In [1]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from simmit import smartplus as sim
import os
Provides the fourth order identity tensor written in Voigt notation $I_{real}$, where : $$I_{real} = \left( \begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.5 \end{array} \right)$$ Return a mat. Example:
In [2]:
m = sim.Ireal()
print m
Provides the volumic of the identity tensor $I_{vol}$ written in the SMART+ formalism. So : $$I_{vol} = \left( \begin{array}{ccc} 1/3 & 1/3 & 1/3 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right)$$ Return a mat. Example:
In [3]:
m = sim.Ivol()
print m
Provides the deviatoric of the identity tensor $I_{dev}$ written in the SMART+ formalism. So : $$I_{dev} = \left( \begin{array}{ccc} 2/3 & -1/3 & -1/3 & 0 & 0 & 0 \\ -1/3 & 2/3 & -1/3 & 0 & 0 & 0 \\ -1/3 & -1/3 & 2/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.5 \end{array} \right)$$ Return a mat. Example:
In [4]:
m1 = sim.Ireal()
m2 = sim.Ivol()
m = sim.Idev()
print m1 - m2
print m
Provides the fourth order identity tensor $\widehat{I}$ written in the form. So : $$\widehat{I} = \left( \begin{array}{ccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{array} \right)$$ For example, this tensor allows to obtain : $L*\widehat{M}=I$ or $\widehat{L}*M=I$, where a matrix $\widehat{A}$ is set by $\widehat{A}=\widehat{I}A\widehat{I}$ Return a mat. Example:
In [5]:
m = sim.Ireal2()
print m
Provides the deviatoric of the identity tensor $\widehat{I}$ written in the SMART+ formalism. So : $$I_{dev2} = \left( \begin{array}{ccc} 2/3 & -1/3 & -1/3 & 0 & 0 & 0 \\ -1/3 & 2/3 & -1/3 & 0 & 0 & 0 \\ -1/3 & -1/3 & 2/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{array} \right)$$ Return a mat. Example:
In [6]:
m1 = sim.Ireal2()
m2 = sim.Ivol()
m = sim.Idev2()
print m1 - m2
print m
In [7]:
v = sim.Ith()
print v
In [8]:
v = sim.Ir2()
print v
In [9]:
v = sim.Ir05()
print v
In [ ]: