0.9586 - val_loss: 1.1552 - val_acc: 0.7500
Performance of model on test set ----------------------------
Accuracy:
0.749042145594
Kappa:
0.517745501476
Confusion matrix:
[[572  46   1  28]
 [ 70 139   1   9]
 [  9  10   0   5]
 [ 62   4  17  71]]
AUC score:
0.80975782697
('Epoch', 21, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1840 - acc: 0.9566Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 113s - loss: 0.1840 - acc: 0.9566 - val_loss: 1.1988 - val_acc: 0.7433
Performance of model on test set ----------------------------
Accuracy:
0.744252873563
Kappa:
0.513177910082
Confusion matrix:
[[572  27   2  46]
 [ 66 118   1  34]
 [  9   8   0   7]
 [ 59   0   8  87]]
AUC score:
0.817907147713
('Epoch', 22, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1697 - acc: 0.9557Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 115s - loss: 0.1697 - acc: 0.9557 - val_loss: 1.1400 - val_acc: 0.7672
Performance of model on test set ----------------------------
Accuracy:
0.76724137931
Kappa:
0.533903738993
Confusion matrix:
[[601  24   2  20]
 [ 82 128   1   8]
 [ 10  12   0   2]
 [ 70   0  12  72]]
AUC score:
0.79246733524
('Epoch', 23, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1617 - acc: 0.9593Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 111s - loss: 0.1617 - acc: 0.9593 - val_loss: 1.1012 - val_acc: 0.7529
Performance of model on test set ----------------------------
Accuracy:
0.752873563218
Kappa:
0.519402196798
Confusion matrix:
[[573  38   0  36]
 [ 74 139   0   6]
 [ 11  10   0   3]
 [ 68   1  11  74]]
AUC score:
0.815951527262
('Epoch', 24, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1600 - acc: 0.9597Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 111s - loss: 0.1600 - acc: 0.9597 - val_loss: 1.0082 - val_acc: 0.7730
Performance of model on test set ----------------------------
Accuracy:
0.772988505747
Kappa:
0.56088055315
Confusion matrix:
[[586  24   1  36]
 [ 67 127   1  24]
 [ 13   8   0   3]
 [ 56   1   3  94]]
AUC score:
0.807419188812
('Epoch', 25, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1427 - acc: 0.9653Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 113s - loss: 0.1427 - acc: 0.9653 - val_loss: 1.1444 - val_acc: 0.7605
Performance of model on test set ----------------------------
Accuracy:
0.761494252874
Kappa:
0.537615148869
Confusion matrix:
[[583  25   0  39]
 [ 69 136   0  14]
 [ 11   8   0   5]
 [ 63   0  15  76]]
AUC score:
0.819992021813
('Epoch', 26, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1380 - acc: 0.9662Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 116s - loss: 0.1380 - acc: 0.9662 - val_loss: 1.1724 - val_acc: 0.7490
Performance of model on test set ----------------------------
Accuracy:
0.749042145594
Kappa:
0.514036424882
Confusion matrix:
[[576  31   4  36]
 [ 74 132   4   9]
 [  9   8   0   7]
 [ 67   0  13  74]]
AUC score:
0.811063716088
('Epoch', 27, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1349 - acc: 0.9698Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 113s - loss: 0.1349 - acc: 0.9698 - val_loss: 1.0772 - val_acc: 0.7625
Performance of model on test set ----------------------------
Accuracy:
0.765325670498
Kappa:
0.544305421194
Confusion matrix:
[[583  37   1  26]
 [ 67 141   3   8]
 [ 11   8   0   5]
 [ 65   1  13  75]]
AUC score:
0.803011749828
('Epoch', 28, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1378 - acc: 0.9696Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 109s - loss: 0.1378 - acc: 0.9696 - val_loss: 1.1846 - val_acc: 0.7510
Performance of model on test set ----------------------------
Accuracy:
0.751915708812
Kappa:
0.527209462945
Confusion matrix:
[[570  28   8  41]
 [ 71 135   4   9]
 [  9   8   2   5]
 [ 60   0  16  78]]
AUC score:
0.83061394754
('Epoch', 29, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1374 - acc: 0.9694Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 110s - loss: 0.1374 - acc: 0.9694 - val_loss: 1.0562 - val_acc: 0.7701
Performance of model on test set ----------------------------
Accuracy:
0.771072796935
Kappa:
0.555525470587
Confusion matrix:
[[582  27   0  38]
 [ 69 134   2  14]
 [  9   9   0   6]
 [ 64   1   0  89]]
AUC score:
0.84044752787
('Epoch', 30, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1238 - acc: 0.9716Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 108s - loss: 0.1238 - acc: 0.9716 - val_loss: 1.1390 - val_acc: 0.7625
Performance of model on test set ----------------------------
Accuracy:
0.763409961686
Kappa:
0.558237940404
Confusion matrix:
[[565  45   1  36]
 [ 53 147   3  16]
 [  8   8   1   7]
 [ 52   6  12  84]]
AUC score:
0.825304932276
('Epoch', 31, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1131 - acc: 0.9741Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 109s - loss: 0.1131 - acc: 0.9741 - val_loss: 1.1632 - val_acc: 0.7682
Performance of model on test set ----------------------------
Accuracy:
0.770114942529
Kappa:
0.547994876698
Confusion matrix:
[[594  39   0  14]
 [ 68 139   2  10]
 [  9   8   0   7]
 [ 69   0  14  71]]
AUC score:
0.811879755672
('Epoch', 32, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0967 - acc: 0.9796Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 113s - loss: 0.0967 - acc: 0.9797 - val_loss: 1.1842 - val_acc: 0.7663
Performance of model on test set ----------------------------
Accuracy:
0.766283524904
Kappa:
0.554932786353
Confusion matrix:
[[580  42   4  21]
 [ 63 142   4  10]
 [ 10   7   1   6]
 [ 54   0  23  77]]
AUC score:
0.823253369455
('Epoch', 33, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1265 - acc: 0.9732Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 109s - loss: 0.1265 - acc: 0.9732 - val_loss: 1.0611 - val_acc: 0.7634
Performance of model on test set ----------------------------
Accuracy:
0.763409961686
Kappa:
0.563716466798
Confusion matrix:
[[556  46   3  42]
 [ 48 155   3  13]
 [  8  12   0   4]
 [ 51   2  15  86]]
AUC score:
0.818255073783
('Epoch', 34, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1109 - acc: 0.9734Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 108s - loss: 0.1108 - acc: 0.9734 - val_loss: 1.3336 - val_acc: 0.7596
Performance of model on test set ----------------------------
Accuracy:
0.757662835249
Kappa:
0.529025355729
Confusion matrix:
[[592  32   2  21]
 [ 67 144   4   4]
 [  8   8   0   8]
 [ 63  10  26  55]]
AUC score:
0.803446930513
('Epoch', 35, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1091 - acc: 0.9749Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 107s - loss: 0.1092 - acc: 0.9750 - val_loss: 1.1925 - val_acc: 0.7557
Performance of model on test set ----------------------------
Accuracy:
0.754789272031
Kappa:
0.531198035432
Confusion matrix:
[[584  33   4  26]
 [ 67 139   5   8]
 [  7   8   0   9]
 [ 57   1  31  65]]
AUC score:
0.819046206064
('Epoch', 36, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1060 - acc: 0.9738Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 111s - loss: 0.1060 - acc: 0.9738 - val_loss: 1.3015 - val_acc: 0.7538
Performance of model on test set ----------------------------
Accuracy:
0.753831417625
Kappa:
0.510320736742
Confusion matrix:
[[602  39   0   6]
 [ 72 146   1   0]
 [ 11   9   1   3]
 [ 73   4  39  38]]
AUC score:
0.82321005354
('Epoch', 37, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1238 - acc: 0.9700Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 104s - loss: 0.1238 - acc: 0.9700 - val_loss: 1.2258 - val_acc: 0.7538
Performance of model on test set ----------------------------
Accuracy:
0.755747126437
Kappa:
0.517504114137
Confusion matrix:
[[600  30   3  14]
 [ 80 134   2   3]
 [ 11   9   0   4]
 [ 62   2  35  55]]
AUC score:
0.80594120376
('Epoch', 38, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0917 - acc: 0.9772Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 103s - loss: 0.0917 - acc: 0.9772 - val_loss: 1.2920 - val_acc: 0.7605
Performance of model on test set ----------------------------
Accuracy:
0.761494252874
Kappa:
0.539637704387
Confusion matrix:
[[593  21   1  32]
 [ 71 133   3  12]
 [ 12   7   0   5]
 [ 50   6  29  69]]
AUC score:
0.807936662349
('Epoch', 39, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0893 - acc: 0.9796Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 138s - loss: 0.0892 - acc: 0.9797 - val_loss: 1.3153 - val_acc: 0.7768
Performance of model on test set ----------------------------
Accuracy:
0.778735632184
Kappa:
0.557229147924
Confusion matrix:
[[614  30   1   2]
 [ 78 137   4   0]
 [ 12   9   0   3]
 [ 61   3  28  62]]
AUC score:
0.802950794194
('Epoch', 40, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0968 - acc: 0.9770Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 150s - loss: 0.0968 - acc: 0.9770 - val_loss: 1.2846 - val_acc: 0.7519
Performance of model on test set ----------------------------
Accuracy:
0.752873563218
Kappa:
0.513213705458
Confusion matrix:
[[601  30   2  14]
 [ 78 132   4   5]
 [ 10   8   0   6]
 [ 62   2  37  53]]
AUC score:
0.80134910035
('Epoch', 41, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0909 - acc: 0.9803Epoch 00000: val_acc improved from 0.78736 to 0.79023, saving model to social.weights--3lstmbis.best.hdf5
4472/4472 [==============================] - 145s - loss: 0.0909 - acc: 0.9803 - val_loss: 1.1704 - val_acc: 0.7902
Performance of model on test set ----------------------------
Accuracy:
0.79214559387
Kappa:
0.578049829859
Confusion matrix:
[[616  27   1   3]
 [ 82 133   3   1]
 [ 14   9   0   1]
 [ 64   4   8  78]]
AUC score:
0.822886620555
('Epoch', 42, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0813 - acc: 0.9837Epoch 00000: val_acc improved from 0.79023 to 0.80651, saving model to social.weights--3lstmbis.best.hdf5
4472/4472 [==============================] - 154s - loss: 0.0813 - acc: 0.9837 - val_loss: 1.0560 - val_acc: 0.8065
Performance of model on test set ----------------------------
Accuracy:
0.808429118774
Kappa:
0.628774921684
Confusion matrix:
[[601  30   1  15]
 [ 71 137   2   9]
 [ 11   8   0   5]
 [ 38   8   2 106]]
AUC score:
0.829646133854
('Epoch', 43, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0893 - acc: 0.9805Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 145s - loss: 0.0893 - acc: 0.9805 - val_loss: 1.1048 - val_acc: 0.7969
Performance of model on test set ----------------------------
Accuracy:
0.7969348659
Kappa:
0.616435887216
Confusion matrix:
[[580  40   2  25]
 [ 63 144   2  10]
 [  7  11   3   3]
 [ 40   7   2 105]]
AUC score:
0.78125079156
('Epoch', 44, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0911 - acc: 0.9794Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 148s - loss: 0.0911 - acc: 0.9794 - val_loss: 1.0518 - val_acc: 0.7902
Performance of model on test set ----------------------------
Accuracy:
0.791187739464
Kappa:
0.608505836496
Confusion matrix:
[[582  32   4  29]
 [ 55 137   3  24]
 [  9   8   1   6]
 [ 40   1   7 106]]
AUC score:
0.794613476629
('Epoch', 45, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0695 - acc: 0.9834Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 147s - loss: 0.0695 - acc: 0.9835 - val_loss: 1.2506 - val_acc: 0.7864
Performance of model on test set ----------------------------
Accuracy:
0.788314176245
Kappa:
0.58279568337
Confusion matrix:
[[609  23   8   7]
 [ 73 132   4  10]
 [ 11   9   1   3]
 [ 54   7  12  81]]
AUC score:
0.815885613831
('Epoch', 46, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0724 - acc: 0.9832Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 153s - loss: 0.0724 - acc: 0.9832 - val_loss: 1.2419 - val_acc: 0.7835
Performance of model on test set ----------------------------
Accuracy:
0.784482758621
Kappa:
0.572627802299
Confusion matrix:
[[606  28   6   7]
 [ 73 136   7   3]
 [ 11   8   0   5]
 [ 64   0  13  77]]
AUC score:
0.827430576762
('Epoch', 47, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0836 - acc: 0.9828Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 152s - loss: 0.0836 - acc: 0.9828 - val_loss: 1.1235 - val_acc: 0.7826
Performance of model on test set ----------------------------
Accuracy:
0.784482758621
Kappa:
0.59020254357
Confusion matrix:
[[587  20   1  39]
 [ 64 133   4  18]
 [ 10   5   0   9]
 [ 44   1  10  99]]
AUC score:
0.823587992044
('Epoch', 48, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0746 - acc: 0.9843Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 153s - loss: 0.0746 - acc: 0.9843 - val_loss: 1.2438 - val_acc: 0.7778
Performance of model on test set ----------------------------
Accuracy:
0.77969348659
Kappa:
0.562488270524
Confusion matrix:
[[607  25   1  14]
 [ 75 129   4  11]
 [  9   8   2   5]
 [ 62   8   8  76]]
AUC score:
0.826213822967
('Epoch', 49, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0742 - acc: 0.9843Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 160s - loss: 0.0742 - acc: 0.9843 - val_loss: 1.1745 - val_acc: 0.7845
Performance of model on test set ----------------------------
Accuracy:
0.785440613027
Kappa:
0.575936053849
Confusion matrix:
[[604  33   2   8]
 [ 74 133   4   8]
 [  8   8   6   2]
 [ 61   9   7  77]]
AUC score:
0.848021452977
('Epoch', 50, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0872 - acc: 0.9812Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 158s - loss: 0.0872 - acc: 0.9812 - val_loss: 1.1351 - val_acc: 0.7960
Performance of model on test set ----------------------------
Accuracy:
0.7969348659
Kappa:
0.602272135077
Confusion matrix:
[[598  30   4  15]
 [ 68 146   0   5]
 [  8  10   2   4]
 [ 59   6   3  86]]
AUC score:
0.806662918312
('Epoch', 51, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0778 - acc: 0.9823Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 154s - loss: 0.0778 - acc: 0.9823 - val_loss: 1.2061 - val_acc: 0.7893
Performance of model on test set ----------------------------
Accuracy:
0.790229885057
Kappa:
0.577761156819
Confusion matrix:
[[610  29   1   7]
 [ 83 135   1   0]
 [  8  11   1   4]
 [ 64   5   6  79]]
AUC score:
0.761931005276
('Epoch', 52, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0561 - acc: 0.9886Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 152s - loss: 0.0561 - acc: 0.9886 - val_loss: 1.2607 - val_acc: 0.7874
Performance of model on test set ----------------------------
Accuracy:
0.788314176245
Kappa:
0.57211130996
Confusion matrix:
[[614  25   0   8]
 [ 77 137   2   3]
 [ 10  12   0   2]
 [ 69   5   8  72]]
AUC score:
0.821906162135
('Epoch', 53, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0637 - acc: 0.9868Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 147s - loss: 0.0637 - acc: 0.9868 - val_loss: 1.3321 - val_acc: 0.7845
Performance of model on test set ----------------------------
Accuracy:
0.784482758621
Kappa:
0.576671328268
Confusion matrix:
[[600  31   1  15]
 [ 68 142   0   9]
 [  9  12   0   3]
 [ 62   0  15  77]]
AUC score:
0.818159907613
('Epoch', 54, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0613 - acc: 0.9868Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 147s - loss: 0.0613 - acc: 0.9868 - val_loss: 1.3508 - val_acc: 0.7931
Performance of model on test set ----------------------------
Accuracy:
0.79214559387
Kappa:
0.576742787002
Confusion matrix:
[[621  19   1   6]
 [ 85 131   1   2]
 [ 12   9   2   1]
 [ 64   4  13  73]]
AUC score:
0.801971159281
('Epoch', 55, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0639 - acc: 0.9873Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 147s - loss: 0.0639 - acc: 0.9873 - val_loss: 1.1304 - val_acc: 0.7989
Performance of model on test set ----------------------------
Accuracy:
0.798850574713
Kappa:
0.608019824285
Confusion matrix:
[[601  32   6   8]
 [ 66 148   3   2]
 [  9   8   3   4]
 [ 56   2  14  82]]
AUC score:
0.798735888083
('Epoch', 56, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0736 - acc: 0.9837Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 156s - loss: 0.0736 - acc: 0.9837 - val_loss: 1.2734 - val_acc: 0.7931
Performance of model on test set ----------------------------
Accuracy:
0.794061302682
Kappa:
0.59372873257
Confusion matrix:
[[608  29   0  10]
 [ 73 131   1  14]
 [ 11   7   1   5]
 [ 52   5   8  89]]
AUC score:
0.799568581921
('Epoch', 57, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0652 - acc: 0.9873Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 161s - loss: 0.0652 - acc: 0.9873 - val_loss: 1.2438 - val_acc: 0.7950
Performance of model on test set ----------------------------
Accuracy:
0.794061302682
Kappa:
0.600563759249
Confusion matrix:
[[594  40   0  13]
 [ 58 153   1   7]
 [ 10   9   2   3]
 [ 59   5  10  80]]
AUC score:
0.809957409647
('Epoch', 58, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0713 - acc: 0.9859Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 152s - loss: 0.0712 - acc: 0.9859 - val_loss: 1.3587 - val_acc: 0.7663
Performance of model on test set ----------------------------
Accuracy:
0.766283524904
Kappa:
0.536913520323
Confusion matrix:
[[592  43   0  12]
 [ 62 147   1   9]
 [ 10   9   0   5]
 [ 80   6   7  61]]
AUC score:
0.800738266451
('Epoch', 59, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0664 - acc: 0.9868Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 154s - loss: 0.0664 - acc: 0.9868 - val_loss: 1.4051 - val_acc: 0.7672
Performance of model on test set ----------------------------
Accuracy:
0.76724137931
Kappa:
0.544818082972
Confusion matrix:
[[594  36   1  16]
 [ 66 143   3   7]
 [ 10   7   1   6]
 [ 66   4  21  63]]
AUC score:
0.795222493898
('Epoch', 60, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0655 - acc: 0.9873Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 154s - loss: 0.0655 - acc: 0.9873 - val_loss: 1.2580 - val_acc: 0.7854
Performance of model on test set ----------------------------
Accuracy:
0.786398467433
Kappa:
0.585924285676
Confusion matrix:
[[593  30   1  23]
 [ 70 134   3  12]
 [  8   8   3   5]
 [ 54   2   7  91]]
AUC score:
0.831372077127
('Epoch', 61, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0659 - acc: 0.9868Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 153s - loss: 0.0659 - acc: 0.9868 - val_loss: 1.3296 - val_acc: 0.7759
Performance of model on test set ----------------------------
Accuracy:
0.776819923372
Kappa:
0.564561602615
Confusion matrix:
[[594  33   2  18]
 [ 67 140   3   9]
 [  8   7   2   7]
 [ 62   8   9  75]]
AUC score:
0.802566855521
('Epoch', 62, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0609 - acc: 0.9886Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 152s - loss: 0.0609 - acc: 0.9886 - val_loss: 1.4385 - val_acc: 0.7701
Performance of model on test set ----------------------------
Accuracy:
0.771072796935
Kappa:
0.55211068888
Confusion matrix:
[[594  35   1  17]
 [ 72 140   0   7]
 [  8   9   0   7]
 [ 60   7  16  71]]
AUC score:
0.783187239577
('Epoch', 63, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0740 - acc: 0.9843Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 152s - loss: 0.0739 - acc: 0.9843 - val_loss: 1.4442 - val_acc: 0.7625
Performance of model on test set ----------------------------
Accuracy:
0.763409961686
Kappa:
0.528222353948
Confusion matrix:
[[602  37   0   8]
 [ 77 137   4   1]
 [ 10   9   3   2]
 [ 70   6  23  55]]
AUC score:
0.81350021445
('Epoch', 64, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0551 - acc: 0.9895Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 152s - loss: 0.0551 - acc: 0.9895 - val_loss: 1.3016 - val_acc: 0.7893
Performance of model on test set ----------------------------
Accuracy:
0.791187739464
Kappa:
0.585360299222
Confusion matrix:
[[602  38   0   7]
 [ 72 142   3   2]
 [  9   9   1   5]
 [ 65   4   4  81]]
AUC score:
0.806450282049
('Epoch', 65, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0672 - acc: 0.9850Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 154s - loss: 0.0671 - acc: 0.9850 - val_loss: 1.3121 - val_acc: 0.7797
Performance of model on test set ----------------------------
Accuracy:
0.781609195402
Kappa:
0.568058010358
Confusion matrix:
[[600  35   1  11]
 [ 74 139   2   4]
 [  9   8   2   5]
 [ 64   3  12  75]]
AUC score:
0.801317454971
('Epoch', 66, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0538 - acc: 0.9888Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 155s - loss: 0.0538 - acc: 0.9888 - val_loss: 1.3960 - val_acc: 0.7797
Performance of model on test set ----------------------------
Accuracy:
0.782567049808
Kappa:
0.575943126978
Confusion matrix:
[[599  37   3   8]
 [ 68 144   2   5]
 [  9   7   3   5]
 [ 56   9  18  71]]
AUC score:
0.80726327669
('Epoch', 67, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0481 - acc: 0.9893Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 155s - loss: 0.0481 - acc: 0.9893 - val_loss: 1.4676 - val_acc: 0.7787
Performance of model on test set ----------------------------
Accuracy:
0.77969348659
Kappa:
0.563260161404
Confusion matrix:
[[600  36   0  11]
 [ 73 142   1   3]
 [  9   8   1   6]
 [ 66   5  12  71]]
AUC score:
0.745445203966
('Epoch', 68, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0678 - acc: 0.9881Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 121s - loss: 0.0678 - acc: 0.9881 - val_loss: 1.4354 - val_acc: 0.7644
Performance of model on test set ----------------------------
Accuracy:
0.766283524904
Kappa:
0.526280554027
Confusion matrix:
[[608  35   0   4]
 [ 73 142   1   3]
 [ 12   9   1   2]
 [ 80   9  16  49]]
AUC score:
0.696322260343
('Epoch', 69, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0618 - acc: 0.9868Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 109s - loss: 0.0618 - acc: 0.9868 - val_loss: 1.4869 - val_acc: 0.7692
Performance of model on test set ----------------------------
Accuracy:
0.772988505747
Kappa:
0.543074314966
Confusion matrix:
[[608  23   0  16]
 [ 87 121   7   4]
 [ 14   4   3   3]
 [ 64   1  14  75]]
AUC score:
0.782140188085
('Epoch', 70, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0585 - acc: 0.9875Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 108s - loss: 0.0585 - acc: 0.9875 - val_loss: 1.4923 - val_acc: 0.7720
Performance of model on test set ----------------------------
Accuracy:
0.772030651341
Kappa:
0.549409996065
Confusion matrix:
[[593  35   2  17]
 [ 75 139   3   2]
 [ 12   6   4   2]
 [ 66   9   9  70]]
AUC score:
0.805364729926
('Epoch', 71, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0590 - acc: 0.9888Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 112s - loss: 0.0590 - acc: 0.9888 - val_loss: 1.4971 - val_acc: 0.7720
Performance of model on test set ----------------------------
Accuracy:
0.772030651341
Kappa:
0.547774746425
Confusion matrix:
[[602  32   3  10]
 [ 67 143   5   4]
 [ 12   5   4   3]
 [ 73   5  19  57]]
AUC score:
0.772080405041
('Epoch', 72, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0668 - acc: 0.9881Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 110s - loss: 0.0668 - acc: 0.9881 - val_loss: 1.4234 - val_acc: 0.7749
Performance of model on test set ----------------------------
Accuracy:
0.775862068966
Kappa:
0.557825690332
Confusion matrix:
[[596  35   2  14]
 [ 71 143   2   3]
 [  9   7   4   4]
 [ 68   7  12  67]]
AUC score:
0.796108978415
('Epoch', 73, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0669 - acc: 0.9868Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 110s - loss: 0.0669 - acc: 0.9868 - val_loss: 1.3023 - val_acc: 0.7672
Performance of model on test set ----------------------------
Accuracy:
0.769157088123
Kappa:
0.554583065574
Confusion matrix:
[[577  53   4  13]
 [ 60 155   3   1]
 [ 10   7   4   3]
 [ 67  12   8  67]]
AUC score:
0.804279122983
('Epoch', 74, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0623 - acc: 0.9866Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 112s - loss: 0.0623 - acc: 0.9866 - val_loss: 1.3974 - val_acc: 0.7701
Performance of model on test set ----------------------------
Accuracy:
0.770114942529
Kappa:
0.548638945383
Confusion matrix:
[[596  35   2  14]
 [ 67 138   4  10]
 [  9   7   2   6]
 [ 66  11   9  68]]
AUC score:
0.804560364242
('Epoch', 75, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0645 - acc: 0.9861Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 109s - loss: 0.0645 - acc: 0.9861 - val_loss: 1.2756 - val_acc: 0.7749
Performance of model on test set ----------------------------
Accuracy:
0.774904214559
Kappa:
0.562934789386
Confusion matrix:
[[592  35   3  17]
 [ 59 145   2  13]
 [ 11   5   1   7]
 [ 63   9  11  71]]
AUC score:
0.795626985297
('Epoch', 76, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0580 - acc: 0.9879Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 111s - loss: 0.0580 - acc: 0.9879 - val_loss: 1.4459 - val_acc: 0.7625
Performance of model on test set ----------------------------
Accuracy:
0.763409961686
Kappa:
0.528629400797
Confusion matrix:
[[595  47   0   5]
 [ 68 146   3   2]
 [ 12   8   1   3]
 [ 75  15   9  55]]
AUC score:
0.791502887849
('Epoch', 77, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0621 - acc: 0.9859Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 110s - loss: 0.0621 - acc: 0.9859 - val_loss: 1.2988 - val_acc: 0.7787
Performance of model on test set ----------------------------
Accuracy:
0.77969348659
Kappa:
0.559580122779
Confusion matrix:
[[602  37   2   6]
 [ 72 140   2   5]
 [ 13   7   1   3]
 [ 69   9   5  71]]
AUC score:
0.782060082859
('Epoch', 78, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0552 - acc: 0.9906Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 113s - loss: 0.0552 - acc: 0.9906 - val_loss: 1.3067 - val_acc: 0.7816
Performance of model on test set ----------------------------
Accuracy:
0.781609195402
Kappa:
0.578621640712
Confusion matrix:
[[592  40   2  13]
 [ 62 144   4   9]
 [  8  11   3   2]
 [ 55  11  11  77]]
AUC score:
0.815071212004
('Epoch', 79, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0532 - acc: 0.9895Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 110s - loss: 0.0532 - acc: 0.9895 - val_loss: 1.2370 - val_acc: 0.7797
Performance of model on test set ----------------------------
Accuracy:
0.780651340996
Kappa:
0.568471231235
Confusion matrix:
[[603  32   2  10]
 [ 69 138   5   7]
 [ 10   7   1   6]
 [ 61   5  15  73]]
AUC score:
0.788179308491
('Epoch', 92, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0539 - acc: 0.9902Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 115s - loss: 0.0539 - acc: 0.9902 - val_loss: 1.2153 - val_acc: 0.7787
Performance of model on test set ----------------------------
Accuracy:
0.77969348659
Kappa:
0.571957245638
Confusion matrix:
[[597  38   2  10]
 [ 57 144   5  13]
 [  9  10   2   3]
 [ 63   8  12  71]]
AUC score:
0.829628355179
('Epoch', 93, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0493 - acc: 0.9906Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 116s - loss: 0.0493 - acc: 0.9906 - val_loss: 1.2261 - val_acc: 0.7835
Performance of model on test set ----------------------------
Accuracy:
0.783524904215
Kappa:
0.58739868321
Confusion matrix:
[[588  44   6   9]
 [ 57 147   4  11]
 [  9   9   2   4]
 [ 51   6  16  81]]
AUC score:
0.793141844555
('Epoch', 94, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0380 - acc: 0.9933Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 116s - loss: 0.0380 - acc: 0.9933 - val_loss: 1.4979 - val_acc: 0.7586
Performance of model on test set ----------------------------
Accuracy:
0.758620689655
Kappa:
0.540514626134
Confusion matrix:
[[583  44   7  13]
 [ 56 143   4  16]
 [  9  10   0   5]
 [ 55  15  18  66]]
AUC score:
0.76632709991
('Epoch', 95, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0410 - acc: 0.9919Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 112s - loss: 0.0410 - acc: 0.9919 - val_loss: 1.4890 - val_acc: 0.7663
Performance of model on test set ----------------------------
Accuracy:
0.768199233716
Kappa:
0.55453290382
Confusion matrix:
[[595  36   7   9]
 [ 63 136   5  15]
 [ 13   5   0   6]
 [ 48  11  24  71]]
AUC score:
0.79010805742
('Epoch', 96, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0428 - acc: 0.9931Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 114s - loss: 0.0428 - acc: 0.9931 - val_loss: 1.4300 - val_acc: 0.7739
Performance of model on test set ----------------------------
Accuracy:
0.774904214559
Kappa:
0.557744341114
Confusion matrix:
[[601  32   4  10]
 [ 68 133   1  17]
 [  9   8   0   7]
 [ 63   3  13  75]]
AUC score:
0.808088196174
('Epoch', 97, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0456 - acc: 0.9926Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 119s - loss: 0.0456 - acc: 0.9926 - val_loss: 1.4755 - val_acc: 0.7778
Performance of model on test set ----------------------------
Accuracy:
0.778735632184
Kappa:
0.569709599834
Confusion matrix:
[[594  36   8   9]
 [ 63 144   3   9]
 [ 10  10   0   4]
 [ 62   3  14  75]]
AUC score:
0.784704454788
('Epoch', 98, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0525 - acc: 0.9911Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 118s - loss: 0.0525 - acc: 0.9911 - val_loss: 1.4293 - val_acc: 0.7672
Performance of model on test set ----------------------------
Accuracy:
0.768199233716
Kappa:
0.550964549646
Confusion matrix:
[[592  47   5   3]
 [ 59 149   4   7]
 [ 10  11   2   1]
 [ 62  12  21  59]]
AUC score:
0.795840996717
('Epoch', 99, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0729 - acc: 0.9870Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 127s - loss: 0.0728 - acc: 0.9870 - val_loss: 1.3044 - val_acc: 0.7826
Performance of model on test set ----------------------------
Accuracy:
0.783524904215
Kappa:
0.564778537752
Confusion matrix:
[[611  28   2   6]
 [ 71 139   4   5]
 [ 16   5   1   2]
 [ 69   5  13  67]]
AUC score:
0.789197457837
('Epoch', 100, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0594 - acc: 0.9884Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 114s - loss: 0.0594 - acc: 0.9884 - val_loss: 1.3969 - val_acc: 0.7672
Performance of model on test set ----------------------------
Accuracy:
0.769157088123
Kappa:
0.542859011675
Confusion matrix:
[[600  38   4   5]
 [ 67 143   3   6]
 [ 12   8   1   3]
 [ 69  11  15  59]]
AUC score:
0.73024023288
Best validation accuracy:  (41, 0.80651340996168586)

In [6]:
print 'Best validation accuracy: ', get_max_values(val_accs)
print 'Best validation Kappa: ', get_max_values(kappas)
print 'Best validation AUC: ', get_max_values(aucs)


Best validation accuracy:  (41, 0.80651340996168586)
Best validation Kappa:  (41, 0.62877492168359805)
Best validation AUC:  (48, 0.84802145297650755)

2-layer (wider) LSTM


In [7]:
# Create the model and parameters for training
numpy.random.seed(seed)

batch = 1
epochs = 100

modelS2 = create_LSTM2_PCA(dummy_y_trainS.shape[1], batch_size = batch, trainShape1=n_components)
print modelS2.summary()

# To save the best model
# serialize model to JSON
modelS2_json = modelS2.to_json()
with open("social.model--2lstmbis.json", "w") as json_file:
    json_file.write(modelS2_json)
filepathS2="social.weights--2lstmbis.best.hdf5"
# Define that the accuracy in cv is monitored, and that weights are stored in a file when max accuracy is achieved
checkpointS2 = ModelCheckpoint(filepathS2, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
callbacks_listS2 = [checkpointS2]

# Fit the model
accs =[]
val_accs =[]
losss =[]
val_losss =[]
kappas = []
aucs = []

# Manually create epochs and reset between sessions
for i in range(epochs):
    # Single epoch. Remember to not shuffle the data!
    print('Epoch', i+1, '/', epochs)
    history = modelS2.fit(trainX, dummy_y_trainS, validation_data=(testX, dummy_y_testS), 
                        nb_epoch=1, batch_size=batch, shuffle=False, 
                        verbose=1, callbacks=callbacks_listS2)
    modelS2.reset_states()
    kappa, auc = printValStats(modelS2, testX, dummy_y_testS, batch=batch)
    accs.append(history.history['acc'][0])
    val_accs.append(history.history['val_acc'][0])
    losss.append(history.history['loss'][0])
    val_losss.append(history.history['val_loss'][0])
    kappas.append(kappa)
    aucs.append(auc)
    
print 'Best validation accuracy: ', get_max_values(val_accs)
print 'Best validation Kappa: ', get_max_values(kappas)
print 'Best validation AUC: ', get_max_values(aucs)
plot_training(accs, val_accs, losss, val_losss, kappas, aucs)


____________________________________________________________________________________________________
Layer (type)                       Output Shape        Param #     Connected to                     
====================================================================================================
lstm_4 (LSTM)                      (1, 1, 300)         481200      lstm_input_2[0][0]               
____________________________________________________________________________________________________
dropout_6 (Dropout)                (1, 1, 300)         0           lstm_4[0][0]                     
____________________________________________________________________________________________________
lstm_5 (LSTM)                      (1, 50)             70200       dropout_6[0][0]                  
____________________________________________________________________________________________________
dropout_7 (Dropout)                (1, 50)             0           lstm_5[0][0]                     
____________________________________________________________________________________________________
dense_4 (Dense)                    (1, 50)             2550        dropout_7[0][0]                  
____________________________________________________________________________________________________
dropout_8 (Dropout)                (1, 50)             0           dense_4[0][0]                    
____________________________________________________________________________________________________
dense_5 (Dense)                    (1, 20)             1020        dropout_8[0][0]                  
____________________________________________________________________________________________________
dropout_9 (Dropout)                (1, 20)             0           dense_5[0][0]                    
____________________________________________________________________________________________________
dense_6 (Dense)                    (1, 4)              84          dropout_9[0][0]                  
====================================================================================================
Total params: 555054
____________________________________________________________________________________________________
None
('Epoch', 1, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.7696 - acc: 0.7197Epoch 00000: val_acc improved from -inf to 0.65230, saving model to social.weights--2lstmbis.best.hdf5
4472/4472 [==============================] - 100s - loss: 0.7696 - acc: 0.7198 - val_loss: 0.9076 - val_acc: 0.6523
Performance of model on test set ----------------------------
Accuracy:
0.653256704981
Kappa:
0.276692822967
Confusion matrix:
[[598   3   0  46]
 [116  48   0  55]
 [ 19   0   0   5]
 [ 92   0  26  36]]
AUC score:
0.668699549035
('Epoch', 2, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.6181 - acc: 0.7931Epoch 00000: val_acc improved from 0.65230 to 0.65613, saving model to social.weights--2lstmbis.best.hdf5
4472/4472 [==============================] - 78s - loss: 0.6181 - acc: 0.7932 - val_loss: 0.7486 - val_acc: 0.6561
Performance of model on test set ----------------------------
Accuracy:
0.657088122605
Kappa:
0.432613863731
Confusion matrix:
[[480   4   0 163]
 [ 29  74   0 116]
 [  7   2   0  15]
 [ 22   0   0 132]]
AUC score:
0.802498892414
('Epoch', 3, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.4849 - acc: 0.8446Epoch 00000: val_acc improved from 0.65613 to 0.75766, saving model to social.weights--2lstmbis.best.hdf5
4472/4472 [==============================] - 84s - loss: 0.4849 - acc: 0.8446 - val_loss: 0.6916 - val_acc: 0.7577
Performance of model on test set ----------------------------
Accuracy:
0.757662835249
Kappa:
0.553837863951
Confusion matrix:
[[563  13   0  71]
 [ 60 109   0  50]
 [  9   6   0   9]
 [ 35   0   0 119]]
AUC score:
0.76446161563
('Epoch', 4, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.3894 - acc: 0.8799Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 82s - loss: 0.3893 - acc: 0.8799 - val_loss: 0.8798 - val_acc: 0.7079
Performance of model on test set ----------------------------
Accuracy:
0.708812260536
Kappa:
0.508310856555
Confusion matrix:
[[494  35   0 118]
 [ 16 137   1  65]
 [  6   7   0  11]
 [ 37   3   5 109]]
AUC score:
0.735164028876
('Epoch', 5, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.3397 - acc: 0.8980Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 81s - loss: 0.3396 - acc: 0.8980 - val_loss: 0.7779 - val_acc: 0.7538
Performance of model on test set ----------------------------
Accuracy:
0.755747126437
Kappa:
0.544695035291
Confusion matrix:
[[556  52   2  37]
 [ 41 152   0  26]
 [ 10   7   0   7]
 [ 64   7   2  81]]
AUC score:
0.769949255524
('Epoch', 6, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2999 - acc: 0.9123Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 85s - loss: 0.2998 - acc: 0.9123 - val_loss: 0.9391 - val_acc: 0.7136
Performance of model on test set ----------------------------
Accuracy:
0.716475095785
Kappa:
0.481717277768
Confusion matrix:
[[540  41   0  66]
 [ 44 131   0  44]
 [  8   8   0   8]
 [ 61   7   9  77]]
AUC score:
0.709804545366
('Epoch', 7, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2624 - acc: 0.9242Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 89s - loss: 0.2623 - acc: 0.9242 - val_loss: 0.9029 - val_acc: 0.7490
Performance of model on test set ----------------------------
Accuracy:
0.750957854406
Kappa:
0.522707610936
Confusion matrix:
[[578  23   1  45]
 [ 69 132   0  18]
 [  8   7   0   9]
 [ 59   4  17  74]]
AUC score:
0.757151918966
('Epoch', 8, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2164 - acc: 0.9349Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 89s - loss: 0.2163 - acc: 0.9349 - val_loss: 0.9915 - val_acc: 0.7241
Performance of model on test set ----------------------------
Accuracy:
0.728927203065
Kappa:
0.528145766756
Confusion matrix:
[[517  31   1  98]
 [ 35 139   3  42]
 [  6   9   0   9]
 [ 35   7   7 105]]
AUC score:
0.764996135042
('Epoch', 9, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1934 - acc: 0.9423Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 91s - loss: 0.1934 - acc: 0.9423 - val_loss: 0.7880 - val_acc: 0.7577
Performance of model on test set ----------------------------
Accuracy:
0.761494252874
Kappa:
0.557743771213
Confusion matrix:
[[549  53   0  45]
 [ 50 157   1  11]
 [  9  10   3   2]
 [ 57   6   5  86]]
AUC score:
0.829493440591
('Epoch', 10, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2046 - acc: 0.9369Epoch 00000: val_acc improved from 0.75766 to 0.77586, saving model to social.weights--2lstmbis.best.hdf5
4472/4472 [==============================] - 94s - loss: 0.2046 - acc: 0.9369 - val_loss: 0.7819 - val_acc: 0.7759
Performance of model on test set ----------------------------
Accuracy:
0.778735632184
Kappa:
0.586712502956
Confusion matrix:
[[559  54   0  34]
 [ 48 162   0   9]
 [ 10   9   3   2]
 [ 56   4   5  89]]
AUC score:
0.829369764395
('Epoch', 11, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1444 - acc: 0.9541Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 97s - loss: 0.1443 - acc: 0.9542 - val_loss: 0.9896 - val_acc: 0.7385
Performance of model on test set ----------------------------
Accuracy:
0.740421455939
Kappa:
0.480941015024
Confusion matrix:
[[587  32   3  25]
 [ 85 113   4  17]
 [ 10   7   4   3]
 [ 81   0   4  69]]
AUC score:
0.830422799155
('Epoch', 12, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1458 - acc: 0.9580Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 118s - loss: 0.1458 - acc: 0.9580 - val_loss: 0.9166 - val_acc: 0.7672
Performance of model on test set ----------------------------
Accuracy:
0.769157088123
Kappa:
0.561003951948
Confusion matrix:
[[569  60   1  17]
 [ 46 158   4  11]
 [  9   9   3   3]
 [ 71   5   5  73]]
AUC score:
0.800255829152
('Epoch', 13, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1330 - acc: 0.9638Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 119s - loss: 0.1330 - acc: 0.9638 - val_loss: 1.0120 - val_acc: 0.7557
Performance of model on test set ----------------------------
Accuracy:
0.76245210728
Kappa:
0.54022123053
Confusion matrix:
[[580  45   1  21]
 [ 58 144   0  17]
 [ 11   7   1   5]
 [ 70   4   9  71]]
AUC score:
0.794619666326
('Epoch', 14, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1219 - acc: 0.9649Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 118s - loss: 0.1219 - acc: 0.9649 - val_loss: 1.2442 - val_acc: 0.7586
Performance of model on test set ----------------------------
Accuracy:
0.760536398467
Kappa:
0.507677217339
Confusion matrix:
[[614  21   2  10]
 [ 96 111   1  11]
 [ 10   7   1   6]
 [ 75   0  11  68]]
AUC score:
0.803646962605
('Epoch', 15, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1386 - acc: 0.9580Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 117s - loss: 0.1386 - acc: 0.9580 - val_loss: 1.1839 - val_acc: 0.7308
Performance of model on test set ----------------------------
Accuracy:
0.733716475096
Kappa:
0.482831249087
Confusion matrix:
[[572  34   3  38]
 [ 60 135   1  23]
 [  9   9   2   4]
 [ 86   1  10  57]]
AUC score:
0.784581789077
('Epoch', 16, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1137 - acc: 0.9665Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 117s - loss: 0.1137 - acc: 0.9665 - val_loss: 1.1207 - val_acc: 0.7414
Performance of model on test set ----------------------------
Accuracy:
0.745210727969
Kappa:
0.504963661612
Confusion matrix:
[[583  34   3  27]
 [ 70 130   1  18]
 [  8  10   2   4]
 [ 70   0  21  63]]
AUC score:
0.790408729845
('Epoch', 17, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1235 - acc: 0.9644Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 117s - loss: 0.1235 - acc: 0.9644 - val_loss: 0.9522 - val_acc: 0.7625
Performance of model on test set ----------------------------
Accuracy:
0.765325670498
Kappa:
0.538393237419
Confusion matrix:
[[585  38   1  23]
 [ 75 137   2   5]
 [ 10  11   2   1]
 [ 69   3   7  75]]
AUC score:
0.830919028021
('Epoch', 18, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1041 - acc: 0.9696Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 117s - loss: 0.1041 - acc: 0.9696 - val_loss: 1.1364 - val_acc: 0.7510
Performance of model on test set ----------------------------
Accuracy:
0.754789272031
Kappa:
0.539418379217
Confusion matrix:
[[558  40   2  47]
 [ 55 145   3  16]
 [ 11   9   2   2]
 [ 61   4   6  83]]
AUC score:
0.816169400948
('Epoch', 19, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0874 - acc: 0.9752Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 105s - loss: 0.0874 - acc: 0.9752 - val_loss: 1.2448 - val_acc: 0.7452
Performance of model on test set ----------------------------
Accuracy:
0.748084291188
Kappa:
0.509110802809
Confusion matrix:
[[576  50   3  18]
 [ 58 155   1   5]
 [ 10   9   4   1]
 [ 84   6  18  46]]
AUC score:
0.832734288901
('Epoch', 20, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0842 - acc: 0.9767Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 115s - loss: 0.0842 - acc: 0.9767 - val_loss: 1.1988 - val_acc: 0.7519
Performance of model on test set ----------------------------
Accuracy:
0.755747126437
Kappa:
0.515769063569
Confusion matrix:
[[590  42   6   9]
 [ 70 146   1   2]
 [ 14   7   2   1]
 [ 78   2  23  51]]
AUC score:
0.813497638482
('Epoch', 21, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0717 - acc: 0.9781Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 118s - loss: 0.0717 - acc: 0.9781 - val_loss: 1.3345 - val_acc: 0.7529
Performance of model on test set ----------------------------
Accuracy:
0.755747126437
Kappa:
0.508391071191
Confusion matrix:
[[605  30   4   8]
 [ 64 148   1   6]
 [ 14   8   2   0]
 [ 86   9  25  34]]
AUC score:
0.798650079108
('Epoch', 22, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0652 - acc: 0.9790Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 113s - loss: 0.0652 - acc: 0.9790 - val_loss: 1.3199 - val_acc: 0.7567
Performance of model on test set ----------------------------
Accuracy:
0.758620689655
Kappa:
0.51872943165
Confusion matrix:
[[595  35   8   9]
 [ 75 134   4   6]
 [ 14   8   2   0]
 [ 75   5  13  61]]
AUC score:
0.786119717366
('Epoch', 23, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0627 - acc: 0.9817Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 119s - loss: 0.0627 - acc: 0.9817 - val_loss: 1.4671 - val_acc: 0.7356
Performance of model on test set ----------------------------
Accuracy:
0.738505747126
Kappa:
0.484180388097
Confusion matrix:
[[581  26   2  38]
 [ 61 138   4  16]
 [ 13   7   1   3]
 [ 91   1  11  51]]
AUC score:
0.763664995271
('Epoch', 24, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0714 - acc: 0.9810Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 111s - loss: 0.0713 - acc: 0.9810 - val_loss: 1.3000 - val_acc: 0.7615
Performance of model on test set ----------------------------
Accuracy:
0.760536398467
Kappa:
0.538321116237
Confusion matrix:
[[575  60   3   9]
 [ 61 152   1   5]
 [ 11   8   2   3]
 [ 67   6  16  65]]
AUC score:
0.768163665531
('Epoch', 25, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0723 - acc: 0.9785Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 118s - loss: 0.0723 - acc: 0.9785 - val_loss: 1.2799 - val_acc: 0.7385
Performance of model on test set ----------------------------
Accuracy:
0.739463601533
Kappa:
0.48679987277
Confusion matrix:
[[583  39   3  22]
 [ 66 143   0  10]
 [ 11  11   0   2]
 [ 79  16  13  46]]
AUC score:
0.80499842281
('Epoch', 26, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0758 - acc: 0.9781Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 122s - loss: 0.0758 - acc: 0.9781 - val_loss: 1.3381 - val_acc: 0.7577
Performance of model on test set ----------------------------
Accuracy:
0.758620689655
Kappa:
0.518806013827
Confusion matrix:
[[595  43   1   8]
 [ 72 139   0   8]
 [ 13   7   0   4]
 [ 75   4  17  58]]
AUC score:
0.800992958438
('Epoch', 27, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0645 - acc: 0.9819Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 121s - loss: 0.0645 - acc: 0.9819 - val_loss: 1.3618 - val_acc: 0.7538
Performance of model on test set ----------------------------
Accuracy:
0.755747126437
Kappa:
0.549206005168
Confusion matrix:
[[558  57   2  30]
 [ 34 161   5  19]
 [  9  11   0   4]
 [ 58  16  10  70]]
AUC score:
0.826953465649
('Epoch', 28, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0579 - acc: 0.9839Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 117s - loss: 0.0579 - acc: 0.9839 - val_loss: 1.2597 - val_acc: 0.7625
Performance of model on test set ----------------------------
Accuracy:
0.764367816092
Kappa:
0.543032429566
Confusion matrix:
[[580  45   1  21]
 [ 58 144   2  15]
 [ 14   8   0   2]
 [ 67  10   3  74]]
AUC score:
0.789689119281
('Epoch', 29, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0673 - acc: 0.9805Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 118s - loss: 0.0673 - acc: 0.9805 - val_loss: 1.2187 - val_acc: 0.7462
Performance of model on test set ----------------------------
Accuracy:
0.749042145594
Kappa:
0.509932920537
Confusion matrix:
[[583  49   3  12]
 [ 64 140   8   7]
 [ 16   6   1   1]
 [ 69  13  14  58]]
AUC score:
0.78276293548
('Epoch', 30, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0593 - acc: 0.9830Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 120s - loss: 0.0593 - acc: 0.9830 - val_loss: 1.2737 - val_acc: 0.7596
Performance of model on test set ----------------------------
Accuracy:
0.759578544061
Kappa:
0.54452320282
Confusion matrix:
[[575  47   1  24]
 [ 57 141   3  18]
 [  8  11   1   4]
 [ 54  13  11  76]]
AUC score:
0.777411842274
('Epoch', 31, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0466 - acc: 0.9873Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 124s - loss: 0.0466 - acc: 0.9873 - val_loss: 1.4000 - val_acc: 0.7653
Performance of model on test set ----------------------------
Accuracy:
0.76724137931
Kappa:
0.544592561743
Confusion matrix:
[[595  44   2   6]
 [ 70 138   5   6]
 [  9  12   3   0]
 [ 59  17  13  65]]
AUC score:
0.781299022757
('Epoch', 32, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0454 - acc: 0.9884Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 119s - loss: 0.0454 - acc: 0.9884 - val_loss: 1.3667 - val_acc: 0.7625
Performance of model on test set ----------------------------
Accuracy:
0.763409961686
Kappa:
0.544118505004
Confusion matrix:
[[591  32   1  23]
 [ 68 126   4  21]
 [ 12   7   1   4]
 [ 50   7  18  79]]
AUC score:
0.796676775555
('Epoch', 33, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0450 - acc: 0.9861Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 120s - loss: 0.0450 - acc: 0.9861 - val_loss: 1.3484 - val_acc: 0.7653
Performance of model on test set ----------------------------
Accuracy:
0.765325670498
Kappa:
0.566756551668
Confusion matrix:
[[567  44   5  31]
 [ 51 139   5  24]
 [  7   9   2   6]
 [ 42   9  12  91]]
AUC score:
0.850655660064
('Epoch', 34, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0370 - acc: 0.9886Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 121s - loss: 0.0370 - acc: 0.9886 - val_loss: 1.4474 - val_acc: 0.7672
Performance of model on test set ----------------------------
Accuracy:
0.76724137931
Kappa:
0.552265042039
Confusion matrix:
[[582  49   3  13]
 [ 58 146   2  13]
 [  9  10   2   3]
 [ 62  12   9  71]]
AUC score:
0.806542582585
('Epoch', 35, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0395 - acc: 0.9897Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 120s - loss: 0.0395 - acc: 0.9897 - val_loss: 1.5010 - val_acc: 0.7510
Performance of model on test set ----------------------------
Accuracy:
0.75
Kappa:
0.527835105139
Confusion matrix:
[[565  60   5  17]
 [ 47 157   3  12]
 [ 10   8   3   3]
 [ 68  12  16  58]]
AUC score:
0.795711091819
('Epoch', 36, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0330 - acc: 0.9908Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 119s - loss: 0.0330 - acc: 0.9908 - val_loss: 1.4671 - val_acc: 0.7596
Performance of model on test set ----------------------------
Accuracy:
0.758620689655
Kappa:
0.539573784435
Confusion matrix:
[[575  52   2  18]
 [ 59 149   3   8]
 [  9  10   1   4]
 [ 60   9  18  67]]
AUC score:
0.797850183875
('Epoch', 37, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0404 - acc: 0.9893Epoch 00000: val_acc improved from 0.77586 to 0.77682, saving model to social.weights--2lstmbis.best.hdf5
4472/4472 [==============================] - 120s - loss: 0.0404 - acc: 0.9893 - val_loss: 1.3846 - val_acc: 0.7768
Performance of model on test set ----------------------------
Accuracy:
0.776819923372
Kappa:
0.579491452467
Confusion matrix:
[[575  58   5   9]
 [ 50 154   4  11]
 [ 10   9   3   2]
 [ 53   8  14  79]]
AUC score:
0.795961426745
('Epoch', 38, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0383 - acc: 0.9886Epoch 00000: val_acc improved from 0.77682 to 0.78640, saving model to social.weights--2lstmbis.best.hdf5
4472/4472 [==============================] - 118s - loss: 0.0383 - acc: 0.9886 - val_loss: 1.2810 - val_acc: 0.7864
Performance of model on test set ----------------------------
Accuracy:
0.787356321839
Kappa:
0.595016512607
Confusion matrix:
[[576  61   0  10]
 [ 57 158   0   4]
 [ 11   9   3   1]
 [ 51  11   7  85]]
AUC score:
0.78304913657
('Epoch', 39, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0414 - acc: 0.9881Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 118s - loss: 0.0414 - acc: 0.9881 - val_loss: 1.3496 - val_acc: 0.7797
Performance of model on test set ----------------------------
Accuracy:
0.77969348659
Kappa:
0.591102059305
Confusion matrix:
[[565  55   1  26]
 [ 51 149   1  18]
 [  9   9   4   2]
 [ 41  14   3  96]]
AUC score:
0.779463907675
('Epoch', 40, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0373 - acc: 0.9902Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 118s - loss: 0.0373 - acc: 0.9902 - val_loss: 1.3871 - val_acc: 0.7816
Performance of model on test set ----------------------------
Accuracy:
0.782567049808
Kappa:
0.590300876144
Confusion matrix:
[[574  42   1  30]
 [ 57 145   1  16]
 [  8   9   3   4]
 [ 48   7   4  95]]
AUC score:
0.787663740895
('Epoch', 41, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0335 - acc: 0.9906Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 119s - loss: 0.0335 - acc: 0.9906 - val_loss: 1.4895 - val_acc: 0.7778
Performance of model on test set ----------------------------
Accuracy:
0.778735632184
Kappa:
0.576670575266
Confusion matrix:
[[579  49   1  18]
 [ 51 156   0  12]
 [  8   9   3   4]
 [ 64  10   5  75]]
AUC score:
0.777995619787
('Epoch', 42, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0379 - acc: 0.9913Epoch 00000: val_acc improved from 0.78640 to 0.78736, saving model to social.weights--2lstmbis.best.hdf5
4472/4472 [==============================] - 122s - loss: 0.0379 - acc: 0.9913 - val_loss: 1.2885 - val_acc: 0.7874
Performance of model on test set ----------------------------
Accuracy:
0.787356321839
Kappa:
0.601738296655
Confusion matrix:
[[579  38   1  29]
 [ 53 141   0  25]
 [  9   8   3   4]
 [ 41   6   8  99]]
AUC score:
0.794789202693
('Epoch', 43, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0497 - acc: 0.9875Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 126s - loss: 0.0496 - acc: 0.9875 - val_loss: 1.3158 - val_acc: 0.7739
Performance of model on test set ----------------------------
Accuracy:
0.774904214559
Kappa:
0.579782132091
Confusion matrix:
[[565  48   1  33]
 [ 52 146   2  19]
 [ 12   7   0   5]
 [ 46   6   4  98]]
AUC score:
0.777344088121
('Epoch', 44, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0311 - acc: 0.9917Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 120s - loss: 0.0311 - acc: 0.9917 - val_loss: 1.4643 - val_acc: 0.7711
Performance of model on test set ----------------------------
Accuracy:
0.772988505747
Kappa:
0.563211532453
Confusion matrix:
[[584  39   1  23]
 [ 65 139   2  13]
 [ 11   6   2   5]
 [ 53  12   7  82]]
AUC score:
0.769904496925
('Epoch', 45, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0338 - acc: 0.9906Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 121s - loss: 0.0338 - acc: 0.9906 - val_loss: 1.5111 - val_acc: 0.7711
Performance of model on test set ----------------------------
Accuracy:
0.771072796935
Kappa:
0.558003259406
Confusion matrix:
[[593  28   4  22]
 [ 65 134   5  15]
 [ 10   6   4   4]
 [ 57   5  18  74]]
AUC score:
0.786375232164
('Epoch', 46, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0375 - acc: 0.9902Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 123s - loss: 0.0375 - acc: 0.9902 - val_loss: 1.4271 - val_acc: 0.7778
Performance of model on test set ----------------------------
Accuracy:
0.778735632184
Kappa:
0.579262867371
Confusion matrix:
[[585  37   4  21]
 [ 57 144   4  14]
 [  9   7   3   5]
 [ 51  10  12  81]]
AUC score:
0.810645394033
('Epoch', 47, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0237 - acc: 0.9933Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 121s - loss: 0.0237 - acc: 0.9933 - val_loss: 1.5413 - val_acc: 0.7749
Performance of model on test set ----------------------------
Accuracy:
0.774904214559
Kappa:
0.57525341274
Confusion matrix:
[[576  45   3  23]
 [ 55 152   1  11]
 [  9  11   3   1]
 [ 50  11  15  78]]
AUC score:
0.791717907754
('Epoch', 48, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0236 - acc: 0.9937Epoch 00000: val_acc improved from 0.78736 to 0.79215, saving model to social.weights--2lstmbis.best.hdf5
4472/4472 [==============================] - 123s - loss: 0.0236 - acc: 0.9937 - val_loss: 1.4971 - val_acc: 0.7921
Performance of model on test set ----------------------------
Accuracy:
0.793103448276
Kappa:
0.600393397305
Confusion matrix:
[[588  39   0  20]
 [ 65 150   1   3]
 [ 11  10   2   1]
 [ 51   9   6  88]]
AUC score:
0.800326221261
('Epoch', 49, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0345 - acc: 0.9922Epoch 00000: val_acc improved from 0.79215 to 0.79693, saving model to social.weights--2lstmbis.best.hdf5
4472/4472 [==============================] - 124s - loss: 0.0345 - acc: 0.9922 - val_loss: 1.3576 - val_acc: 0.7969
Performance of model on test set ----------------------------
Accuracy:
0.797892720307
Kappa:
0.607139417675
Confusion matrix:
[[593  47   0   7]
 [ 60 159   0   0]
 [ 14   8   2   0]
 [ 52  17   6  79]]
AUC score:
0.806719196979
('Epoch', 50, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0364 - acc: 0.9924Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 123s - loss: 0.0364 - acc: 0.9924 - val_loss: 1.3409 - val_acc: 0.7749
Performance of model on test set ----------------------------
Accuracy:
0.775862068966
Kappa:
0.58018755252
Confusion matrix:
[[563  59   1  24]
 [ 57 151   1  10]
 [  8  12   1   3]
 [ 48   7   4  95]]
AUC score:
0.768393209206
('Epoch', 51, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0300 - acc: 0.9915Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 126s - loss: 0.0300 - acc: 0.9915 - val_loss: 1.3766 - val_acc: 0.7921
Performance of model on test set ----------------------------
Accuracy:
0.793103448276
Kappa:
0.606658259245
Confusion matrix:
[[582  51   0  14]
 [ 54 156   1   8]
 [  7  11   3   3]
 [ 51  11   5  87]]
AUC score:
0.804168891151
('Epoch', 52, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0221 - acc: 0.9935Epoch 00000: val_acc improved from 0.79693 to 0.80268, saving model to social.weights--2lstmbis.best.hdf5
4472/4472 [==============================] - 127s - loss: 0.0221 - acc: 0.9935 - val_loss: 1.3408 - val_acc: 0.8027
Performance of model on test set ----------------------------
Accuracy:
0.803639846743
Kappa:
0.627238969743
Confusion matrix:
[[588  42   3  14]
 [ 60 151   1   7]
 [  8  11   2   3]
 [ 38  14   4  98]]
AUC score:
0.798662836696
('Epoch', 53, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0336 - acc: 0.9915Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 125s - loss: 0.0336 - acc: 0.9915 - val_loss: 1.4875 - val_acc: 0.7768
Performance of model on test set ----------------------------
Accuracy:
0.776819923372
Kappa:
0.574308574309
Confusion matrix:
[[585  43   1  18]
 [ 65 141   2  11]
 [  9   9   2   4]
 [ 45  11  15  83]]
AUC score:
0.828892819887
('Epoch', 54, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0230 - acc: 0.9949Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 123s - loss: 0.0230 - acc: 0.9949 - val_loss: 1.5960 - val_acc: 0.7644
Performance of model on test set ----------------------------
Accuracy:
0.765325670498
Kappa:
0.555829541903
Confusion matrix:
[[568  57   3  19]
 [ 61 152   1   5]
 [ 10   9   2   3]
 [ 51  16  10  77]]
AUC score:
0.799611879347
('Epoch', 55, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0343 - acc: 0.9902Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 127s - loss: 0.0343 - acc: 0.9902 - val_loss: 1.5854 - val_acc: 0.7615
Performance of model on test set ----------------------------
Accuracy:
0.76245210728
Kappa:
0.536259295878
Confusion matrix:
[[585  45   2  15]
 [ 73 139   1   6]
 [ 11   8   3   2]
 [ 62   9  14  69]]
AUC score:
0.784532180075
('Epoch', 56, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0282 - acc: 0.9924Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 127s - loss: 0.0282 - acc: 0.9924 - val_loss: 1.5553 - val_acc: 0.7644
Performance of model on test set ----------------------------
Accuracy:
0.765325670498
Kappa:
0.553396668197
Confusion matrix:
[[572  43   2  30]
 [ 60 147   1  11]
 [  9   9   3   3]
 [ 58  11   8  77]]
AUC score:
0.778389823154
('Epoch', 57, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0343 - acc: 0.9922Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 122s - loss: 0.0343 - acc: 0.9922 - val_loss: 1.4889 - val_acc: 0.7596
Performance of model on test set ----------------------------
Accuracy:
0.761494252874
Kappa:
0.539333408943
Confusion matrix:
[[579  40   1  27]
 [ 74 132   0  13]
 [  9   9   1   5]
 [ 55  10   6  83]]
AUC score:
0.813139444218
('Epoch', 58, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0200 - acc: 0.9946Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 127s - loss: 0.0200 - acc: 0.9946 - val_loss: 1.6084 - val_acc: 0.7759
Performance of model on test set ----------------------------
Accuracy:
0.774904214559
Kappa:
0.583070635319
Confusion matrix:
[[565  42   2  38]
 [ 54 147   0  18]
 [  9  12   1   2]
 [ 37  15   6  96]]
AUC score:
0.799174882401
('Epoch', 59, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0190 - acc: 0.9953Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 130s - loss: 0.0190 - acc: 0.9953 - val_loss: 1.8223 - val_acc: 0.7663
Performance of model on test set ----------------------------
Accuracy:
0.766283524904
Kappa:
0.554857345563
Confusion matrix:
[[577  41   3  26]
 [ 64 140   0  15]
 [ 11  10   3   0]
 [ 49  15  10  80]]
AUC score:
0.778883927846
('Epoch', 60, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0276 - acc: 0.9926Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 127s - loss: 0.0276 - acc: 0.9926 - val_loss: 1.8020 - val_acc: 0.7443
Performance of model on test set ----------------------------
Accuracy:
0.745210727969
Kappa:
0.514987660919
Confusion matrix:
[[569  45   3  30]
 [ 63 140   0  16]
 [ 10  10   2   2]
 [ 61   7  19  67]]
AUC score:
0.727763594211
('Epoch', 61, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0201 - acc: 0.9944Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 128s - loss: 0.0201 - acc: 0.9944 - val_loss: 1.6804 - val_acc: 0.7711
Performance of model on test set ----------------------------
Accuracy:
0.773946360153
Kappa:
0.56774585174
Confusion matrix:
[[581  44   3  19]
 [ 59 151   1   8]
 [ 10  12   1   1]
 [ 54  13  12  75]]
AUC score:
0.800850305615
('Epoch', 62, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0347 - acc: 0.9911Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 122s - loss: 0.0346 - acc: 0.9911 - val_loss: 1.5155 - val_acc: 0.7730
Performance of model on test set ----------------------------
Accuracy:
0.773946360153
Kappa:
0.568823796032
Confusion matrix:
[[574  50   2  21]
 [ 64 152   1   2]
 [ 12  10   0   2]
 [ 49  14   9  82]]
AUC score:
0.754972072626
('Epoch', 63, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0176 - acc: 0.9951Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 121s - loss: 0.0176 - acc: 0.9951 - val_loss: 1.6154 - val_acc: 0.7864
Performance of model on test set ----------------------------
Accuracy:
0.788314176245
Kappa:
0.595265786413
Confusion matrix:
[[581  41   1  24]
 [ 53 155   3   8]
 [ 10  10   2   2]
 [ 60   3   6  85]]
AUC score:
0.773527400049
('Epoch', 64, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0260 - acc: 0.9935Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 130s - loss: 0.0260 - acc: 0.9935 - val_loss: 1.7179 - val_acc: 0.7787
Performance of model on test set ----------------------------
Accuracy:
0.781609195402
Kappa:
0.582493755788
Confusion matrix:
[[581  38   0  28]
 [ 62 145   2  10]
 [ 11  10   1   2]
 [ 50   9   6  89]]
AUC score:
0.773118652465
('Epoch', 65, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0284 - acc: 0.9926Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 153s - loss: 0.0284 - acc: 0.9926 - val_loss: 1.6061 - val_acc: 0.7739
Performance of model on test set ----------------------------
Accuracy:
0.775862068966
Kappa:
0.581830288444
Confusion matrix:
[[569  49   0  29]
 [ 54 151   3  11]
 [  9   9   3   3]
 [ 42  16   9  87]]
AUC score:
0.791186247684
('Epoch', 66, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0276 - acc: 0.9933Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 139s - loss: 0.0276 - acc: 0.9933 - val_loss: 1.5427 - val_acc: 0.7816
Performance of model on test set ----------------------------
Accuracy:
0.782567049808
Kappa:
0.564515595541
Confusion matrix:
[[602  38   0   7]
 [ 82 137   0   0]
 [ 15   9   0   0]
 [ 58  11   7  78]]
AUC score:
0.818322275306
('Epoch', 67, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0198 - acc: 0.9955Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 137s - loss: 0.0197 - acc: 0.9955 - val_loss: 1.6945 - val_acc: 0.7826
Performance of model on test set ----------------------------
Accuracy:
0.783524904215
Kappa:
0.582870286067
Confusion matrix:
[[586  47   2  12]
 [ 54 163   1   1]
 [ 14  10   0   0]
 [ 57  14  14  69]]
AUC score:
0.778059324898
('Epoch', 68, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0148 - acc: 0.9960Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 137s - loss: 0.0148 - acc: 0.9960 - val_loss: 1.7442 - val_acc: 0.7749
Performance of model on test set ----------------------------
Accuracy:
0.772988505747
Kappa:
0.553077348246
Confusion matrix:
[[596  44   1   6]
 [ 73 142   1   3]
 [ 13  11   0   0]
 [ 56  15  14  69]]
AUC score:
0.755583454433
('Epoch', 69, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0171 - acc: 0.9966Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 136s - loss: 0.0171 - acc: 0.9966 - val_loss: 1.6965 - val_acc: 0.7835
Performance of model on test set ----------------------------
Accuracy:
0.784482758621
Kappa:
0.577241215472
Confusion matrix:
[[597  38   1  11]
 [ 68 145   2   4]
 [ 13   9   0   2]
 [ 55  15   7  77]]
AUC score:
0.788472517246
('Epoch', 70, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0181 - acc: 0.9964Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 135s - loss: 0.0181 - acc: 0.9964 - val_loss: 1.7093 - val_acc: 0.7960
Performance of model on test set ----------------------------
Accuracy:
0.7969348659
Kappa:
0.602233536475
Confusion matrix:
[[603  37   1   6]
 [ 63 151   3   2]
 [ 12  11   0   1]
 [ 53  15   8  78]]
AUC score:
0.761781072703
('Epoch', 71, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0224 - acc: 0.9949Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 138s - loss: 0.0224 - acc: 0.9949 - val_loss: 1.6352 - val_acc: 0.7845
Performance of model on test set ----------------------------
Accuracy:
0.784482758621
Kappa:
0.585720130933
Confusion matrix:
[[582  57   1   7]
 [ 66 152   0   1]
 [ 11  13   0   0]
 [ 45  20   4  85]]
AUC score:
0.748635154688
('Epoch', 72, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0155 - acc: 0.9964Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 127s - loss: 0.0155 - acc: 0.9964 - val_loss: 1.6909 - val_acc: 0.7807
Performance of model on test set ----------------------------
Accuracy:
0.780651340996
Kappa:
0.576924029801
Confusion matrix:
[[585  50   0  12]
 [ 64 152   0   3]
 [ 10  13   0   1]
 [ 51  17   8  78]]
AUC score:
0.747757667832
('Epoch', 73, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0112 - acc: 0.9969Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 150s - loss: 0.0112 - acc: 0.9969 - val_loss: 1.6958 - val_acc: 0.7816
Performance of model on test set ----------------------------
Accuracy:
0.781609195402
Kappa:
0.576244392224
Confusion matrix:
[[589  47   1  10]
 [ 72 141   1   5]
 [ 11  10   1   2]
 [ 48  14   7  85]]
AUC score:
0.780452693182
('Epoch', 74, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0161 - acc: 0.9971Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 176s - loss: 0.0161 - acc: 0.9971 - val_loss: 1.6778 - val_acc: 0.7941
Performance of model on test set ----------------------------
Accuracy:
0.794061302682
Kappa:
0.593935995079
Confusion matrix:
[[603  37   0   7]
 [ 75 142   0   2]
 [ 14   8   1   1]
 [ 48  13  10  83]]
AUC score:
0.789297467923
('Epoch', 75, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0244 - acc: 0.9951Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 171s - loss: 0.0244 - acc: 0.9951 - val_loss: 1.5869 - val_acc: 0.7893
Performance of model on test set ----------------------------
Accuracy:
0.789272030651
Kappa:
0.580105851059
Confusion matrix:
[[607  36   0   4]
 [ 79 139   0   1]
 [ 11  12   1   0]
 [ 53  18   6  77]]
AUC score:
0.781404578731
('Epoch', 76, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0239 - acc: 0.9953Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 170s - loss: 0.0239 - acc: 0.9953 - val_loss: 1.6344 - val_acc: 0.7615
Performance of model on test set ----------------------------
Accuracy:
0.761494252874
Kappa:
0.533075523448
Confusion matrix:
[[588  43   0  16]
 [ 79 135   0   5]
 [ 11  11   1   1]
 [ 55  13  15  71]]
AUC score:
0.817163237982
('Epoch', 77, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0103 - acc: 0.9978Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 165s - loss: 0.0103 - acc: 0.9978 - val_loss: 1.6957 - val_acc: 0.7768
Performance of model on test set ----------------------------
Accuracy:
0.776819923372
Kappa:
0.561727060451
Confusion matrix:
[[591  45   0  11]
 [ 74 144   0   1]
 [ 11  12   1   0]
 [ 56  17   6  75]]
AUC score:
0.805570831463
('Epoch', 78, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0150 - acc: 0.9975Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 123s - loss: 0.0150 - acc: 0.9975 - val_loss: 1.6510 - val_acc: 0.7854
Performance of model on test set ----------------------------
Accuracy:
0.785440613027
Kappa:
0.583148100284
Confusion matrix:
[[587  48   1  11]
 [ 69 150   0   0]
 [ 11  11   1   1]
 [ 53  12   7  82]]
AUC score:
0.764944902034
('Epoch', 79, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0099 - acc: 0.9966Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 122s - loss: 0.0099 - acc: 0.9966 - val_loss: 1.6887 - val_acc: 0.7797
Performance of model on test set ----------------------------
Accuracy:
0.77969348659
Kappa:
0.587828478148
Confusion matrix:
[[564  72   0  11]
 [ 51 166   0   2]
 [ 11  12   1   0]
 [ 43  22   6  83]]
AUC score:
0.771732784917
('Epoch', 80, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0174 - acc: 0.9964Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 124s - loss: 0.0174 - acc: 0.9964 - val_loss: 1.6067 - val_acc: 0.8027
Performance of model on test set ----------------------------
Accuracy:
0.802681992337
Kappa:
0.611725645743
Confusion matrix:
[[602  39   0   6]
 [ 69 149   1   0]
 [ 12   9   3   0]
 [ 53  12   5  84]]
AUC score:
0.769387539044
('Epoch', 81, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0158 - acc: 0.9960Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 124s - loss: 0.0158 - acc: 0.9960 - val_loss: 1.6172 - val_acc: 0.7998
Performance of model on test set ----------------------------
Accuracy:
0.799808429119
Kappa:
0.604636456376
Confusion matrix:
[[604  35   0   8]
 [ 70 147   0   2]
 [ 12  10   2   0]
 [ 55  10   7  82]]
AUC score:
0.763156166847
('Epoch', 82, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0200 - acc: 0.9949Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 123s - loss: 0.0200 - acc: 0.9949 - val_loss: 1.7164 - val_acc: 0.7787
Performance of model on test set ----------------------------
Accuracy:
0.777777777778
Kappa:
0.56275408889
Confusion matrix:
[[599  39   1   8]
 [ 72 144   2   1]
 [  9  13   1   1]
 [ 60   8  18  68]]
AUC score:
0.749167696155
('Epoch', 83, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0155 - acc: 0.9958Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 123s - loss: 0.0155 - acc: 0.9958 - val_loss: 1.9577 - val_acc: 0.7749
Performance of model on test set ----------------------------
Accuracy:
0.774904214559
Kappa:
0.542906328774
Confusion matrix:
[[612  29   1   5]
 [ 80 138   1   0]
 [  9  12   2   1]
 [ 76   5  16  57]]
AUC score:
0.73384952928
('Epoch', 84, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0189 - acc: 0.9951Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 170s - loss: 0.0189 - acc: 0.9951 - val_loss: 1.6053 - val_acc: 0.7979
Performance of model on test set ----------------------------
Accuracy:
0.797892720307
Kappa:
0.597438624576
Confusion matrix:
[[611  25   1  10]
 [ 72 145   0   2]
 [ 10  11   1   2]
 [ 60   8  10  76]]
AUC score:
0.83089149427
('Epoch', 85, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0142 - acc: 0.9966Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 175s - loss: 0.0142 - acc: 0.9966 - val_loss: 1.7478 - val_acc: 0.7797
Performance of model on test set ----------------------------
Accuracy:
0.77969348659
Kappa:
0.555784130179
Confusion matrix:
[[608  36   0   3]
 [ 76 142   1   0]
 [ 10  13   1   0]
 [ 70  13   8  63]]
AUC score:
0.756369959361
('Epoch', 86, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0111 - acc: 0.9966Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 174s - loss: 0.0111 - acc: 0.9966 - val_loss: 1.8334 - val_acc: 0.7893
Performance of model on test set ----------------------------
Accuracy:
0.788314176245
Kappa:
0.576329822397
Confusion matrix:
[[607  31   0   9]
 [ 73 145   1   0]
 [ 11   9   1   3]
 [ 66  10   8  70]]
AUC score:
0.786458074881
('Epoch', 87, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0156 - acc: 0.9964Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 176s - loss: 0.0156 - acc: 0.9964 - val_loss: 1.6835 - val_acc: 0.7835
Performance of model on test set ----------------------------
Accuracy:
0.783524904215
Kappa:
0.578938351581
Confusion matrix:
[[589  48   0  10]
 [ 59 157   2   1]
 [  9  14   0   1]
 [ 63  12   7  72]]
AUC score:
0.753577656413
('Epoch', 88, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0113 - acc: 0.9975Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 173s - loss: 0.0113 - acc: 0.9975 - val_loss: 1.6783 - val_acc: 0.7816
Performance of model on test set ----------------------------
Accuracy:
0.781609195402
Kappa:
0.572513051864
Confusion matrix:
[[595  36   0  16]
 [ 59 156   2   2]
 [ 10  10   0   4]
 [ 67  10  12  65]]
AUC score:
0.777226949468
('Epoch', 89, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0142 - acc: 0.9962Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 176s - loss: 0.0142 - acc: 0.9962 - val_loss: 1.7212 - val_acc: 0.7845
Performance of model on test set ----------------------------
Accuracy:
0.785440613027
Kappa:
0.573485076464
Confusion matrix:
[[605  31   0  11]
 [ 72 144   2   1]
 [ 11  10   1   2]
 [ 62  12  10  70]]
AUC score:
0.745455095793
('Epoch', 90, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0160 - acc: 0.9969Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 175s - loss: 0.0160 - acc: 0.9969 - val_loss: 1.6941 - val_acc: 0.7854
Performance of model on test set ----------------------------
Accuracy:
0.785440613027
Kappa:
0.582591560659
Confusion matrix:
[[597  33   1  16]
 [ 65 149   2   3]
 [ 12   8   1   3]
 [ 52  15  14  73]]
AUC score:
0.788883009667
('Epoch', 91, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0228 - acc: 0.9960Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 176s - loss: 0.0228 - acc: 0.9960 - val_loss: 1.7836 - val_acc: 0.7835
Performance of model on test set ----------------------------
Accuracy:
0.781609195402
Kappa:
0.571516519598
Confusion matrix:
[[602  35   2   8]
 [ 61 155   2   1]
 [ 11  10   2   1]
 [ 62  16  19  57]]
AUC score:
0.802773414292
('Epoch', 92, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0264 - acc: 0.9944Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 174s - loss: 0.0264 - acc: 0.9944 - val_loss: 1.6694 - val_acc: 0.7816
Performance of model on test set ----------------------------
Accuracy:
0.780651340996
Kappa:
0.572045366671
Confusion matrix:
[[600  37   1   9]
 [ 69 147   1   2]
 [  9  12   2   1]
 [ 51  19  18  66]]
AUC score:
0.765724917333
('Epoch', 93, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0123 - acc: 0.9973Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 176s - loss: 0.0123 - acc: 0.9973 - val_loss: 1.6490 - val_acc: 0.7826
Performance of model on test set ----------------------------
Accuracy:
0.782567049808
Kappa:
0.582368355664
Confusion matrix:
[[591  42   2  12]
 [ 63 152   1   3]
 [  8  13   3   0]
 [ 49  15  19  71]]
AUC score:
0.748779190802
('Epoch', 94, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0103 - acc: 0.9969Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 175s - loss: 0.0103 - acc: 0.9969 - val_loss: 1.7297 - val_acc: 0.7845
Performance of model on test set ----------------------------
Accuracy:
0.784482758621
Kappa:
0.576977033581
Confusion matrix:
[[602  34   2   9]
 [ 71 145   0   3]
 [ 10  10   3   1]
 [ 54  15  16  69]]
AUC score:
0.801109341194
('Epoch', 95, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0181 - acc: 0.9969Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 177s - loss: 0.0181 - acc: 0.9969 - val_loss: 1.5622 - val_acc: 0.7941
Performance of model on test set ----------------------------
Accuracy:
0.794061302682
Kappa:
0.593716966652
Confusion matrix:
[[606  31   1   9]
 [ 79 136   0   4]
 [ 11   8   2   3]
 [ 45  18   6  85]]
AUC score:
0.75119615187
('Epoch', 96, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0080 - acc: 0.9978Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 175s - loss: 0.0080 - acc: 0.9978 - val_loss: 1.7196 - val_acc: 0.7912
Performance of model on test set ----------------------------
Accuracy:
0.791187739464
Kappa:
0.583502000212
Confusion matrix:
[[612  23   1  11]
 [ 82 133   0   4]
 [ 10   7   1   6]
 [ 52  13   9  80]]
AUC score:
0.768659507553
('Epoch', 97, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0069 - acc: 0.9980Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 175s - loss: 0.0069 - acc: 0.9980 - val_loss: 1.8506 - val_acc: 0.7912
Performance of model on test set ----------------------------
Accuracy:
0.790229885057
Kappa:
0.587226621316
Confusion matrix:
[[602  25   2  18]
 [ 76 137   1   5]
 [ 10   7   1   6]
 [ 53   8   8  85]]
AUC score:
0.79457728748
('Epoch', 98, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0170 - acc: 0.9971Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 179s - loss: 0.0170 - acc: 0.9971 - val_loss: 1.7880 - val_acc: 0.7816
Performance of model on test set ----------------------------
Accuracy:
0.780651340996
Kappa:
0.567833146241
Confusion matrix:
[[602  28   5  12]
 [ 76 132   0  11]
 [ 13   7   0   4]
 [ 53   8  12  81]]
AUC score:
0.747646930954
('Epoch', 99, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0207 - acc: 0.9953Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 179s - loss: 0.0207 - acc: 0.9953 - val_loss: 1.8220 - val_acc: 0.7720
Performance of model on test set ----------------------------
Accuracy:
0.771072796935
Kappa:
0.544775193572
Confusion matrix:
[[601  34   3   9]
 [ 83 132   0   4]
 [ 11   9   0   4]
 [ 58  10  14  72]]
AUC score:
0.744823094863
('Epoch', 100, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0121 - acc: 0.9982Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 176s - loss: 0.0121 - acc: 0.9982 - val_loss: 1.8194 - val_acc: 0.7759
Performance of model on test set ----------------------------
Accuracy:
0.772988505747
Kappa:
0.55602288897
Confusion matrix:
[[595  42   1   9]
 [ 69 144   1   5]
 [ 11   9   0   4]
 [ 57  12  17  68]]
AUC score:
0.73066807528
Best validation accuracy:  (51, 0.80268199233716475)
Best validation Kappa:  (51, 0.62723896974299309)
Best validation AUC:  (32, 0.850655660064494)

1-layer (wider) LSTM


In [8]:
# Create the model and parameters for training
numpy.random.seed(seed)

batch = 1
epochs = 100

modelS1 = create_LSTM1_PCA(dummy_y_trainS.shape[1], batch_size = batch, trainShape1=n_components)
print modelS1.summary()

# To save the best model
# serialize model to JSON
modelS1_json = modelS1.to_json()
with open("social.model--1lstmbis.json", "w") as json_file:
    json_file.write(modelS1_json)
filepathS1="social.weights--1lstmbis.best.hdf5"
# Define that the accuracy in cv is monitored, and that weights are stored in a file when max accuracy is achieved
checkpointS1 = ModelCheckpoint(filepathS1, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
callbacks_listS1 = [checkpointS1]

# Fit the model
accs =[]
val_accs =[]
losss =[]
val_losss =[]
kappas = []
aucs = []

# Manually create epochs and reset between sessions
for i in range(epochs):
    # Single epoch. Remember to not shuffle the data!
    print('Epoch', i+1, '/', epochs)
    history = modelS1.fit(trainX, dummy_y_trainS, validation_data=(testX, dummy_y_testS), 
                        nb_epoch=1, batch_size=batch, shuffle=False, 
                        verbose=1, callbacks=callbacks_listS1)
    modelS1.reset_states()
    kappa, auc = printValStats(modelS1, testX, dummy_y_testS, batch=batch)
    accs.append(history.history['acc'][0])
    val_accs.append(history.history['val_acc'][0])
    losss.append(history.history['loss'][0])
    val_losss.append(history.history['val_loss'][0])
    kappas.append(kappa)
    aucs.append(auc)
    
print 'Best validation accuracy: ', get_max_values(val_accs)
print 'Best validation Kappa: ', get_max_values(kappas)
print 'Best validation AUC: ', get_max_values(aucs)
plot_training(accs, val_accs, losss, val_losss, kappas, aucs)


____________________________________________________________________________________________________
Layer (type)                       Output Shape        Param #     Connected to                     
====================================================================================================
lstm_6 (LSTM)                      (1, 400)            801600      lstm_input_3[0][0]               
____________________________________________________________________________________________________
dropout_10 (Dropout)               (1, 400)            0           lstm_6[0][0]                     
____________________________________________________________________________________________________
dense_7 (Dense)                    (1, 50)             20050       dropout_10[0][0]                 
____________________________________________________________________________________________________
dropout_11 (Dropout)               (1, 50)             0           dense_7[0][0]                    
____________________________________________________________________________________________________
dense_8 (Dense)                    (1, 20)             1020        dropout_11[0][0]                 
____________________________________________________________________________________________________
dropout_12 (Dropout)               (1, 20)             0           dense_8[0][0]                    
____________________________________________________________________________________________________
dense_9 (Dense)                    (1, 4)              84          dropout_12[0][0]                 
====================================================================================================
Total params: 822754
____________________________________________________________________________________________________
None
('Epoch', 1, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.7003 - acc: 0.7426Epoch 00000: val_acc improved from -inf to 0.67337, saving model to social.weights--1lstmbis.best.hdf5
4472/4472 [==============================] - 116s - loss: 0.7003 - acc: 0.7426 - val_loss: 0.7722 - val_acc: 0.6734
Performance of model on test set ----------------------------
Accuracy:
0.672413793103
Kappa:
0.314252789675
Confusion matrix:
[[589  18   0  40]
 [ 83  88   0  48]
 [ 19   4   0   1]
 [124   1   4  25]]
AUC score:
0.756560948708
('Epoch', 2, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.5451 - acc: 0.8175Epoch 00000: val_acc improved from 0.67337 to 0.69732, saving model to social.weights--1lstmbis.best.hdf5
4472/4472 [==============================] - 135s - loss: 0.5451 - acc: 0.8175 - val_loss: 0.7968 - val_acc: 0.6973
Performance of model on test set ----------------------------
Accuracy:
0.698275862069
Kappa:
0.399993431784
Confusion matrix:
[[572  17   0  58]
 [ 71 100   0  48]
 [ 18   3   0   3]
 [ 96   1   0  57]]
AUC score:
0.744565988963
('Epoch', 3, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.4465 - acc: 0.8524Epoch 00000: val_acc improved from 0.69732 to 0.70785, saving model to social.weights--1lstmbis.best.hdf5
4472/4472 [==============================] - 135s - loss: 0.4465 - acc: 0.8524 - val_loss: 0.7399 - val_acc: 0.7079
Performance of model on test set ----------------------------
Accuracy:
0.70785440613
Kappa:
0.45643100402
Confusion matrix:
[[552  23   0  72]
 [ 44 110   0  65]
 [ 13   4   0   7]
 [ 71   0   6  77]]
AUC score:
0.786520198919
('Epoch', 4, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.3581 - acc: 0.8859Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 159s - loss: 0.3580 - acc: 0.8860 - val_loss: 0.8737 - val_acc: 0.6954
Performance of model on test set ----------------------------
Accuracy:
0.695402298851
Kappa:
0.469413000014
Confusion matrix:
[[498  57   1  91]
 [ 26 139   1  53]
 [  8   4   1  11]
 [ 59   2   5  88]]
AUC score:
0.762446249082
('Epoch', 5, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.3148 - acc: 0.9034Epoch 00000: val_acc improved from 0.70785 to 0.75096, saving model to social.weights--1lstmbis.best.hdf5
4472/4472 [==============================] - 159s - loss: 0.3147 - acc: 0.9034 - val_loss: 0.8026 - val_acc: 0.7510
Performance of model on test set ----------------------------
Accuracy:
0.750957854406
Kappa:
0.555041194425
Confusion matrix:
[[534  57   1  55]
 [ 36 151   1  31]
 [ 11   7   0   6]
 [ 41   3  11  99]]
AUC score:
0.821551781328
('Epoch', 6, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2753 - acc: 0.9128Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 160s - loss: 0.2752 - acc: 0.9128 - val_loss: 0.8896 - val_acc: 0.7011
Performance of model on test set ----------------------------
Accuracy:
0.7030651341
Kappa:
0.488237721832
Confusion matrix:
[[495  49   0 103]
 [ 38 139   1  41]
 [  8   5   0  11]
 [ 38   5  11 100]]
AUC score:
0.775797251853
('Epoch', 7, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2519 - acc: 0.9208Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 160s - loss: 0.2519 - acc: 0.9208 - val_loss: 0.9241 - val_acc: 0.7414
Performance of model on test set ----------------------------
Accuracy:
0.743295019157
Kappa:
0.518965143747
Confusion matrix:
[[555  73   1  18]
 [ 49 158   0  12]
 [  8  11   1   4]
 [ 66   6  20  62]]
AUC score:
0.775619390777
('Epoch', 8, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.2048 - acc: 0.9387Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 161s - loss: 0.2048 - acc: 0.9387 - val_loss: 0.9090 - val_acc: 0.7385
Performance of model on test set ----------------------------
Accuracy:
0.738505747126
Kappa:
0.507679020236
Confusion matrix:
[[563  42   0  42]
 [ 70 131   1  17]
 [  8   7   0   9]
 [ 49  11  17  77]]
AUC score:
0.793998677319
('Epoch', 9, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1780 - acc: 0.9465Epoch 00000: val_acc improved from 0.75096 to 0.76341, saving model to social.weights--1lstmbis.best.hdf5
4472/4472 [==============================] - 155s - loss: 0.1779 - acc: 0.9466 - val_loss: 0.9042 - val_acc: 0.7634
Performance of model on test set ----------------------------
Accuracy:
0.763409961686
Kappa:
0.549098259468
Confusion matrix:
[[575  46   0  26]
 [ 59 139   0  21]
 [ 11   9   0   4]
 [ 57   2  12  83]]
AUC score:
0.788138750602
('Epoch', 10, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1490 - acc: 0.9568Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 163s - loss: 0.1489 - acc: 0.9568 - val_loss: 1.0894 - val_acc: 0.7490
Performance of model on test set ----------------------------
Accuracy:
0.75
Kappa:
0.503935072666
Confusion matrix:
[[596  19   1  31]
 [ 93 110   0  16]
 [ 12   7   2   3]
 [ 57   3  19  75]]
AUC score:
0.815907899773
('Epoch', 11, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1528 - acc: 0.9526Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 155s - loss: 0.1528 - acc: 0.9526 - val_loss: 1.1385 - val_acc: 0.7404
Performance of model on test set ----------------------------
Accuracy:
0.741379310345
Kappa:
0.472976687052
Confusion matrix:
[[602  14   1  30]
 [112  92   1  14]
 [ 17   3   0   4]
 [ 58   3  13  80]]
AUC score:
0.759060674943
('Epoch', 12, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1355 - acc: 0.9580Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 165s - loss: 0.1355 - acc: 0.9580 - val_loss: 1.0679 - val_acc: 0.7605
Performance of model on test set ----------------------------
Accuracy:
0.759578544061
Kappa:
0.541791399715
Confusion matrix:
[[580  35   6  26]
 [ 68 134   2  15]
 [ 10   7   2   5]
 [ 51   5  21  77]]
AUC score:
0.789882086871
('Epoch', 13, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1166 - acc: 0.9638Epoch 00000: val_acc improved from 0.76341 to 0.77490, saving model to social.weights--1lstmbis.best.hdf5
4472/4472 [==============================] - 162s - loss: 0.1165 - acc: 0.9638 - val_loss: 1.0028 - val_acc: 0.7749
Performance of model on test set ----------------------------
Accuracy:
0.774904214559
Kappa:
0.563617347873
Confusion matrix:
[[588  50   1   8]
 [ 61 153   0   5]
 [ 10  12   2   0]
 [ 60  13  15  66]]
AUC score:
0.787330885194
('Epoch', 14, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.1084 - acc: 0.9651Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 161s - loss: 0.1083 - acc: 0.9651 - val_loss: 1.1584 - val_acc: 0.7500
Performance of model on test set ----------------------------
Accuracy:
0.750957854406
Kappa:
0.543690185405
Confusion matrix:
[[555  49   4  39]
 [ 57 142   0  20]
 [  8  10   0   6]
 [ 37   9  21  87]]
AUC score:
0.76553185908
('Epoch', 15, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0951 - acc: 0.9711Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 161s - loss: 0.0951 - acc: 0.9712 - val_loss: 1.1925 - val_acc: 0.7538
Performance of model on test set ----------------------------
Accuracy:
0.753831417625
Kappa:
0.53967306267
Confusion matrix:
[[570  19   0  58]
 [ 68 122   0  29]
 [ 13   4   0   7]
 [ 36   6  17  95]]
AUC score:
0.755979163242
('Epoch', 16, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0786 - acc: 0.9761Epoch 00000: val_acc improved from 0.77490 to 0.77874, saving model to social.weights--1lstmbis.best.hdf5
4472/4472 [==============================] - 157s - loss: 0.0786 - acc: 0.9761 - val_loss: 1.2029 - val_acc: 0.7787
Performance of model on test set ----------------------------
Accuracy:
0.778735632184
Kappa:
0.554062300065
Confusion matrix:
[[611  27   0   9]
 [ 92 123   0   4]
 [ 16   6   1   1]
 [ 52   7  17  78]]
AUC score:
0.765887226739
('Epoch', 17, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0912 - acc: 0.9734Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 160s - loss: 0.0911 - acc: 0.9734 - val_loss: 1.1323 - val_acc: 0.7471
Performance of model on test set ----------------------------
Accuracy:
0.747126436782
Kappa:
0.534822961129
Confusion matrix:
[[551  38   0  58]
 [ 53 145   2  19]
 [ 12   6   2   4]
 [ 45  13  14  82]]
AUC score:
0.796564159324
('Epoch', 18, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0725 - acc: 0.9783Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 164s - loss: 0.0725 - acc: 0.9783 - val_loss: 1.1995 - val_acc: 0.7596
Performance of model on test set ----------------------------
Accuracy:
0.760536398467
Kappa:
0.554253802078
Confusion matrix:
[[565  36   2  44]
 [ 61 131   3  24]
 [ 14   4   3   3]
 [ 40   4  15  95]]
AUC score:
0.791473584137
('Epoch', 19, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0739 - acc: 0.9792Epoch 00000: val_acc improved from 0.77874 to 0.78161, saving model to social.weights--1lstmbis.best.hdf5
4472/4472 [==============================] - 159s - loss: 0.0739 - acc: 0.9792 - val_loss: 1.0977 - val_acc: 0.7816
Performance of model on test set ----------------------------
Accuracy:
0.782567049808
Kappa:
0.577736123386
Confusion matrix:
[[595  31   0  21]
 [ 68 137   2  12]
 [ 15   4   2   3]
 [ 48  12  11  83]]
AUC score:
0.818198096254
('Epoch', 20, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0678 - acc: 0.9808Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 161s - loss: 0.0678 - acc: 0.9808 - val_loss: 1.2065 - val_acc: 0.7653
Performance of model on test set ----------------------------
Accuracy:
0.765325670498
Kappa:
0.547680309823
Confusion matrix:
[[584  42   1  20]
 [ 67 139   0  13]
 [ 12   8   2   2]
 [ 52  15  13  74]]
AUC score:
0.829106067408
('Epoch', 21, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0517 - acc: 0.9843Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 176s - loss: 0.0517 - acc: 0.9843 - val_loss: 1.1485 - val_acc: 0.7807
Performance of model on test set ----------------------------
Accuracy:
0.781609195402
Kappa:
0.584495745145
Confusion matrix:
[[579  50   1  17]
 [ 52 158   0   9]
 [ 10  12   2   0]
 [ 54  14   9  77]]
AUC score:
0.815023929052
('Epoch', 22, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0578 - acc: 0.9801Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 171s - loss: 0.0578 - acc: 0.9801 - val_loss: 1.2349 - val_acc: 0.7778
Performance of model on test set ----------------------------
Accuracy:
0.778735632184
Kappa:
0.552848513166
Confusion matrix:
[[609  27   1  10]
 [ 80 130   0   9]
 [ 18   5   0   1]
 [ 65   4  11  74]]
AUC score:
0.805724575696
('Epoch', 23, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0518 - acc: 0.9841Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 164s - loss: 0.0518 - acc: 0.9841 - val_loss: 1.2892 - val_acc: 0.7682
Performance of model on test set ----------------------------
Accuracy:
0.768199233716
Kappa:
0.537561843471
Confusion matrix:
[[598  30   1  18]
 [ 76 132   0  11]
 [ 13   5   2   4]
 [ 70   5   9  70]]
AUC score:
0.811694546466
('Epoch', 24, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0438 - acc: 0.9886Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 154s - loss: 0.0438 - acc: 0.9886 - val_loss: 1.3982 - val_acc: 0.7625
Performance of model on test set ----------------------------
Accuracy:
0.761494252874
Kappa:
0.530190377393
Confusion matrix:
[[595  25   0  27]
 [ 77 122   0  20]
 [ 16   3   2   3]
 [ 58   6  14  76]]
AUC score:
0.806548883198
('Epoch', 25, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0357 - acc: 0.9875Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 159s - loss: 0.0357 - acc: 0.9875 - val_loss: 1.4123 - val_acc: 0.7615
Performance of model on test set ----------------------------
Accuracy:
0.761494252874
Kappa:
0.548602863037
Confusion matrix:
[[580  44   0  23]
 [ 54 149   0  16]
 [ 10   9   1   4]
 [ 52  10  27  65]]
AUC score:
0.773331646424
('Epoch', 26, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0466 - acc: 0.9870Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 162s - loss: 0.0466 - acc: 0.9870 - val_loss: 1.3295 - val_acc: 0.7634
Performance of model on test set ----------------------------
Accuracy:
0.763409961686
Kappa:
0.541156876561
Confusion matrix:
[[584  41   0  22]
 [ 68 138   1  12]
 [  7   9   3   5]
 [ 64   7  11  72]]
AUC score:
0.806644672206
('Epoch', 27, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0376 - acc: 0.9886Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 165s - loss: 0.0376 - acc: 0.9886 - val_loss: 1.4383 - val_acc: 0.7596
Performance of model on test set ----------------------------
Accuracy:
0.759578544061
Kappa:
0.528425583835
Confusion matrix:
[[590  40   1  16]
 [ 72 135   0  12]
 [ 11   8   2   3]
 [ 64   9  15  66]]
AUC score:
0.796339467796
('Epoch', 28, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0387 - acc: 0.9888Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 164s - loss: 0.0387 - acc: 0.9888 - val_loss: 1.4844 - val_acc: 0.7653
Performance of model on test set ----------------------------
Accuracy:
0.765325670498
Kappa:
0.537148627081
Confusion matrix:
[[596  36   3  12]
 [ 74 132   1  12]
 [  9   8   3   4]
 [ 65  10  11  68]]
AUC score:
0.81090257353
('Epoch', 29, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0374 - acc: 0.9893Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 163s - loss: 0.0374 - acc: 0.9893 - val_loss: 1.5268 - val_acc: 0.7567
Performance of model on test set ----------------------------
Accuracy:
0.756704980843
Kappa:
0.533993276384
Confusion matrix:
[[575  40   0  32]
 [ 61 139   0  19]
 [  9   8   1   6]
 [ 62   9   8  75]]
AUC score:
0.774397184061
('Epoch', 30, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0259 - acc: 0.9924Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 165s - loss: 0.0259 - acc: 0.9924 - val_loss: 1.5792 - val_acc: 0.7519
Performance of model on test set ----------------------------
Accuracy:
0.751915708812
Kappa:
0.515567809865
Confusion matrix:
[[584  34   0  29]
 [ 73 128   0  18]
 [ 11   8   2   3]
 [ 65   6  12  71]]
AUC score:
0.778765668776
('Epoch', 31, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0320 - acc: 0.9911Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 166s - loss: 0.0320 - acc: 0.9911 - val_loss: 1.5283 - val_acc: 0.7692
Performance of model on test set ----------------------------
Accuracy:
0.769157088123
Kappa:
0.540747933764
Confusion matrix:
[[597  31   0  19]
 [ 79 131   1   8]
 [  9  10   2   3]
 [ 68   5   8  73]]
AUC score:
0.770087474871
('Epoch', 32, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0212 - acc: 0.9942Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 168s - loss: 0.0212 - acc: 0.9942 - val_loss: 1.4537 - val_acc: 0.7759
Performance of model on test set ----------------------------
Accuracy:
0.775862068966
Kappa:
0.559312494588
Confusion matrix:
[[591  41   1  14]
 [ 67 144   1   7]
 [ 10  10   3   1]
 [ 68   9   5  72]]
AUC score:
0.795659602329
('Epoch', 33, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0244 - acc: 0.9931Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 168s - loss: 0.0244 - acc: 0.9931 - val_loss: 1.4736 - val_acc: 0.7720
Performance of model on test set ----------------------------
Accuracy:
0.772030651341
Kappa:
0.565544590464
Confusion matrix:
[[573  52   1  21]
 [ 57 150   0  12]
 [  8  11   2   3]
 [ 60   7   6  81]]
AUC score:
0.795522320509
('Epoch', 34, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0237 - acc: 0.9919Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 168s - loss: 0.0237 - acc: 0.9919 - val_loss: 1.4755 - val_acc: 0.7759
Performance of model on test set ----------------------------
Accuracy:
0.775862068966
Kappa:
0.564883008074
Confusion matrix:
[[588  43   1  15]
 [ 64 145   0  10]
 [ 11   9   2   2]
 [ 59  10  10  75]]
AUC score:
0.795129962817
('Epoch', 35, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0155 - acc: 0.9951Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 168s - loss: 0.0155 - acc: 0.9951 - val_loss: 1.5930 - val_acc: 0.7739
Performance of model on test set ----------------------------
Accuracy:
0.773946360153
Kappa:
0.541558282072
Confusion matrix:
[[607  34   0   6]
 [ 81 134   1   3]
 [ 15   6   2   1]
 [ 71   8  10  65]]
AUC score:
0.812868035658
('Epoch', 36, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0234 - acc: 0.9926Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 170s - loss: 0.0234 - acc: 0.9926 - val_loss: 1.5279 - val_acc: 0.7749
Performance of model on test set ----------------------------
Accuracy:
0.774904214559
Kappa:
0.565263616743
Confusion matrix:
[[584  45   0  18]
 [ 60 148   0  11]
 [ 11   9   3   1]
 [ 61   8  11  74]]
AUC score:
0.818930360697
('Epoch', 37, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0315 - acc: 0.9924Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 167s - loss: 0.0315 - acc: 0.9924 - val_loss: 1.4719 - val_acc: 0.7759
Performance of model on test set ----------------------------
Accuracy:
0.775862068966
Kappa:
0.561408327813
Confusion matrix:
[[588  42   0  17]
 [ 74 138   0   7]
 [ 15   5   3   1]
 [ 56   7  10  81]]
AUC score:
0.823194702356
('Epoch', 38, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0257 - acc: 0.9926Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 179s - loss: 0.0257 - acc: 0.9926 - val_loss: 1.5362 - val_acc: 0.7739
Performance of model on test set ----------------------------
Accuracy:
0.773946360153
Kappa:
0.572097708386
Confusion matrix:
[[573  54   0  20]
 [ 51 159   0   9]
 [  9  10   2   3]
 [ 57  10  13  74]]
AUC score:
0.774296432221
('Epoch', 39, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0294 - acc: 0.9917Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 182s - loss: 0.0294 - acc: 0.9917 - val_loss: 1.5435 - val_acc: 0.7682
Performance of model on test set ----------------------------
Accuracy:
0.768199233716
Kappa:
0.539288859875
Confusion matrix:
[[600  42   0   5]
 [ 73 136   0  10]
 [ 15   8   1   0]
 [ 63  10  16  65]]
AUC score:
0.780648311379
('Epoch', 40, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0249 - acc: 0.9926Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 179s - loss: 0.0249 - acc: 0.9926 - val_loss: 1.4784 - val_acc: 0.7672
Performance of model on test set ----------------------------
Accuracy:
0.76724137931
Kappa:
0.539889584527
Confusion matrix:
[[595  40   0  12]
 [ 67 136   1  15]
 [ 17   3   1   3]
 [ 67   5  13  69]]
AUC score:
0.838466076765
('Epoch', 41, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0192 - acc: 0.9962Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 183s - loss: 0.0192 - acc: 0.9962 - val_loss: 1.6417 - val_acc: 0.7625
Performance of model on test set ----------------------------
Accuracy:
0.763409961686
Kappa:
0.519764005207
Confusion matrix:
[[608  28   0  11]
 [ 86 124   0   9]
 [ 12   7   1   4]
 [ 72   4  14  64]]
AUC score:
0.79438679447
('Epoch', 42, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0122 - acc: 0.9958Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 187s - loss: 0.0122 - acc: 0.9958 - val_loss: 1.7576 - val_acc: 0.7577
Performance of model on test set ----------------------------
Accuracy:
0.757662835249
Kappa:
0.522048951024
Confusion matrix:
[[593  21   0  33]
 [ 74 120   0  25]
 [ 13   6   2   3]
 [ 67   2   9  76]]
AUC score:
0.787221656646
('Epoch', 43, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0155 - acc: 0.9953Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 184s - loss: 0.0155 - acc: 0.9953 - val_loss: 1.7574 - val_acc: 0.7625
Performance of model on test set ----------------------------
Accuracy:
0.763409961686
Kappa:
0.532062844554
Confusion matrix:
[[594  29   0  24]
 [ 75 128   0  16]
 [ 11   8   2   3]
 [ 67   6   8  73]]
AUC score:
0.791987829422
('Epoch', 44, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0273 - acc: 0.9928Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 185s - loss: 0.0273 - acc: 0.9928 - val_loss: 1.5533 - val_acc: 0.7739
Performance of model on test set ----------------------------
Accuracy:
0.773946360153
Kappa:
0.554483481909
Confusion matrix:
[[592  34   0  21]
 [ 66 143   0  10]
 [ 12   9   2   1]
 [ 70   6   7  71]]
AUC score:
0.793431044254
('Epoch', 45, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0147 - acc: 0.9953Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 188s - loss: 0.0147 - acc: 0.9953 - val_loss: 1.6527 - val_acc: 0.7510
Performance of model on test set ----------------------------
Accuracy:
0.750957854406
Kappa:
0.528741818434
Confusion matrix:
[[562  47   0  38]
 [ 55 149   1  14]
 [  9   9   2   4]
 [ 64  13   6  71]]
AUC score:
0.778150691628
('Epoch', 46, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0185 - acc: 0.9942Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 190s - loss: 0.0185 - acc: 0.9942 - val_loss: 1.7957 - val_acc: 0.7692
Performance of model on test set ----------------------------
Accuracy:
0.769157088123
Kappa:
0.535869041887
Confusion matrix:
[[603  30   0  14]
 [ 93 120   0   6]
 [ 12   7   1   4]
 [ 58   8   9  79]]
AUC score:
0.798454712623
('Epoch', 47, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0177 - acc: 0.9953Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 181s - loss: 0.0177 - acc: 0.9953 - val_loss: 1.6226 - val_acc: 0.7653
Performance of model on test set ----------------------------
Accuracy:
0.765325670498
Kappa:
0.526476267349
Confusion matrix:
[[606  35   0   6]
 [ 83 133   0   3]
 [ 13   7   2   2]
 [ 67  13  16  58]]
AUC score:
0.819793793644
('Epoch', 48, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0161 - acc: 0.9962Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 151s - loss: 0.0161 - acc: 0.9962 - val_loss: 1.6681 - val_acc: 0.7692
Performance of model on test set ----------------------------
Accuracy:
0.769157088123
Kappa:
0.539308314291
Confusion matrix:
[[599  33   1  14]
 [ 86 127   0   6]
 [ 15   7   1   1]
 [ 57  10  11  76]]
AUC score:
0.788989870811
('Epoch', 49, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0082 - acc: 0.9971Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 152s - loss: 0.0082 - acc: 0.9971 - val_loss: 1.7566 - val_acc: 0.7720
Performance of model on test set ----------------------------
Accuracy:
0.772988505747
Kappa:
0.558234494875
Confusion matrix:
[[591  38   0  18]
 [ 70 139   0  10]
 [ 16   6   1   1]
 [ 50  13  15  76]]
AUC score:
0.79457065569
('Epoch', 50, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0109 - acc: 0.9971Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 153s - loss: 0.0109 - acc: 0.9971 - val_loss: 1.9237 - val_acc: 0.7711
Performance of model on test set ----------------------------
Accuracy:
0.771072796935
Kappa:
0.542927276058
Confusion matrix:
[[605  29   0  13]
 [ 81 135   0   3]
 [ 13   7   1   3]
 [ 61   7  22  64]]
AUC score:
0.771586253824
('Epoch', 51, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0094 - acc: 0.9980Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 153s - loss: 0.0094 - acc: 0.9980 - val_loss: 1.9902 - val_acc: 0.7720
Performance of model on test set ----------------------------
Accuracy:
0.772988505747
Kappa:
0.542158642397
Confusion matrix:
[[605  32   1   9]
 [ 78 135   0   6]
 [ 14   8   1   1]
 [ 72   3  13  66]]
AUC score:
0.772853021611
('Epoch', 52, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0224 - acc: 0.9946Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 153s - loss: 0.0223 - acc: 0.9946 - val_loss: 1.8513 - val_acc: 0.7672
Performance of model on test set ----------------------------
Accuracy:
0.768199233716
Kappa:
0.545940933214
Confusion matrix:
[[593  25   1  28]
 [ 72 130   0  17]
 [ 12   7   1   4]
 [ 61   3  12  78]]
AUC score:
0.728702901774
('Epoch', 53, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0108 - acc: 0.9964Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 153s - loss: 0.0108 - acc: 0.9964 - val_loss: 1.8715 - val_acc: 0.7759
Performance of model on test set ----------------------------
Accuracy:
0.776819923372
Kappa:
0.539834057864
Confusion matrix:
[[617  20   1   9]
 [ 88 127   0   4]
 [ 15   7   1   1]
 [ 74   6   8  66]]
AUC score:
0.767265914127
('Epoch', 54, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0138 - acc: 0.9969Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 162s - loss: 0.0138 - acc: 0.9969 - val_loss: 1.7414 - val_acc: 0.7778
Performance of model on test set ----------------------------
Accuracy:
0.778735632184
Kappa:
0.55060040698
Confusion matrix:
[[613  24   0  10]
 [ 86 129   0   4]
 [ 12   9   1   2]
 [ 67   4  13  70]]
AUC score:
0.779714259769
('Epoch', 55, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0040 - acc: 0.9991Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 164s - loss: 0.0040 - acc: 0.9991 - val_loss: 1.9963 - val_acc: 0.7663
Performance of model on test set ----------------------------
Accuracy:
0.76724137931
Kappa:
0.534668048461
Confusion matrix:
[[601  24   0  22]
 [ 80 130   0   9]
 [ 11   7   1   5]
 [ 68   6  11  69]]
AUC score:
0.755331202031
('Epoch', 56, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0087 - acc: 0.9982Epoch 00000: val_acc improved from 0.78161 to 0.78448, saving model to social.weights--1lstmbis.best.hdf5
4472/4472 [==============================] - 164s - loss: 0.0087 - acc: 0.9982 - val_loss: 1.9788 - val_acc: 0.7845
Performance of model on test set ----------------------------
Accuracy:
0.786398467433
Kappa:
0.581158124448
Confusion matrix:
[[604  24   0  19]
 [ 60 144   1  14]
 [  9   8   1   6]
 [ 63   9  10  72]]
AUC score:
0.759208943535
('Epoch', 57, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0111 - acc: 0.9978Epoch 00000: val_acc improved from 0.78448 to 0.78544, saving model to social.weights--1lstmbis.best.hdf5
4472/4472 [==============================] - 163s - loss: 0.0111 - acc: 0.9978 - val_loss: 1.9483 - val_acc: 0.7854
Performance of model on test set ----------------------------
Accuracy:
0.786398467433
Kappa:
0.577816947382
Confusion matrix:
[[601  33   0  13]
 [ 71 139   0   9]
 [ 12   8   1   3]
 [ 60   6   8  80]]
AUC score:
0.796197920131
('Epoch', 58, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0162 - acc: 0.9962Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 163s - loss: 0.0162 - acc: 0.9962 - val_loss: 1.8883 - val_acc: 0.7797
Performance of model on test set ----------------------------
Accuracy:
0.780651340996
Kappa:
0.566653434766
Confusion matrix:
[[602  31   0  14]
 [ 73 135   0  11]
 [ 13   5   1   5]
 [ 58   6  13  77]]
AUC score:
0.814736327888
('Epoch', 59, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0078 - acc: 0.9982Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 165s - loss: 0.0078 - acc: 0.9982 - val_loss: 1.8318 - val_acc: 0.7854
Performance of model on test set ----------------------------
Accuracy:
0.785440613027
Kappa:
0.57587760343
Confusion matrix:
[[604  30   0  13]
 [ 78 135   1   5]
 [ 16   5   2   1]
 [ 51   5  19  79]]
AUC score:
0.803840013455
('Epoch', 60, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0111 - acc: 0.9973Epoch 00000: val_acc improved from 0.78544 to 0.79502, saving model to social.weights--1lstmbis.best.hdf5
4472/4472 [==============================] - 164s - loss: 0.0111 - acc: 0.9973 - val_loss: 1.8957 - val_acc: 0.7950
Performance of model on test set ----------------------------
Accuracy:
0.795977011494
Kappa:
0.597874833632
Confusion matrix:
[[605  34   0   8]
 [ 65 149   0   5]
 [ 14   7   1   2]
 [ 57   7  14  76]]
AUC score:
0.802856970347
('Epoch', 61, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0191 - acc: 0.9955Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 164s - loss: 0.0191 - acc: 0.9955 - val_loss: 1.7100 - val_acc: 0.7874
Performance of model on test set ----------------------------
Accuracy:
0.787356321839
Kappa:
0.581141916351
Confusion matrix:
[[602  24   0  21]
 [ 72 143   0   4]
 [ 15   5   1   3]
 [ 55   5  18  76]]
AUC score:
0.792269573422
('Epoch', 62, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0128 - acc: 0.9958Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 163s - loss: 0.0128 - acc: 0.9958 - val_loss: 1.7269 - val_acc: 0.7854
Performance of model on test set ----------------------------
Accuracy:
0.786398467433
Kappa:
0.573594243086
Confusion matrix:
[[608  30   0   9]
 [ 72 143   0   4]
 [ 14   6   1   3]
 [ 62  10  13  69]]
AUC score:
0.797373782144
('Epoch', 63, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0109 - acc: 0.9987Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 164s - loss: 0.0109 - acc: 0.9987 - val_loss: 1.8713 - val_acc: 0.7826
Performance of model on test set ----------------------------
Accuracy:
0.783524904215
Kappa:
0.573511681504
Confusion matrix:
[[601  34   1  11]
 [ 70 142   0   7]
 [ 12   9   1   2]
 [ 57  12  11  74]]
AUC score:
0.790058558864
('Epoch', 64, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0195 - acc: 0.9955Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 163s - loss: 0.0195 - acc: 0.9955 - val_loss: 1.8353 - val_acc: 0.7787
Performance of model on test set ----------------------------
Accuracy:
0.77969348659
Kappa:
0.569437446319
Confusion matrix:
[[600  33   3  11]
 [ 62 147   0  10]
 [ 11  10   1   2]
 [ 59  13  16  66]]
AUC score:
0.77856995443
('Epoch', 65, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0090 - acc: 0.9973Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 164s - loss: 0.0090 - acc: 0.9973 - val_loss: 1.7135 - val_acc: 0.7807
Performance of model on test set ----------------------------
Accuracy:
0.782567049808
Kappa:
0.572269379254
Confusion matrix:
[[600  34   1  12]
 [ 73 137   3   6]
 [ 15   6   1   2]
 [ 54   6  15  79]]
AUC score:
0.775969706549
('Epoch', 66, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0186 - acc: 0.9958Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 164s - loss: 0.0186 - acc: 0.9958 - val_loss: 1.7041 - val_acc: 0.7759
Performance of model on test set ----------------------------
Accuracy:
0.776819923372
Kappa:
0.561555640069
Confusion matrix:
[[596  42   1   8]
 [ 68 144   3   4]
 [ 12  10   1   1]
 [ 60  13  11  70]]
AUC score:
0.783759807349
('Epoch', 67, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0052 - acc: 0.9980Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 166s - loss: 0.0052 - acc: 0.9980 - val_loss: 1.6760 - val_acc: 0.7778
Performance of model on test set ----------------------------
Accuracy:
0.77969348659
Kappa:
0.574933616569
Confusion matrix:
[[590  46   0  11]
 [ 56 149   3  11]
 [ 12  10   1   1]
 [ 57  10  13  74]]
AUC score:
0.782325112698
('Epoch', 68, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0088 - acc: 0.9987Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 163s - loss: 0.0088 - acc: 0.9987 - val_loss: 1.7081 - val_acc: 0.7874
Performance of model on test set ----------------------------
Accuracy:
0.789272030651
Kappa:
0.588233606792
Confusion matrix:
[[602  30   1  14]
 [ 60 145   1  13]
 [ 14   9   0   1]
 [ 55  11  11  77]]
AUC score:
0.798717542738
('Epoch', 69, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0128 - acc: 0.9969Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 155s - loss: 0.0128 - acc: 0.9969 - val_loss: 1.7655 - val_acc: 0.7845
Performance of model on test set ----------------------------
Accuracy:
0.786398467433
Kappa:
0.574998493951
Confusion matrix:
[[607  30   1   9]
 [ 77 137   2   3]
 [ 14   8   2   0]
 [ 55  13  11  75]]
AUC score:
0.789730961238
('Epoch', 70, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0095 - acc: 0.9971Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 156s - loss: 0.0095 - acc: 0.9971 - val_loss: 1.9179 - val_acc: 0.7701
Performance of model on test set ----------------------------
Accuracy:
0.772030651341
Kappa:
0.558331674298
Confusion matrix:
[[588  48   1  10]
 [ 58 151   3   7]
 [ 15   9   0   0]
 [ 57  18  12  67]]
AUC score:
0.761921226143
('Epoch', 71, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0064 - acc: 0.9982Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 158s - loss: 0.0064 - acc: 0.9982 - val_loss: 1.9085 - val_acc: 0.7797
Performance of model on test set ----------------------------
Accuracy:
0.781609195402
Kappa:
0.572882779262
Confusion matrix:
[[598  32   1  16]
 [ 58 151   1   9]
 [ 15   9   0   0]
 [ 61  11  15  67]]
AUC score:
0.771315163656
('Epoch', 72, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0030 - acc: 0.9989Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 157s - loss: 0.0030 - acc: 0.9989 - val_loss: 1.9739 - val_acc: 0.7797
Performance of model on test set ----------------------------
Accuracy:
0.780651340996
Kappa:
0.576208573819
Confusion matrix:
[[589  36   0  22]
 [ 61 144   1  13]
 [ 15   7   1   1]
 [ 53   9  11  81]]
AUC score:
0.786227992113
('Epoch', 73, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0128 - acc: 0.9973Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 158s - loss: 0.0128 - acc: 0.9973 - val_loss: 1.8304 - val_acc: 0.7778
Performance of model on test set ----------------------------
Accuracy:
0.777777777778
Kappa:
0.571031597739
Confusion matrix:
[[589  38   0  20]
 [ 61 145   2  11]
 [ 11  11   1   1]
 [ 56   8  13  77]]
AUC score:
0.785706532623
('Epoch', 74, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0067 - acc: 0.9980Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 158s - loss: 0.0067 - acc: 0.9980 - val_loss: 1.9941 - val_acc: 0.7701
Performance of model on test set ----------------------------
Accuracy:
0.770114942529
Kappa:
0.543173029414
Confusion matrix:
[[600  27   0  20]
 [ 70 137   1  11]
 [ 13   9   0   2]
 [ 69   6  12  67]]
AUC score:
0.782964317305
('Epoch', 75, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0070 - acc: 0.9978Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 159s - loss: 0.0070 - acc: 0.9978 - val_loss: 1.9822 - val_acc: 0.7711
Performance of model on test set ----------------------------
Accuracy:
0.771072796935
Kappa:
0.557783137996
Confusion matrix:
[[587  37   0  23]
 [ 56 152   0  11]
 [ 13   9   1   1]
 [ 61  12  16  65]]
AUC score:
0.769204508345
('Epoch', 76, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0054 - acc: 0.9991Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 159s - loss: 0.0054 - acc: 0.9991 - val_loss: 1.9531 - val_acc: 0.7711
Performance of model on test set ----------------------------
Accuracy:
0.771072796935
Kappa:
0.551430297277
Confusion matrix:
[[591  38   0  18]
 [ 65 144   0  10]
 [ 12  10   1   1]
 [ 66   6  13  69]]
AUC score:
0.769914339641
('Epoch', 77, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0156 - acc: 0.9960Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 159s - loss: 0.0156 - acc: 0.9960 - val_loss: 1.9212 - val_acc: 0.7711
Performance of model on test set ----------------------------
Accuracy:
0.771072796935
Kappa:
0.544243867779
Confusion matrix:
[[599  35   0  13]
 [ 73 138   1   7]
 [ 12  11   1   0]
 [ 67  12   8  67]]
AUC score:
0.799611120805
('Epoch', 78, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0091 - acc: 0.9978Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 155s - loss: 0.0091 - acc: 0.9978 - val_loss: 1.9635 - val_acc: 0.7682
Performance of model on test set ----------------------------
Accuracy:
0.768199233716
Kappa:
0.546867685752
Confusion matrix:
[[592  35   1  19]
 [ 64 141   2  12]
 [ 13  10   1   0]
 [ 63  11  12  68]]
AUC score:
0.784751734631
('Epoch', 79, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0036 - acc: 0.9989Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 158s - loss: 0.0036 - acc: 0.9989 - val_loss: 1.8824 - val_acc: 0.7874
Performance of model on test set ----------------------------
Accuracy:
0.787356321839
Kappa:
0.594517000971
Confusion matrix:
[[590  34   0  23]
 [ 56 144   3  16]
 [ 12   8   3   1]
 [ 47   8  14  85]]
AUC score:
0.81044236686
('Epoch', 80, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0070 - acc: 0.9984Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 161s - loss: 0.0070 - acc: 0.9984 - val_loss: 1.9998 - val_acc: 0.7787
Performance of model on test set ----------------------------
Accuracy:
0.77969348659
Kappa:
0.576752031897
Confusion matrix:
[[588  37   1  21]
 [ 57 148   1  13]
 [ 13  10   1   0]
 [ 53  11  13  77]]
AUC score:
0.804572657837
('Epoch', 81, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0053 - acc: 0.9980Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 160s - loss: 0.0053 - acc: 0.9980 - val_loss: 2.0328 - val_acc: 0.7749
Performance of model on test set ----------------------------
Accuracy:
0.775862068966
Kappa:
0.566347442509
Confusion matrix:
[[594  34   1  18]
 [ 61 145   1  12]
 [ 11   9   1   3]
 [ 54  15  15  70]]
AUC score:
0.790392343119
('Epoch', 82, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0059 - acc: 0.9989Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 162s - loss: 0.0059 - acc: 0.9989 - val_loss: 2.0441 - val_acc: 0.7835
Performance of model on test set ----------------------------
Accuracy:
0.785440613027
Kappa:
0.579624017171
Confusion matrix:
[[604  29   0  14]
 [ 65 143   0  11]
 [ 15   7   0   2]
 [ 52  11  18  73]]
AUC score:
0.798688160029
('Epoch', 83, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0082 - acc: 0.9982Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 162s - loss: 0.0082 - acc: 0.9982 - val_loss: 2.0054 - val_acc: 0.7739
Performance of model on test set ----------------------------
Accuracy:
0.774904214559
Kappa:
0.572913964812
Confusion matrix:
[[583  41   1  22]
 [ 57 149   1  12]
 [ 13   8   0   3]
 [ 45  11  21  77]]
AUC score:
0.787288199133
('Epoch', 84, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0122 - acc: 0.9973Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 161s - loss: 0.0122 - acc: 0.9973 - val_loss: 1.8862 - val_acc: 0.7768
Performance of model on test set ----------------------------
Accuracy:
0.776819923372
Kappa:
0.572622783191
Confusion matrix:
[[590  33   0  24]
 [ 65 140   3  11]
 [ 11   8   1   4]
 [ 46   7  21  80]]
AUC score:
0.792332525841
('Epoch', 85, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0065 - acc: 0.9984Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 162s - loss: 0.0065 - acc: 0.9984 - val_loss: 1.9416 - val_acc: 0.7692
Performance of model on test set ----------------------------
Accuracy:
0.769157088123
Kappa:
0.550208356052
Confusion matrix:
[[597  35   0  15]
 [ 66 142   3   8]
 [ 11  10   1   2]
 [ 58   8  25  63]]
AUC score:
0.78582428456
('Epoch', 86, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0084 - acc: 0.9980Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 163s - loss: 0.0084 - acc: 0.9980 - val_loss: 2.0884 - val_acc: 0.7596
Performance of model on test set ----------------------------
Accuracy:
0.760536398467
Kappa:
0.53846235462
Confusion matrix:
[[585  41   0  21]
 [ 65 143   4   7]
 [ 11  10   2   1]
 [ 57  11  22  64]]
AUC score:
0.758500857184
('Epoch', 87, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0102 - acc: 0.9975Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 162s - loss: 0.0102 - acc: 0.9975 - val_loss: 1.9097 - val_acc: 0.7701
Performance of model on test set ----------------------------
Accuracy:
0.772030651341
Kappa:
0.554049542872
Confusion matrix:
[[597  32   1  17]
 [ 66 139   4  10]
 [ 12   9   2   1]
 [ 62   5  19  68]]
AUC score:
0.765812261547
('Epoch', 88, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0054 - acc: 0.9991Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 164s - loss: 0.0054 - acc: 0.9991 - val_loss: 2.1373 - val_acc: 0.7586
Performance of model on test set ----------------------------
Accuracy:
0.760536398467
Kappa:
0.533465369188
Confusion matrix:
[[591  29   0  27]
 [ 63 137   3  16]
 [ 12   7   2   3]
 [ 66   7  17  64]]
AUC score:
0.793914277571
('Epoch', 89, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0068 - acc: 0.9989Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 163s - loss: 0.0067 - acc: 0.9989 - val_loss: 2.1181 - val_acc: 0.7682
Performance of model on test set ----------------------------
Accuracy:
0.770114942529
Kappa:
0.554962709299
Confusion matrix:
[[592  34   0  21]
 [ 54 148   5  12]
 [ 12  11   1   0]
 [ 64  10  17  63]]
AUC score:
0.780373929057
('Epoch', 90, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0079 - acc: 0.9978Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 164s - loss: 0.0079 - acc: 0.9978 - val_loss: 2.0787 - val_acc: 0.7711
Performance of model on test set ----------------------------
Accuracy:
0.772030651341
Kappa:
0.56686539065
Confusion matrix:
[[582  40   1  24]
 [ 49 153   6  11]
 [ 12  10   1   1]
 [ 57   9  18  70]]
AUC score:
0.775827852236
('Epoch', 91, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0122 - acc: 0.9971Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 165s - loss: 0.0122 - acc: 0.9971 - val_loss: 2.0246 - val_acc: 0.7692
Performance of model on test set ----------------------------
Accuracy:
0.771072796935
Kappa:
0.557663977365
Confusion matrix:
[[594  38   1  14]
 [ 56 146   5  12]
 [ 10  12   1   1]
 [ 61   8  21  64]]
AUC score:
0.772573094916
('Epoch', 92, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0018 - acc: 0.9993Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 162s - loss: 0.0018 - acc: 0.9993 - val_loss: 2.2245 - val_acc: 0.7567
Performance of model on test set ----------------------------
Accuracy:
0.757662835249
Kappa:
0.5340132634
Confusion matrix:
[[585  39   0  23]
 [ 60 141   2  16]
 [  9  12   1   2]
 [ 60  11  19  64]]
AUC score:
0.775660370006
('Epoch', 93, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0028 - acc: 0.9993Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 162s - loss: 0.0028 - acc: 0.9993 - val_loss: 2.2711 - val_acc: 0.7653
Performance of model on test set ----------------------------
Accuracy:
0.766283524904
Kappa:
0.560458218373
Confusion matrix:
[[577  46   1  23]
 [ 54 150   2  13]
 [  8  13   2   1]
 [ 48  13  22  71]]
AUC score:
0.751099342303
('Epoch', 94, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0015 - acc: 0.9998Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 164s - loss: 0.0015 - acc: 0.9998 - val_loss: 2.3002 - val_acc: 0.7749
Performance of model on test set ----------------------------
Accuracy:
0.775862068966
Kappa:
0.572364079395
Confusion matrix:
[[590  38   0  19]
 [ 51 153   2  13]
 [ 10  12   0   2]
 [ 52  15  20  67]]
AUC score:
0.793055787974
('Epoch', 95, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0031 - acc: 0.9989Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 165s - loss: 0.0031 - acc: 0.9989 - val_loss: 2.5763 - val_acc: 0.7682
Performance of model on test set ----------------------------
Accuracy:
0.768199233716
Kappa:
0.549937473502
Confusion matrix:
[[594  36   0  17]
 [ 66 142   2   9]
 [ 12  11   1   0]
 [ 54  13  22  65]]
AUC score:
0.763012717702
('Epoch', 96, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0081 - acc: 0.9989Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 167s - loss: 0.0081 - acc: 0.9989 - val_loss: 2.6266 - val_acc: 0.7644
Performance of model on test set ----------------------------
Accuracy:
0.764367816092
Kappa:
0.539413416738
Confusion matrix:
[[599  30   0  18]
 [ 70 131   3  15]
 [ 10  10   3   1]
 [ 57  13  19  65]]
AUC score:
0.757554057019
('Epoch', 97, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0096 - acc: 0.9984Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 164s - loss: 0.0096 - acc: 0.9984 - val_loss: 2.3792 - val_acc: 0.7653
Performance of model on test set ----------------------------
Accuracy:
0.766283524904
Kappa:
0.546449828986
Confusion matrix:
[[595  36   0  16]
 [ 71 132   2  14]
 [ 10  10   1   3]
 [ 51  10  21  72]]
AUC score:
0.762154101764
('Epoch', 98, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0026 - acc: 0.9993Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 165s - loss: 0.0026 - acc: 0.9993 - val_loss: 2.2996 - val_acc: 0.7701
Performance of model on test set ----------------------------
Accuracy:
0.771072796935
Kappa:
0.566417307442
Confusion matrix:
[[580  39   0  28]
 [ 57 145   1  16]
 [ 11  10   1   2]
 [ 47  12  16  79]]
AUC score:
0.769044011597
('Epoch', 99, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0040 - acc: 0.9989Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 165s - loss: 0.0040 - acc: 0.9989 - val_loss: 2.3816 - val_acc: 0.7739
Performance of model on test set ----------------------------
Accuracy:
0.773946360153
Kappa:
0.554308599834
Confusion matrix:
[[600  29   0  18]
 [ 77 131   1  10]
 [ 10   9   1   4]
 [ 57   8  13  76]]
AUC score:
0.778217009025
('Epoch', 100, '/', 100)
Train on 4472 samples, validate on 1044 samples
Epoch 1/1
4471/4472 [============================>.] - ETA: 0s - loss: 0.0092 - acc: 0.9982Epoch 00000: val_acc did not improve
4472/4472 [==============================] - 163s - loss: 0.0092 - acc: 0.9982 - val_loss: 2.2968 - val_acc: 0.7749
Performance of model on test set ----------------------------
Accuracy:
0.775862068966
Kappa:
0.564028846308
Confusion matrix:
[[597  37   0  13]
 [ 65 141   1  12]
 [ 11   9   2   2]
 [ 54  13  17  70]]
AUC score:
0.779056860083
Best validation accuracy:  (59, 0.79501915708812265)
Best validation Kappa:  (59, 0.59787483363231297)
Best validation AUC:  (39, 0.83846607676470419)

So, apparently, the 3-layer LSTM gets slightly better results than shallower RNNs