Dataset split of AotM-2011/30Music playlists for playlist augmentation


In [ ]:
%matplotlib inline

import os
import sys
import gzip
import numpy as np
import pickle as pkl
from scipy.sparse import lil_matrix, issparse, hstack, vstack
from collections import Counter
import gensim

import matplotlib.pyplot as plt
import seaborn as sns

In [ ]:
np_settings0 = np.seterr(all='raise')
RAND_SEED = 0
plt.style.use('seaborn')

In [ ]:
datasets = ['aotm2011', '30music']
ffeature = 'data/msd/song2feature.pkl.gz'
fgenre = 'data/msd/song2genre.pkl.gz'
fsong2artist = 'data/msd/song2artist.pkl.gz'
audio_feature_indices = [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 185, 186, 187, 198, 199, 200, 201]

In [ ]:
dix = 0
dataset_name = datasets[dix]
data_dir = 'data/%s' % dataset_name
print(dataset_name)

Load playlists

Load playlists.


In [ ]:
fplaylist = os.path.join(data_dir, '%s-playlist.pkl.gz' % dataset_name)
_all_playlists = pkl.load(gzip.open(fplaylist, 'rb'))

In [ ]:
# _all_playlists[0]

In [ ]:
all_playlists = []

if type(_all_playlists[0][1]) == tuple:
    for pl, u in _all_playlists:
        user = '%s_%s' % (u[0], u[1])  # user string
        all_playlists.append((pl, user))
else:
    all_playlists = _all_playlists

In [ ]:
# user_playlists = dict()
# for pl, u in all_playlists:
#     try:
#         user_playlists[u].append(pl)
#     except KeyError:
#         user_playlists[u] = [pl]

In [ ]:
# all_playlists = []
# for u in user_playlists:
#     if len(user_playlists[u]) > 4:
#         all_playlists += [(pl, u) for pl in user_playlists[u]]

In [ ]:
all_users = sorted(set({user for _, user in all_playlists}))

In [ ]:
print('#user    : {:,}'.format(len(all_users)))
print('#playlist: {:,}'.format(len(all_playlists)))

In [ ]:
pl_lengths = [len(pl) for pl, _ in all_playlists]
plt.hist(pl_lengths, bins=100)
print('Average playlist length: %.1f' % np.mean(pl_lengths))

check duplicated songs in the same playlist.


In [ ]:
print('{:,} | {:,}'.format(np.sum(pl_lengths), np.sum([len(set(pl)) for pl, _ in all_playlists])))

Load song features

Load song_id --> feature array mapping: map a song to the audio features of one of its corresponding tracks in MSD.


In [ ]:
_song2feature = pkl.load(gzip.open(ffeature, 'rb'))

In [ ]:
song2feature = dict()

for sid in sorted(_song2feature):
    song2feature[sid] = _song2feature[sid][audio_feature_indices]

Load genres


In [ ]:
song2genre = pkl.load(gzip.open(fgenre, 'rb'))

Song collection


In [ ]:
_all_songs = sorted([(sid, int(song2feature[sid][-1])) for sid in {s for pl, _ in all_playlists for s in pl}], 
                   key=lambda x: (x[1], x[0]))
print('{:,}'.format(len(_all_songs)))

Randomise the order of song with the same age.


In [ ]:
song_age_dict = dict()

for sid, age in _all_songs:
    age = int(age)
    try:
        song_age_dict[age].append(sid)
    except KeyError:
        song_age_dict[age] = [sid]

In [ ]:
all_songs = []

np.random.seed(RAND_SEED)
for age in sorted(song_age_dict.keys()):
    all_songs += [(sid, age) for sid in np.random.permutation(song_age_dict[age])]

In [ ]:
pkl.dump(all_songs, gzip.open(os.path.join(data_dir, 'setting2/all_songs.pkl.gz'), 'wb'))

Check if all songs have genre info.


In [ ]:
print('#songs missing genre: {:,}'.format(len(all_songs) - np.sum([sid in song2genre for (sid, _) in all_songs])))

Song popularity.


In [ ]:
song2index = {sid: ix for ix, (sid, _) in enumerate(all_songs)}
song_pl_mat = lil_matrix((len(all_songs), len(all_playlists)), dtype=np.int8)
for j in range(len(all_playlists)):
    pl = all_playlists[j][0]
    ind = [song2index[sid] for sid in pl]
    song_pl_mat[ind, j] = 1

In [ ]:
song_pop = song_pl_mat.tocsc().sum(axis=1)

In [ ]:
max_pop = np.max(song_pop)
max_pop

In [ ]:
song2pop = {sid: song_pop[song2index[sid], 0] for (sid, _) in all_songs}

In [ ]:
pkl.dump(song2pop, gzip.open(os.path.join(data_dir, 'setting2/song2pop.pkl.gz'), 'wb'))

deal with one outlier.


In [ ]:
# song_pop1 = song_pop.copy()
# maxix = np.argmax(song_pop)
# song_pop1[maxix] = 0
# clipped_max_pop = np.max(song_pop1) + 10   # second_max_pop + 10
# if max_pop - clipped_max_pop > 500:
#     song_pop1[maxix] = clipped_max_pop

Create song-playlist matrix

Songs as rows, playlists as columns.


In [ ]:
def gen_dataset(playlists, song2feature, song2genre, song2artist, artist2vec, 
                train_song_set, dev_song_set=[], test_song_set=[], song2pop_train=None):
    """
    Create labelled dataset: rows are songs, columns are users.
    
    Input:
        - playlists: a set of playlists
        - train_song_set: a list of songIDs in training set
        - dev_song_set: a list of songIDs in dev set
        - test_song_set: a list of songIDs in test set
        - song2feature: dictionary that maps songIDs to features from MSD
        - song2genre: dictionary that maps songIDs to genre
        - song2pop_train: a dictionary that maps songIDs to its popularity
    Output:
        - (Feature, Label) pair (X, Y)
          X: #songs by #features
          Y: #songs by #users
    """ 
    song_set = train_song_set + dev_song_set + test_song_set
    N = len(song_set)
    K = len(playlists)
    
    genre_set = sorted({v for v in song2genre.values()})
    genre2index = {genre: ix for ix, genre in enumerate(genre_set)}
    
    def onehot_genre(songID):
        """
        One-hot encoding of genres.
        Data imputation: 
            - mean imputation (default)
            - one extra entry for songs without genre info
            - sampling from the distribution of genre popularity
        """
        num = len(genre_set) # + 1
        vec = np.zeros(num, dtype=np.float)
        if songID in song2genre:
            genre_ix = genre2index[song2genre[songID]]
            vec[genre_ix] = 1
        else:
            vec[:] = np.nan
            #vec[-1] = 1
        return vec
    
    def song_artist_feature(songID):
        """
        Return the artist feature for a given song
        """
        if songID in song2artist:
            aid = song2artist[songID]
            return artist2vec[aid]
        else:
            return artist2vec['$UNK$']
    
    X = np.array([np.concatenate([song2feature[sid], song_artist_feature(sid), onehot_genre(sid)], axis=-1) \
                  for sid in song_set])
    Y = lil_matrix((N, K), dtype=np.bool)
    
    song2index = {sid: ix for ix, sid in enumerate(song_set)}
    for k in range(K):
        pl = playlists[k]
        indices = [song2index[sid] for sid in pl if sid in song2index]
        Y[indices, k] = True
        
    # genre imputation
    genre_ix_start = -len(genre_set)
    genre_nan = np.isnan(X[:, genre_ix_start:])
    genre_mean = np.nansum(X[:, genre_ix_start:], axis=0) / (X.shape[0] - np.sum(genre_nan, axis=0))
    #print(np.nansum(X[:, genre_ix_start:], axis=0))
    #print(genre_set)
    #print(genre_mean)
    for j in range(len(genre_set)):
        X[genre_nan[:,j], j+genre_ix_start] = genre_mean[j]
        
    # normalise the sum of all genres per song to 1
    # X[:, -len(genre_set):] /= X[:, -len(genre_set):].sum(axis=1).reshape(-1, 1)  
    # NOTE: this is not necessary, as the imputed values are guaranteed to be normalised (sum to 1) 
    # due to the above method to compute mean genres.
    
    # the log of song popularity
    if song2pop_train is not None:
        # for sid in song_set: 
        #     assert sid in song2pop_train  # trust the input
        logsongpop = np.log2([song2pop_train[sid]+1 for sid in song_set])  # deal with 0 popularity
        X = np.hstack([X, logsongpop.reshape(-1, 1)])

    #return X, Y
    Y = Y.tocsr()
    
    train_ix = [song2index[sid] for sid in train_song_set]
    X_train = X[train_ix, :]
    Y_train = Y[train_ix, :]
    
    dev_ix = [song2index[sid] for sid in dev_song_set]
    X_dev = X[dev_ix, :]
    Y_dev = Y[dev_ix, :]
    
    test_ix = [song2index[sid] for sid in test_song_set]
    X_test = X[test_ix, :]
    Y_test = Y[test_ix, :]
    
    if len(dev_song_set) > 0:
        if len(test_song_set) > 0:
            return X_train, Y_train.tocsc(), X_dev, Y_dev.tocsc(), X_test, Y_test.tocsc()
        else:
            return X_train, Y_train.tocsc(), X_dev, Y_dev.tocsc()
    else:
        if len(test_song_set) > 0:
            return X_train, Y_train.tocsc(), X_test, Y_test.tocsc()
        else:
            return X_train, Y_train.tocsc()

Split playlists

Split playlists such that every song in test set is also in training set.
Split playlists (60/10/30 train/dev/test split) uniformly at random.
Split each user's playlists (60/20/20 train/dev/test split) uniformly at random if the user has $5$ or more playlists.


In [ ]:
train_playlists = []
dev_playlists   = []
test_playlists  = []

In [ ]:
candidate_pl_indices = []
other_pl_indices = []

for i in range(len(all_playlists)):
    pl = all_playlists[i][0]
    if np.all(np.asarray([song2pop[sid] for sid in pl]) >= 5):
        candidate_pl_indices.append(i)
    else:
        other_pl_indices.append(i)

In [ ]:
print('%d + %d = %d | %d' % (len(candidate_pl_indices), len(other_pl_indices), \
                             len(candidate_pl_indices) + len(other_pl_indices), len(all_playlists)))

In [ ]:
dev_ratio = 0.05
test_ratio = 0.2
npl_dev  = int(dev_ratio  * len(all_playlists))
npl_test = int(test_ratio * len(all_playlists))
np.random.seed(RAND_SEED)
pl_indices = np.random.permutation(candidate_pl_indices)

test_ix = pl_indices[:npl_test]
test_playlists = [all_playlists[ix] for ix in test_ix]

dev_ix = pl_indices[npl_test:npl_test + npl_dev]
dev_playlists = [all_playlists[ix] for ix in dev_ix]

train_ix = pl_indices[npl_test + npl_dev:].tolist() + other_pl_indices
train_playlists = [all_playlists[ix] for ix in train_ix]

Every song in test set should also be in training set.


In [ ]:
print('#Songs in train + dev set: %d, #Songs total: %d' % \
      (len(set([sid for pl, _ in train_playlists + dev_playlists for sid in pl])), len(all_songs)))

In [ ]:
print('{:30s} {:,}'.format('#playlist in training set:', len(train_playlists)))
print('{:30s} {:,}'.format('#playlist in dev set:', len(dev_playlists)))
print('{:30s} {:,}'.format('#playlist in test set:', len(test_playlists)))

In [ ]:
len(train_playlists) + len(dev_playlists)

In [ ]:
# user_playlists = dict()
# for pl, u in all_playlists:
#     try: 
#         user_playlists[u].append(pl)
#     except KeyError:
#         user_playlists[u] = [pl]

In [ ]:
# sanity check
# npl_all = np.sum([len(user_playlists[u]) for u in user_playlists])
# print('{:30s} {:,}'.format('#users:', len(user_playlists)))
# print('{:30s} {:,}'.format('#playlists:', npl_all))
# print('{:30s} {:.2f}'.format('Average #playlists per user:', npl_all / len(user_playlists)))

In [ ]:
# np.random.seed(RAND_SEED)
# for u in user_playlists:
#     playlists_u = [(pl, u) for pl in user_playlists[u]]
#     if len(user_playlists[u]) < 5:
#         train_playlists += playlists_u
#     else:
#         npl_test = int(test_ratio * len(user_playlists[u]))
#         npl_dev  = int(dev_ratio * len(user_playlists[u]))
#         pl_indices = np.random.permutation(len(user_playlists[u]))
#         test_playlists  += playlists_u[:npl_test]
#         dev_playlists   += playlists_u[npl_test:npl_test + npl_dev]
#         train_playlists += playlists_u[npl_test + npl_dev:]

In [ ]:
xmax = np.max([len(pl) for (pl, _) in all_playlists]) + 1

In [ ]:
ax = plt.subplot(111)
ax.hist([len(pl) for (pl, _) in train_playlists], bins=100)
ax.set_yscale('log')
ax.set_xlim(0, xmax)
ax.set_title('Histogram of playlist length in TRAINING set')
pass

In [ ]:
ax = plt.subplot(111)
ax.hist([len(pl) for (pl, _) in dev_playlists], bins=100)
ax.set_yscale('log')
ax.set_xlim(0, xmax)
ax.set_title('Histogram of playlist length in DEV set')
pass

In [ ]:
ax = plt.subplot(111)
ax.hist([len(pl) for (pl, _) in test_playlists], bins=100)
ax.set_yscale('log')
ax.set_xlim(0, xmax)
ax.set_title('Histogram of playlist length in TEST set')
pass

Learn artist features


In [ ]:
song2artist = pkl.load(gzip.open(fsong2artist, 'rb'))

In [ ]:
artist_playlist = []

for pl, _ in train_playlists + dev_playlists:
    pl_artists = [song2artist[sid] if sid in song2artist else '$UNK$' for sid in pl]
    artist_playlist.append(pl_artists)

In [ ]:
fartist2vec_bin = os.path.join(data_dir, 'setting2/artist2vec.bin')
if os.path.exists(fartist2vec_bin):
    artist2vec = gensim.models.KeyedVectors.load_word2vec_format(fartist2vec_bin, binary=True)
else:
    artist2vec_model = gensim.models.Word2Vec(sentences=artist_playlist, size=50, seed=RAND_SEED, 
                                              window=10, iter=10, min_count=1)
    artist2vec_model.wv.save_word2vec_format(fartist2vec_bin, binary=True)
    artist2vec = artist2vec_model.wv

Hold a subset of songs in dev/test playlist

Keep the first $K=1,2,3,4$ songs for playlist in dev and test set.


In [ ]:
N_SEED_K = 1

In [ ]:
dev_playlists_obs   = []
dev_playlists_held  = []
test_playlists_obs  = []
test_playlists_held = []

In [ ]:
for pl, _ in dev_playlists:
    npl = len(pl)
    k = N_SEED_K
    dev_playlists_obs.append(pl[:k])
    dev_playlists_held.append(pl[k:])
for pl, _ in test_playlists:
    npl = len(pl)
    k = N_SEED_K
    test_playlists_obs.append(pl[:k])
    test_playlists_held.append(pl[k:])

In [ ]:
for ix in range(len(dev_playlists)):
    assert np.all(dev_playlists[ix][0]  == dev_playlists_obs[ix]  + dev_playlists_held[ix])
for ix in range(len(test_playlists)):
    assert np.all(test_playlists[ix][0] == test_playlists_obs[ix] + test_playlists_held[ix])

In [ ]:
print('DEV  obs: {:,} | DEV  held: {:,} \nTEST obs: {:,} | TEST held: {:,}'.format(
    np.sum([len(ppl) for ppl in dev_playlists_obs]),  np.sum([len(ppl) for ppl in dev_playlists_held]),
    np.sum([len(ppl) for ppl in test_playlists_obs]), np.sum([len(ppl) for ppl in test_playlists_held])))

In [ ]:
song2pop_train = song2pop.copy()
song2pop_trndev = song2pop.copy()
for ppl in dev_playlists_held:
    for sid in ppl:
        song2pop_train[sid] -= 1
for ppl in test_playlists_held:
    for sid in ppl:
        song2pop_train[sid] -= 1
        song2pop_trndev[sid] -= 1

Hold a subset of songs in a subset of playlists, use all songs


In [ ]:
pkl_dir2 = os.path.join(data_dir, 'setting2')
fpl2     = os.path.join(pkl_dir2, 'playlists_train_dev_test_s2_%d.pkl.gz' % N_SEED_K)
fy2      = os.path.join(pkl_dir2, 'Y_%d.pkl.gz' % N_SEED_K)
fxtrain2 = os.path.join(pkl_dir2, 'X_train_%d.pkl.gz' % N_SEED_K)
fytrain2 = os.path.join(pkl_dir2, 'Y_train_%d.pkl.gz' % N_SEED_K)
fxtrndev2 = os.path.join(pkl_dir2, 'X_trndev_%d.pkl.gz' % N_SEED_K)
fytrndev2 = os.path.join(pkl_dir2, 'Y_trndev_%d.pkl.gz' % N_SEED_K)
fydev2   = os.path.join(pkl_dir2, 'PU_dev_%d.pkl.gz' % N_SEED_K)
fytest2  = os.path.join(pkl_dir2, 'PU_test_%d.pkl.gz' % N_SEED_K)
fclique21 = os.path.join(pkl_dir2, 'cliques_trndev_%d.pkl.gz' % N_SEED_K)
fclique22 = os.path.join(pkl_dir2, 'cliques_all_%d.pkl.gz' % N_SEED_K)

In [ ]:
X, Y = gen_dataset(playlists = [t[0] for t in train_playlists + dev_playlists + test_playlists],
                   song2feature = song2feature, song2genre = song2genre, 
                   song2artist = song2artist, artist2vec = artist2vec, 
                   train_song_set = [t[0] for t in all_songs], song2pop_train=song2pop_train)

In [ ]:
X_train = X
assert X.shape[0] == len(song2pop_trndev)
X_trndev = X_train.copy()
X_trndev[:, -1] = np.log([song2pop_trndev[sid]+1 for sid, _ in all_songs])

In [ ]:
dev_cols  = np.arange(len(train_playlists), len(train_playlists) + len(dev_playlists))
test_cols = np.arange(len(train_playlists) + len(dev_playlists), Y.shape[1])
assert len(dev_cols)  == len(dev_playlists)  == len(dev_playlists_obs)
assert len(test_cols) == len(test_playlists) == len(test_playlists_obs)

In [ ]:
pkl.dump({'train_playlists': train_playlists, 'dev_playlists': dev_playlists, 'test_playlists': test_playlists,
          'dev_playlists_obs': dev_playlists_obs, 'dev_playlists_held': dev_playlists_held,
          'test_playlists_obs': test_playlists_obs, 'test_playlists_held': test_playlists_held},
          gzip.open(fpl2, 'wb'))

In [ ]:
song2index = {sid: ix for ix, sid in enumerate([t[0] for t in all_songs])}

Use dedicated sparse matrices to reprsent what entries are observed in dev and test set.


In [ ]:
Y_train = Y[:, :len(train_playlists)].tocsc()
Y_trndev = Y[:, :len(train_playlists) + len(dev_playlists)].tocsc()

In [ ]:
PU_dev  = lil_matrix((len(all_songs), len(dev_playlists)),  dtype=np.bool)
PU_test = lil_matrix((len(all_songs), len(test_playlists)), dtype=np.bool)

num_known_dev = 0
for j in range(len(dev_playlists)):
    if (j+1) % 1000 == 0:
        sys.stdout.write('\r%d / %d' % (j+1, len(dev_playlists))); sys.stdout.flush()
    rows = [song2index[sid] for sid in dev_playlists_obs[j]]
    PU_dev[rows, j] = True
    num_known_dev += len(rows)

num_known_test = 0
for j in range(len(test_playlists)):
    if (j+1) % 1000 == 0:
        sys.stdout.write('\r%d / %d' % (j+1, len(test_playlists))); sys.stdout.flush()
    rows = [song2index[sid] for sid in test_playlists_obs[j]]
    PU_test[rows, j] = True
    num_known_test += len(rows)

PU_dev  = PU_dev.tocsr()
PU_test = PU_test.tocsr()

In [ ]:
print('#unknown entries in DEV  set: {:15,d} | {:15,d} \n#unknown entries in TEST set: {:15,d} | {:15,d}'.format(
    np.prod(PU_dev.shape)  - PU_dev.sum(),  len(dev_playlists)  * len(all_songs) - num_known_dev,
    np.prod(PU_test.shape) - PU_test.sum(), len(test_playlists) * len(all_songs) - num_known_test))

Feature normalisation.


In [ ]:
X_train_mean = np.mean(X_train, axis=0).reshape((1, -1))
X_train_std = np.std(X_train, axis=0).reshape((1, -1)) + 10 ** (-6)
X_train -= X_train_mean
X_train /= X_train_std

In [ ]:
X_trndev_mean = np.mean(X_trndev, axis=0).reshape((1, -1))
X_trndev_std = np.std(X_trndev, axis=0).reshape((1, -1)) + 10 ** (-6)
X_trndev -= X_trndev_mean
X_trndev /= X_trndev_std

In [ ]:
print(np.mean(np.mean(X_train, axis=0)))
print(np.mean( np.std(X_train, axis=0)) - 1)
print(np.mean(np.mean(X_trndev, axis=0)))
print(np.mean( np.std(X_trndev, axis=0)) - 1)

In [ ]:
print('All   : %s' % str(Y.shape))
print('Train : %s, %s' % (X_train.shape, Y_train.shape))
print('Dev   : %s' % str(PU_dev.shape))
print('Trndev: %s, %s' % (X_trndev.shape, Y_trndev.shape))
print('Test  : %s' % str(PU_test.shape))

In [ ]:
pkl.dump(X_train,  gzip.open(fxtrain2, 'wb'))
pkl.dump(Y_train,  gzip.open(fytrain2, 'wb'))
pkl.dump(Y,        gzip.open(fy2, 'wb'))
pkl.dump(X_trndev, gzip.open(fxtrndev2, 'wb'))
pkl.dump(Y_trndev, gzip.open(fytrndev2, 'wb'))
pkl.dump(PU_dev,   gzip.open(fydev2, 'wb'))
pkl.dump(PU_test,  gzip.open(fytest2, 'wb'))

Build the adjacent matrix of playlists (nodes) for setting II, playlists of the same user form a clique.

Cliques in train + dev set.


In [ ]:
pl_users = [u for (_, u) in train_playlists + dev_playlists]
cliques_trndev = []
for u in sorted(set(pl_users)):
    clique = np.where(u == np.array(pl_users, dtype=np.object))[0]
    #if len(clique) > 1:
    cliques_trndev.append(clique)

In [ ]:
pkl.dump(cliques_trndev, gzip.open(fclique21, 'wb'))

In [ ]:
clqsize = [len(clq) for clq in cliques_trndev]
print(np.min(clqsize), np.max(clqsize), len(clqsize), np.sum(clqsize))

In [ ]:
assert np.all(np.arange(Y_trndev.shape[1]) == np.asarray(sorted([k for clq in cliques_trndev for k in clq])))

Cliques in train + dev + test set.


In [ ]:
pl_users = [u for (_, u) in train_playlists + dev_playlists + test_playlists]
clique_all = []
for u in sorted(set(pl_users)):
    clique = np.where(u == np.array(pl_users, dtype=np.object))[0]
    #if len(clique) > 1:
    clique_all.append(clique)

In [ ]:
pkl.dump(clique_all, gzip.open(fclique22, 'wb'))

In [ ]:
clqsize = [len(clq) for clq in clique_all]
print(np.min(clqsize), np.max(clqsize), len(clqsize), np.sum(clqsize))

In [ ]:
assert np.all(np.arange(Y.shape[1]) == np.asarray(sorted([k for clq in clique_all for k in clq])))