Calibrating a camera with OpenCV


In [1]:
import numpy as np
import cv2
import glob
import time
import matplotlib.pyplot as plt
from IPython.display import clear_output
%matplotlib inline

# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*8,3), np.float32)
objp[:,:2] = np.mgrid[0:8, 0:6].T.reshape(-1,2)

# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.

# Make a list of calibration images
images = glob.glob('calibration_wide/GO*.jpg')

# Step through the list and search for chessboard corners
for idx, fname in enumerate(images):
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Find the chessboard corners
    ret, corners = cv2.findChessboardCorners(gray, (8,6), None)

    # If found, add object points, image points
    if ret == True:
        objpoints.append(objp)
        imgpoints.append(corners)

        # Draw and display the corners
        cv2.drawChessboardCorners(img, (8,6), corners, ret)
        clear_output()
        plt.imshow(img)
        plt.show()
        time.sleep(1)


If the above cell ran sucessfully, you should now have objpoints and imgpoints needed for camera calibration. Run the cell below to calibrate, calculate distortion coefficients, and test undistortion on an image!


In [2]:
import pickle
%matplotlib inline

# Test undistortion on an image
img = cv2.imread('calibration_wide/test_image.jpg')
img_size = (img.shape[1], img.shape[0])

# Do camera calibration given object points and image points
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size,None,None)


dst = cv2.undistort(img, mtx, dist, None, mtx)
cv2.imwrite('calibration_wide/test_undist.jpg',dst)

# Save the camera calibration result for later use (we won't worry about rvecs / tvecs)
dist_pickle = {}
dist_pickle["mtx"] = mtx
dist_pickle["dist"] = dist
pickle.dump( dist_pickle, open( "calibration_wide/wide_dist_pickle.p", "wb" ) )
#dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB)
# Visualize undistortion
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10))
ax1.imshow(img)
ax1.set_title('Original Image', fontsize=30)
ax2.imshow(dst)
ax2.set_title('Undistorted Image', fontsize=30)


Out[2]:
<matplotlib.text.Text at 0x7f0fe41d71d0>

Undistort and Transform Perspective


In [27]:
import pickle
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

# Read in the saved camera matrix and distortion coefficients
# These are the arrays you calculated using cv2.calibrateCamera()
dist_pickle = pickle.load( open( "calibration_wide/wide_dist_pickle.p", "rb" ) )
mtx = dist_pickle["mtx"]
dist = dist_pickle["dist"]

# Read in an image
img = cv2.imread('calibration_wide/GOPR0032.jpg')
#img = cv2.imread('test_image2.png')
nx = 8 # the number of inside corners in x
ny = 6 # the number of inside corners in y

def corners_unwarp(img, nx, ny, mtx, dist):
    # Pass in your image into this function
    # 1) Undistort using mtx and dist
    undistorted = cv2.undistort(img, mtx, dist, None, mtx)
    # 2) Convert to grayscale
    gray = cv2.cvtColor(undistorted, cv2.COLOR_BGR2GRAY)
    # 3) Find the chessboard corners
    ret, corners = cv2.findChessboardCorners(gray, (nx,ny), None)
    # 4) If corners found: 
    if ret == True:
        offset = 100 # offset for dst points
        img_size = (undistorted.shape[1],undistorted.shape[0])
        # a) draw corners
        cv2.drawChessboardCorners(undistorted, (8,6), corners, ret)
        # b) define 4 source points. Using detected corners
        src = np.float32([corners[0], corners[nx-1], corners[-1], corners[-nx]])
        # c) define 4 destination points dst = np.float32([[,],[,],[,],[,]])
        dst = np.float32([[offset, offset], [img_size[0]-offset, offset], 
                                     [img_size[0]-offset, img_size[1]-offset], 
                                     [offset, img_size[1]-offset]])
        # d) get the transform matrix
        M = cv2.getPerspectiveTransform(src, dst)
        # e) use cv2.warpPerspective() to warp your image to a top-down view
        warped = cv2.warpPerspective(undistorted, M, img_size, flags=cv2.INTER_LINEAR)

    return warped, M

top_down, perspective_M = corners_unwarp(img, nx, ny, mtx, dist)
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
f.tight_layout()
ax1.imshow(img)
ax1.set_title('Original Image', fontsize=50)
ax2.imshow(top_down)
ax2.set_title('Undistorted and Warped Image', fontsize=50)
plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)



In [ ]: