In [10]:
<style> code {background-color : pink !important;} </style>

Camera Calibration with OpenCV

Run the code in the cell below to extract object points and image points for camera calibration.

In [6]:
import numpy as np
import cv2
import glob
import matplotlib.pyplot as plt
%matplotlib qt

# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*8,3), np.float32)
objp[:,:2] = np.mgrid[0:8, 0:6].T.reshape(-1,2)

# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.

# Make a list of calibration images
images = glob.glob('calibration_wide/GO*.jpg')

# Step through the list and search for chessboard corners
for idx, fname in enumerate(images):
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Find the chessboard corners
    ret, corners = cv2.findChessboardCorners(gray, (8,6), None)

    # If found, add object points, image points
    if ret == True:

        # Draw and display the corners
        cv2.drawChessboardCorners(img, (8,6), corners, ret)
        #write_name = 'corners_found'+str(idx)+'.jpg'
        #cv2.imwrite(write_name, img)
        cv2.imshow('img', img)


If the above cell ran sucessfully, you should now have objpoints and imgpoints needed for camera calibration. Run the cell below to calibrate, calculate distortion coefficients, and test undistortion on an image!

In [9]:
import pickle
%matplotlib inline

# Test undistortion on an image
img = cv2.imread('calibration_wide/test_image.jpg')
img_size = (img.shape[1], img.shape[0])

# Do camera calibration given object points and image points
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size,None,None)

dst = cv2.undistort(img, mtx, dist, None, mtx)

# Save the camera calibration result for later use (we won't worry about rvecs / tvecs)
dist_pickle = {}
dist_pickle["mtx"] = mtx
dist_pickle["dist"] = dist
pickle.dump( dist_pickle, open( "calibration_wide/wide_dist_pickle.p", "wb" ) )
#dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB)
# Visualize undistortion
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10))
ax1.set_title('Original Image', fontsize=30)
ax2.set_title('Undistorted Image', fontsize=30)

<matplotlib.text.Text at 0x1180908d0>

In [ ]: