In [9]:
import pandas as pd
import numpy as np
import scipy as sp
import statsmodels.api as sm
import matplotlib.pyplot as plt
plt.style.use('ggplot')
from sklearn.linear_model import LinearRegression
%matplotlib inline
In [10]:
# Data from R ISLR package - write.csv(Boston, "Boston.csv", col.names = FALSE)
boston_df = pd.read_csv("../data/Boston.csv")
boston_df.head()
Out[10]:
In [17]:
# LSTAT - % of population with low status; MEDV - median value of home
ax = boston_df.plot(kind='scatter', x="lstat", y="medv", style="o")
#ax.set_ylabel("medv")
In [12]:
# The statsmodels library provides a small subset of models, but has more emphasis on
# parameter estimation and statistical testing. The summary output is similar to R's
# summary function.
# X is an "array" of column values, y is a single column value
X = boston_df[["lstat"]].values
X = sm.add_constant(X) # add the intercept term
y = boston_df["medv"].values
ols = sm.OLS(y, X).fit()
ols.summary()
Out[12]:
In [13]:
# Scikit Learn provides a larger number of models, but has more of a Machine Learning POV
# and doesn't come with the statistical testing data shown above. However, it produces an
# identical linear model as shown below:
reg = LinearRegression()
X = boston_df[["lstat"]].values
y = boston_df["medv"].values
reg.fit(X, y)
(reg.intercept_, reg.coef_)
Out[13]:
In [18]:
# Drawing the regression line on top of the scatterplot
ax = boston_df.plot(kind='scatter', x="lstat", y="medv", style="o")
#ax.set_ylabel("medv")
lstats = boston_df["lstat"].values
xs = range(int(np.min(X[:,0])), int(np.max(X[:,0])))
ys = [reg.predict([x]) for x in xs]
ax.plot(xs, ys, 'r', linewidth=2.5)
Out[18]:
In [19]:
# Prediction
test_data = [[5], [10], [15]]
reg.predict(test_data)
Out[19]:
In [20]:
# regression with 2 input columns
X = boston_df[["lstat", "age"]]
reg2 = LinearRegression()
reg2.fit(X, y)
(reg2.intercept_, reg2.coef_)
Out[20]:
In [21]:
# regression using all input columns
xcols = boston_df.columns[0:-1]
X = boston_df[xcols]
reg3 = LinearRegression()
reg3.fit(X, y)
(reg3.intercept_, reg3.coef_)
Out[21]:
In [22]:
# Plotting a fitted regression with R returns 4 graphs - Residuals vs Fitted, Normal Q-Q,
# Scale-Location (Standardized Residuals vs Fitted), and Residuals vs Leverage. Only the
# Q-Q plot is available from statsmodels. The residuals vs Fitted function is implemented
# below and is used for plot #1 and #3. The Residuals vs Leverage is TBD.
def residuals_vs_fitted(fitted, residuals, xlabel, ylabel):
plt.subplot(111)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.scatter(fitted, residuals)
polyline = np.poly1d(np.polyfit(fitted, residuals, 2)) # model non-linearity with quadratic
xs = range(int(np.min(fitted)), int(np.max(fitted)))
plt.plot(xs, polyline(xs), color='r', linewidth=2.5)
def qq_plot(residuals):
sm.qqplot(residuals)
def standardize(xs):
xmean = np.mean(xs)
xstd = np.std(xs)
return (xs - xmean) / xstd
fitted = reg3.predict(X)
residuals = y - fitted
std_residuals = standardize(residuals)
residuals_vs_fitted(fitted, residuals, "Fitted", "Residuals")
In [23]:
fig = sm.qqplot(residuals, dist="norm", line="r")
In [24]:
residuals_vs_fitted(fitted, std_residuals, "Fitted", "Std.Residuals")
Python offers formula parsing support via the Patsy toolkit. StatsModels uses Patsy to provide formula parsing support for its models. But this can be easily implemented as temporary columns in Pandas dataframes as shown below.
In [25]:
# fitting medv ~ lstat * age
boston_df["lstat*age"] = boston_df["lstat"] * boston_df["age"]
reg5 = LinearRegression()
X = boston_df[["lstat", "age", "lstat*age"]]
y = boston_df["medv"]
reg5.fit(X, y)
(reg5.intercept_, reg5.coef_)
Out[25]:
In [26]:
fitted = reg5.predict(X)
residuals = y - fitted
std_residuals = standardize(residuals)
residuals_vs_fitted(fitted, residuals, "Fitted", "Residuals")
In [27]:
# fitting medv ~ lstat + I(lstat^2)
boston_df["lstat^2"] = boston_df["lstat"] ** 2
reg6 = LinearRegression()
X = boston_df[["lstat", "lstat^2"]]
y = boston_df["medv"]
reg6.fit(X, y)
# save the predicted ys for given xs for future plot
lstats = boston_df["lstat"].values
xs = range(int(np.min(lstats)), int(np.max(lstats)))
ys6 = [reg6.predict([x, x*x]) for x in xs]
(reg6.intercept_, reg6.coef_)
Out[27]:
In [28]:
fitted = reg6.predict(X)
residuals = y - fitted
std_residuals = standardize(residuals)
residuals_vs_fitted(fitted, residuals, "Fitted", "Residuals")
In [29]:
# fitting medv ~ poly(lstat,4). We already have lstat^2 and lstat from previous
boston_df["lstat^4"] = np.power(boston_df["lstat"], 4)
boston_df["lstat^3"] = np.power(boston_df["lstat"], 4)
X = boston_df[["lstat^4", "lstat^3", "lstat^2", "lstat"]]
y = boston_df["medv"]
reg7 = LinearRegression()
reg7.fit(X, y)
ys7 = [reg7.predict([x**4, x**3, x**2, x]) for x in xs]
(reg7.intercept_, reg7.coef_)
Out[29]:
In [30]:
fitted = reg7.predict(X)
residuals = y - fitted
std_residuals = standardize(residuals)
residuals_vs_fitted(fitted, residuals, "Fitted", "Residuals")
In [32]:
# Plot the different lines. Not that the green line (reg7) follows the distribution
# better than the red line (reg6).
ax = boston_df.plot(kind='scatter', x="lstat", y="medv", style="o")
#ax.set_ylabel("medv")
plt.plot(xs, ys6, color='r', linewidth=2.5)
plt.plot(xs, ys7, color='g', linewidth=2.5)
Out[32]:
In [33]:
# Data from ISLR package: write.csv(Carseats, 'Carseats.csv', col.names=FALSE)
carseats_df = pd.read_csv("../data/Carseats.csv")
carseats_df.head()
Out[33]:
In [34]:
# convert non-numeric to factors
carseats_df["ShelveLoc"] = pd.factorize(carseats_df["ShelveLoc"])[0]
carseats_df["Urban"] = pd.factorize(carseats_df["Urban"])[0]
carseats_df["US"] = pd.factorize(carseats_df["US"])[0]
# Sales ~ . + Income:Advertising + Age:Price
carseats_df["Income:Advertising"] = carseats_df["Income"] * carseats_df["Advertising"]
carseats_df["Age:Price"] = carseats_df["Age"] * carseats_df["Price"]
X = carseats_df[carseats_df[1:].columns]
y = carseats_df["Sales"]
reg = LinearRegression()
reg.fit(X, y)
(reg.intercept_, reg.coef_)
Out[34]:
In [35]:
# R has a contrasts() function that shows how factors are encoded by default. We can do
# this manually using scikit-learn's OneHotEncoder
from sklearn.preprocessing import OneHotEncoder
colnames = ["ShelveLoc", "Urban", "US"]
enc = OneHotEncoder()
X = carseats_df[colnames]
enc.fit(X)
X_tr = enc.transform(X).toarray()
colnos = enc.n_values_
colnames_tr = []
for (idx, colname) in enumerate(colnames):
for i in range(0, colnos[idx]):
colnames_tr.append(colname + "_" + str(i))
col = 0
for colname_tr in colnames_tr:
carseats_df[colname_tr] = X_tr[:, col]
col = col + 1
del carseats_df["ShelveLoc"]
del carseats_df["Urban"]
del carseats_df["US"]
carseats_df[colnames_tr].head()
Out[35]:
In [36]:
def regplot(x, y, xlabel, ylabel, dot_style, line_color):
x = x.values
y = y.values
reg = LinearRegression()
X = np.matrix(x).T
reg.fit(X, y)
ax = plt.scatter(x, y, marker=dot_style)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
xs = range(int(np.min(x)), int(np.max(x)))
ys = [reg.predict(x) for x in xs]
plt.plot(xs, ys, color=line_color, linewidth=2.5)
regplot(carseats_df["Price"], carseats_df["Sales"], "Price", "Sales", 'o', 'r')
In [ ]: