Chapter 5 – Support Vector Machines

This notebook contains all the sample code and solutions to the exercices in chapter 5.

Setup

First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:


In [1]:
# To support both python 2 and python 3
from __future__ import division, print_function, unicode_literals

# Common imports
import numpy as np
import os

# to make this notebook's output stable across runs
np.random.seed(42)

# To plot pretty figures
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12

# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "svm"

def save_fig(fig_id, tight_layout=True):
    path = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id + ".png")
    print("Saving figure", fig_id)
    if tight_layout:
        plt.tight_layout()
    plt.savefig(path, format='png', dpi=300)

Large margin classification

The next few code cells generate the first figures in chapter 5. The first actual code sample comes after:


In [2]:
from sklearn.svm import SVC
from sklearn import datasets

iris = datasets.load_iris()
X = iris["data"][:, (2, 3)]  # petal length, petal width
y = iris["target"]

setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]

# SVM Classifier model
svm_clf = SVC(kernel="linear", C=float("inf"))
svm_clf.fit(X, y)


Out[2]:
SVC(C=inf, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

In [3]:
# Bad models
x0 = np.linspace(0, 5.5, 200)
pred_1 = 5*x0 - 20
pred_2 = x0 - 1.8
pred_3 = 0.1 * x0 + 0.5

def plot_svc_decision_boundary(svm_clf, xmin, xmax):
    w = svm_clf.coef_[0]
    b = svm_clf.intercept_[0]

    # At the decision boundary, w0*x0 + w1*x1 + b = 0
    # => x1 = -w0/w1 * x0 - b/w1
    x0 = np.linspace(xmin, xmax, 200)
    decision_boundary = -w[0]/w[1] * x0 - b/w[1]

    margin = 1/w[1]
    gutter_up = decision_boundary + margin
    gutter_down = decision_boundary - margin

    svs = svm_clf.support_vectors_
    plt.scatter(svs[:, 0], svs[:, 1], s=180, facecolors='#FFAAAA')
    plt.plot(x0, decision_boundary, "k-", linewidth=2)
    plt.plot(x0, gutter_up, "k--", linewidth=2)
    plt.plot(x0, gutter_down, "k--", linewidth=2)

plt.figure(figsize=(12,2.7))

plt.subplot(121)
plt.plot(x0, pred_1, "g--", linewidth=2)
plt.plot(x0, pred_2, "m-", linewidth=2)
plt.plot(x0, pred_3, "r-", linewidth=2)
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs", label="Iris-Versicolor")
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "yo", label="Iris-Setosa")
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.legend(loc="upper left", fontsize=14)
plt.axis([0, 5.5, 0, 2])

plt.subplot(122)
plot_svc_decision_boundary(svm_clf, 0, 5.5)
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs")
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "yo")
plt.xlabel("Petal length", fontsize=14)
plt.axis([0, 5.5, 0, 2])

save_fig("large_margin_classification_plot")
plt.show()


Saving figure large_margin_classification_plot

Sensitivity to feature scales


In [4]:
Xs = np.array([[1, 50], [5, 20], [3, 80], [5, 60]]).astype(np.float64)
ys = np.array([0, 0, 1, 1])
svm_clf = SVC(kernel="linear", C=100)
svm_clf.fit(Xs, ys)

plt.figure(figsize=(12,3.2))
plt.subplot(121)
plt.plot(Xs[:, 0][ys==1], Xs[:, 1][ys==1], "bo")
plt.plot(Xs[:, 0][ys==0], Xs[:, 1][ys==0], "ms")
plot_svc_decision_boundary(svm_clf, 0, 6)
plt.xlabel("$x_0$", fontsize=20)
plt.ylabel("$x_1$  ", fontsize=20, rotation=0)
plt.title("Unscaled", fontsize=16)
plt.axis([0, 6, 0, 90])

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(Xs)
svm_clf.fit(X_scaled, ys)

plt.subplot(122)
plt.plot(X_scaled[:, 0][ys==1], X_scaled[:, 1][ys==1], "bo")
plt.plot(X_scaled[:, 0][ys==0], X_scaled[:, 1][ys==0], "ms")
plot_svc_decision_boundary(svm_clf, -2, 2)
plt.xlabel("$x_0$", fontsize=20)
plt.title("Scaled", fontsize=16)
plt.axis([-2, 2, -2, 2])

save_fig("sensitivity_to_feature_scales_plot")


Saving figure sensitivity_to_feature_scales_plot

Sensitivity to outliers


In [5]:
X_outliers = np.array([[3.4, 1.3], [3.2, 0.8]])
y_outliers = np.array([0, 0])
Xo1 = np.concatenate([X, X_outliers[:1]], axis=0)
yo1 = np.concatenate([y, y_outliers[:1]], axis=0)
Xo2 = np.concatenate([X, X_outliers[1:]], axis=0)
yo2 = np.concatenate([y, y_outliers[1:]], axis=0)

svm_clf2 = SVC(kernel="linear", C=10**9)
svm_clf2.fit(Xo2, yo2)

plt.figure(figsize=(12,2.7))

plt.subplot(121)
plt.plot(Xo1[:, 0][yo1==1], Xo1[:, 1][yo1==1], "bs")
plt.plot(Xo1[:, 0][yo1==0], Xo1[:, 1][yo1==0], "yo")
plt.text(0.3, 1.0, "Impossible!", fontsize=24, color="red")
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.annotate("Outlier",
             xy=(X_outliers[0][0], X_outliers[0][1]),
             xytext=(2.5, 1.7),
             ha="center",
             arrowprops=dict(facecolor='black', shrink=0.1),
             fontsize=16,
            )
plt.axis([0, 5.5, 0, 2])

plt.subplot(122)
plt.plot(Xo2[:, 0][yo2==1], Xo2[:, 1][yo2==1], "bs")
plt.plot(Xo2[:, 0][yo2==0], Xo2[:, 1][yo2==0], "yo")
plot_svc_decision_boundary(svm_clf2, 0, 5.5)
plt.xlabel("Petal length", fontsize=14)
plt.annotate("Outlier",
             xy=(X_outliers[1][0], X_outliers[1][1]),
             xytext=(3.2, 0.08),
             ha="center",
             arrowprops=dict(facecolor='black', shrink=0.1),
             fontsize=16,
            )
plt.axis([0, 5.5, 0, 2])

save_fig("sensitivity_to_outliers_plot")
plt.show()


Saving figure sensitivity_to_outliers_plot

Large margin vs margin violations

This is the first code example in chapter 5:


In [6]:
import numpy as np
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

iris = datasets.load_iris()
X = iris["data"][:, (2, 3)]  # petal length, petal width
y = (iris["target"] == 2).astype(np.float64)  # Iris-Virginica

svm_clf = Pipeline((
        ("scaler", StandardScaler()),
        ("linear_svc", LinearSVC(C=1, loss="hinge", random_state=42)),
    ))

svm_clf.fit(X, y)


Out[6]:
Pipeline(steps=(('scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('linear_svc', LinearSVC(C=1, class_weight=None, dual=True, fit_intercept=True,
     intercept_scaling=1, loss='hinge', max_iter=1000, multi_class='ovr',
     penalty='l2', random_state=42, tol=0.0001, verbose=0))))

In [7]:
svm_clf.predict([[5.5, 1.7]])


Out[7]:
array([ 1.])

Now let's generate the graph comparing different regularization settings:


In [8]:
scaler = StandardScaler()
svm_clf1 = LinearSVC(C=1, loss="hinge", random_state=42)
svm_clf2 = LinearSVC(C=100, loss="hinge", random_state=42)

scaled_svm_clf1 = Pipeline((
        ("scaler", scaler),
        ("linear_svc", svm_clf1),
    ))
scaled_svm_clf2 = Pipeline((
        ("scaler", scaler),
        ("linear_svc", svm_clf2),
    ))

scaled_svm_clf1.fit(X, y)
scaled_svm_clf2.fit(X, y)


Out[8]:
Pipeline(steps=(('scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('linear_svc', LinearSVC(C=100, class_weight=None, dual=True, fit_intercept=True,
     intercept_scaling=1, loss='hinge', max_iter=1000, multi_class='ovr',
     penalty='l2', random_state=42, tol=0.0001, verbose=0))))

In [9]:
# Convert to unscaled parameters
b1 = svm_clf1.decision_function([-scaler.mean_ / scaler.scale_])
b2 = svm_clf2.decision_function([-scaler.mean_ / scaler.scale_])
w1 = svm_clf1.coef_[0] / scaler.scale_
w2 = svm_clf2.coef_[0] / scaler.scale_
svm_clf1.intercept_ = np.array([b1])
svm_clf2.intercept_ = np.array([b2])
svm_clf1.coef_ = np.array([w1])
svm_clf2.coef_ = np.array([w2])

# Find support vectors (LinearSVC does not do this automatically)
t = y * 2 - 1
support_vectors_idx1 = (t * (X.dot(w1) + b1) < 1).ravel()
support_vectors_idx2 = (t * (X.dot(w2) + b2) < 1).ravel()
svm_clf1.support_vectors_ = X[support_vectors_idx1]
svm_clf2.support_vectors_ = X[support_vectors_idx2]

In [10]:
plt.figure(figsize=(12,3.2))
plt.subplot(121)
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^", label="Iris-Virginica")
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs", label="Iris-Versicolor")
plot_svc_decision_boundary(svm_clf1, 4, 6)
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.legend(loc="upper left", fontsize=14)
plt.title("$C = {}$".format(svm_clf1.C), fontsize=16)
plt.axis([4, 6, 0.8, 2.8])

plt.subplot(122)
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")
plot_svc_decision_boundary(svm_clf2, 4, 6)
plt.xlabel("Petal length", fontsize=14)
plt.title("$C = {}$".format(svm_clf2.C), fontsize=16)
plt.axis([4, 6, 0.8, 2.8])

save_fig("regularization_plot")


Saving figure regularization_plot

Non-linear classification


In [11]:
X1D = np.linspace(-4, 4, 9).reshape(-1, 1)
X2D = np.c_[X1D, X1D**2]
y = np.array([0, 0, 1, 1, 1, 1, 1, 0, 0])

plt.figure(figsize=(11, 4))

plt.subplot(121)
plt.grid(True, which='both')
plt.axhline(y=0, color='k')
plt.plot(X1D[:, 0][y==0], np.zeros(4), "bs")
plt.plot(X1D[:, 0][y==1], np.zeros(5), "g^")
plt.gca().get_yaxis().set_ticks([])
plt.xlabel(r"$x_1$", fontsize=20)
plt.axis([-4.5, 4.5, -0.2, 0.2])

plt.subplot(122)
plt.grid(True, which='both')
plt.axhline(y=0, color='k')
plt.axvline(x=0, color='k')
plt.plot(X2D[:, 0][y==0], X2D[:, 1][y==0], "bs")
plt.plot(X2D[:, 0][y==1], X2D[:, 1][y==1], "g^")
plt.xlabel(r"$x_1$", fontsize=20)
plt.ylabel(r"$x_2$", fontsize=20, rotation=0)
plt.gca().get_yaxis().set_ticks([0, 4, 8, 12, 16])
plt.plot([-4.5, 4.5], [6.5, 6.5], "r--", linewidth=3)
plt.axis([-4.5, 4.5, -1, 17])

plt.subplots_adjust(right=1)

save_fig("higher_dimensions_plot", tight_layout=False)
plt.show()


Saving figure higher_dimensions_plot

In [12]:
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)

def plot_dataset(X, y, axes):
    plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")
    plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")
    plt.axis(axes)
    plt.grid(True, which='both')
    plt.xlabel(r"$x_1$", fontsize=20)
    plt.ylabel(r"$x_2$", fontsize=20, rotation=0)

plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
plt.show()



In [13]:
from sklearn.datasets import make_moons
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures

polynomial_svm_clf = Pipeline((
        ("poly_features", PolynomialFeatures(degree=3)),
        ("scaler", StandardScaler()),
        ("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42))
    ))

polynomial_svm_clf.fit(X, y)


Out[13]:
Pipeline(steps=(('poly_features', PolynomialFeatures(degree=3, include_bias=True, interaction_only=False)), ('scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svm_clf', LinearSVC(C=10, class_weight=None, dual=True, fit_intercept=True,
     intercept_scaling=1, loss='hinge', max_iter=1000, multi_class='ovr',
     penalty='l2', random_state=42, tol=0.0001, verbose=0))))

In [14]:
def plot_predictions(clf, axes):
    x0s = np.linspace(axes[0], axes[1], 100)
    x1s = np.linspace(axes[2], axes[3], 100)
    x0, x1 = np.meshgrid(x0s, x1s)
    X = np.c_[x0.ravel(), x1.ravel()]
    y_pred = clf.predict(X).reshape(x0.shape)
    y_decision = clf.decision_function(X).reshape(x0.shape)
    plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2)
    plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1)

plot_predictions(polynomial_svm_clf, [-1.5, 2.5, -1, 1.5])
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])

save_fig("moons_polynomial_svc_plot")
plt.show()


Saving figure moons_polynomial_svc_plot

In [15]:
from sklearn.svm import SVC

poly_kernel_svm_clf = Pipeline((
        ("scaler", StandardScaler()),
        ("svm_clf", SVC(kernel="poly", degree=3, coef0=1, C=5))
    ))
poly_kernel_svm_clf.fit(X, y)


Out[15]:
Pipeline(steps=(('scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svm_clf', SVC(C=5, cache_size=200, class_weight=None, coef0=1,
  decision_function_shape=None, degree=3, gamma='auto', kernel='poly',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False))))

In [16]:
poly100_kernel_svm_clf = Pipeline((
        ("scaler", StandardScaler()),
        ("svm_clf", SVC(kernel="poly", degree=10, coef0=100, C=5))
    ))
poly100_kernel_svm_clf.fit(X, y)


Out[16]:
Pipeline(steps=(('scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svm_clf', SVC(C=5, cache_size=200, class_weight=None, coef0=100,
  decision_function_shape=None, degree=10, gamma='auto', kernel='poly',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False))))

In [17]:
plt.figure(figsize=(11, 4))

plt.subplot(121)
plot_predictions(poly_kernel_svm_clf, [-1.5, 2.5, -1, 1.5])
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
plt.title(r"$d=3, r=1, C=5$", fontsize=18)

plt.subplot(122)
plot_predictions(poly100_kernel_svm_clf, [-1.5, 2.5, -1, 1.5])
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
plt.title(r"$d=10, r=100, C=5$", fontsize=18)

save_fig("moons_kernelized_polynomial_svc_plot")
plt.show()


Saving figure moons_kernelized_polynomial_svc_plot

In [18]:
def gaussian_rbf(x, landmark, gamma):
    return np.exp(-gamma * np.linalg.norm(x - landmark, axis=1)**2)

gamma = 0.3

x1s = np.linspace(-4.5, 4.5, 200).reshape(-1, 1)
x2s = gaussian_rbf(x1s, -2, gamma)
x3s = gaussian_rbf(x1s, 1, gamma)

XK = np.c_[gaussian_rbf(X1D, -2, gamma), gaussian_rbf(X1D, 1, gamma)]
yk = np.array([0, 0, 1, 1, 1, 1, 1, 0, 0])

plt.figure(figsize=(11, 4))

plt.subplot(121)
plt.grid(True, which='both')
plt.axhline(y=0, color='k')
plt.scatter(x=[-2, 1], y=[0, 0], s=150, alpha=0.5, c="red")
plt.plot(X1D[:, 0][yk==0], np.zeros(4), "bs")
plt.plot(X1D[:, 0][yk==1], np.zeros(5), "g^")
plt.plot(x1s, x2s, "g--")
plt.plot(x1s, x3s, "b:")
plt.gca().get_yaxis().set_ticks([0, 0.25, 0.5, 0.75, 1])
plt.xlabel(r"$x_1$", fontsize=20)
plt.ylabel(r"Similarity", fontsize=14)
plt.annotate(r'$\mathbf{x}$',
             xy=(X1D[3, 0], 0),
             xytext=(-0.5, 0.20),
             ha="center",
             arrowprops=dict(facecolor='black', shrink=0.1),
             fontsize=18,
            )
plt.text(-2, 0.9, "$x_2$", ha="center", fontsize=20)
plt.text(1, 0.9, "$x_3$", ha="center", fontsize=20)
plt.axis([-4.5, 4.5, -0.1, 1.1])

plt.subplot(122)
plt.grid(True, which='both')
plt.axhline(y=0, color='k')
plt.axvline(x=0, color='k')
plt.plot(XK[:, 0][yk==0], XK[:, 1][yk==0], "bs")
plt.plot(XK[:, 0][yk==1], XK[:, 1][yk==1], "g^")
plt.xlabel(r"$x_2$", fontsize=20)
plt.ylabel(r"$x_3$  ", fontsize=20, rotation=0)
plt.annotate(r'$\phi\left(\mathbf{x}\right)$',
             xy=(XK[3, 0], XK[3, 1]),
             xytext=(0.65, 0.50),
             ha="center",
             arrowprops=dict(facecolor='black', shrink=0.1),
             fontsize=18,
            )
plt.plot([-0.1, 1.1], [0.57, -0.1], "r--", linewidth=3)
plt.axis([-0.1, 1.1, -0.1, 1.1])
    
plt.subplots_adjust(right=1)

save_fig("kernel_method_plot")
plt.show()


Saving figure kernel_method_plot

In [19]:
x1_example = X1D[3, 0]
for landmark in (-2, 1):
    k = gaussian_rbf(np.array([[x1_example]]), np.array([[landmark]]), gamma)
    print("Phi({}, {}) = {}".format(x1_example, landmark, k))


Phi(-1.0, -2) = [ 0.74081822]
Phi(-1.0, 1) = [ 0.30119421]

In [20]:
rbf_kernel_svm_clf = Pipeline((
        ("scaler", StandardScaler()),
        ("svm_clf", SVC(kernel="rbf", gamma=5, C=0.001))
    ))
rbf_kernel_svm_clf.fit(X, y)


Out[20]:
Pipeline(steps=(('scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svm_clf', SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma=5, kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False))))

In [21]:
from sklearn.svm import SVC

gamma1, gamma2 = 0.1, 5
C1, C2 = 0.001, 1000
hyperparams = (gamma1, C1), (gamma1, C2), (gamma2, C1), (gamma2, C2)

svm_clfs = []
for gamma, C in hyperparams:
    rbf_kernel_svm_clf = Pipeline((
            ("scaler", StandardScaler()),
            ("svm_clf", SVC(kernel="rbf", gamma=gamma, C=C))
        ))
    rbf_kernel_svm_clf.fit(X, y)
    svm_clfs.append(rbf_kernel_svm_clf)

plt.figure(figsize=(11, 7))

for i, svm_clf in enumerate(svm_clfs):
    plt.subplot(221 + i)
    plot_predictions(svm_clf, [-1.5, 2.5, -1, 1.5])
    plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
    gamma, C = hyperparams[i]
    plt.title(r"$\gamma = {}, C = {}$".format(gamma, C), fontsize=16)

save_fig("moons_rbf_svc_plot")
plt.show()


Saving figure moons_rbf_svc_plot

Regression


In [22]:
np.random.seed(42)
m = 50
X = 2 * np.random.rand(m, 1)
y = (4 + 3 * X + np.random.randn(m, 1)).ravel()

In [23]:
from sklearn.svm import LinearSVR

svm_reg = LinearSVR(epsilon=1.5, random_state=42)
svm_reg.fit(X, y)


Out[23]:
LinearSVR(C=1.0, dual=True, epsilon=1.5, fit_intercept=True,
     intercept_scaling=1.0, loss='epsilon_insensitive', max_iter=1000,
     random_state=42, tol=0.0001, verbose=0)

In [24]:
svm_reg1 = LinearSVR(epsilon=1.5, random_state=42)
svm_reg2 = LinearSVR(epsilon=0.5, random_state=42)
svm_reg1.fit(X, y)
svm_reg2.fit(X, y)

def find_support_vectors(svm_reg, X, y):
    y_pred = svm_reg.predict(X)
    off_margin = (np.abs(y - y_pred) >= svm_reg.epsilon)
    return np.argwhere(off_margin)

svm_reg1.support_ = find_support_vectors(svm_reg1, X, y)
svm_reg2.support_ = find_support_vectors(svm_reg2, X, y)

eps_x1 = 1
eps_y_pred = svm_reg1.predict([[eps_x1]])

In [25]:
def plot_svm_regression(svm_reg, X, y, axes):
    x1s = np.linspace(axes[0], axes[1], 100).reshape(100, 1)
    y_pred = svm_reg.predict(x1s)
    plt.plot(x1s, y_pred, "k-", linewidth=2, label=r"$\hat{y}$")
    plt.plot(x1s, y_pred + svm_reg.epsilon, "k--")
    plt.plot(x1s, y_pred - svm_reg.epsilon, "k--")
    plt.scatter(X[svm_reg.support_], y[svm_reg.support_], s=180, facecolors='#FFAAAA')
    plt.plot(X, y, "bo")
    plt.xlabel(r"$x_1$", fontsize=18)
    plt.legend(loc="upper left", fontsize=18)
    plt.axis(axes)

plt.figure(figsize=(9, 4))
plt.subplot(121)
plot_svm_regression(svm_reg1, X, y, [0, 2, 3, 11])
plt.title(r"$\epsilon = {}$".format(svm_reg1.epsilon), fontsize=18)
plt.ylabel(r"$y$", fontsize=18, rotation=0)
#plt.plot([eps_x1, eps_x1], [eps_y_pred, eps_y_pred - svm_reg1.epsilon], "k-", linewidth=2)
plt.annotate(
        '', xy=(eps_x1, eps_y_pred), xycoords='data',
        xytext=(eps_x1, eps_y_pred - svm_reg1.epsilon),
        textcoords='data', arrowprops={'arrowstyle': '<->', 'linewidth': 1.5}
    )
plt.text(0.91, 5.6, r"$\epsilon$", fontsize=20)
plt.subplot(122)
plot_svm_regression(svm_reg2, X, y, [0, 2, 3, 11])
plt.title(r"$\epsilon = {}$".format(svm_reg2.epsilon), fontsize=18)
save_fig("svm_regression_plot")
plt.show()


Saving figure svm_regression_plot

In [26]:
np.random.seed(42)
m = 100
X = 2 * np.random.rand(m, 1) - 1
y = (0.2 + 0.1 * X + 0.5 * X**2 + np.random.randn(m, 1)/10).ravel()

In [27]:
from sklearn.svm import SVR

svm_poly_reg = SVR(kernel="poly", degree=2, C=100, epsilon=0.1)
svm_poly_reg.fit(X, y)


Out[27]:
SVR(C=100, cache_size=200, coef0=0.0, degree=2, epsilon=0.1, gamma='auto',
  kernel='poly', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

In [28]:
from sklearn.svm import SVR

svm_poly_reg1 = SVR(kernel="poly", degree=2, C=100, epsilon=0.1)
svm_poly_reg2 = SVR(kernel="poly", degree=2, C=0.01, epsilon=0.1)
svm_poly_reg1.fit(X, y)
svm_poly_reg2.fit(X, y)


Out[28]:
SVR(C=0.01, cache_size=200, coef0=0.0, degree=2, epsilon=0.1, gamma='auto',
  kernel='poly', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

In [29]:
plt.figure(figsize=(9, 4))
plt.subplot(121)
plot_svm_regression(svm_poly_reg1, X, y, [-1, 1, 0, 1])
plt.title(r"$degree={}, C={}, \epsilon = {}$".format(svm_poly_reg1.degree, svm_poly_reg1.C, svm_poly_reg1.epsilon), fontsize=18)
plt.ylabel(r"$y$", fontsize=18, rotation=0)
plt.subplot(122)
plot_svm_regression(svm_poly_reg2, X, y, [-1, 1, 0, 1])
plt.title(r"$degree={}, C={}, \epsilon = {}$".format(svm_poly_reg2.degree, svm_poly_reg2.C, svm_poly_reg2.epsilon), fontsize=18)
save_fig("svm_with_polynomial_kernel_plot")
plt.show()


Saving figure svm_with_polynomial_kernel_plot

Under the hood


In [30]:
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)]  # petal length, petal width
y = (iris["target"] == 2).astype(np.float64)  # Iris-Virginica

In [31]:
from mpl_toolkits.mplot3d import Axes3D

def plot_3D_decision_function(ax, w, b, x1_lim=[4, 6], x2_lim=[0.8, 2.8]):
    x1_in_bounds = (X[:, 0] > x1_lim[0]) & (X[:, 0] < x1_lim[1])
    X_crop = X[x1_in_bounds]
    y_crop = y[x1_in_bounds]
    x1s = np.linspace(x1_lim[0], x1_lim[1], 20)
    x2s = np.linspace(x2_lim[0], x2_lim[1], 20)
    x1, x2 = np.meshgrid(x1s, x2s)
    xs = np.c_[x1.ravel(), x2.ravel()]
    df = (xs.dot(w) + b).reshape(x1.shape)
    m = 1 / np.linalg.norm(w)
    boundary_x2s = -x1s*(w[0]/w[1])-b/w[1]
    margin_x2s_1 = -x1s*(w[0]/w[1])-(b-1)/w[1]
    margin_x2s_2 = -x1s*(w[0]/w[1])-(b+1)/w[1]
    ax.plot_surface(x1s, x2, 0, color="b", alpha=0.2, cstride=100, rstride=100)
    ax.plot(x1s, boundary_x2s, 0, "k-", linewidth=2, label=r"$h=0$")
    ax.plot(x1s, margin_x2s_1, 0, "k--", linewidth=2, label=r"$h=\pm 1$")
    ax.plot(x1s, margin_x2s_2, 0, "k--", linewidth=2)
    ax.plot(X_crop[:, 0][y_crop==1], X_crop[:, 1][y_crop==1], 0, "g^")
    ax.plot_wireframe(x1, x2, df, alpha=0.3, color="k")
    ax.plot(X_crop[:, 0][y_crop==0], X_crop[:, 1][y_crop==0], 0, "bs")
    ax.axis(x1_lim + x2_lim)
    ax.text(4.5, 2.5, 3.8, "Decision function $h$", fontsize=15)
    ax.set_xlabel(r"Petal length", fontsize=15)
    ax.set_ylabel(r"Petal width", fontsize=15)
    ax.set_zlabel(r"$h = \mathbf{w}^t \cdot \mathbf{x} + b$", fontsize=18)
    ax.legend(loc="upper left", fontsize=16)

fig = plt.figure(figsize=(11, 6))
ax1 = fig.add_subplot(111, projection='3d')
plot_3D_decision_function(ax1, w=svm_clf2.coef_[0], b=svm_clf2.intercept_[0])

save_fig("iris_3D_plot")
plt.show()


Saving figure iris_3D_plot

Small weight vector results in a large margin


In [32]:
def plot_2D_decision_function(w, b, ylabel=True, x1_lim=[-3, 3]):
    x1 = np.linspace(x1_lim[0], x1_lim[1], 200)
    y = w * x1 + b
    m = 1 / w

    plt.plot(x1, y)
    plt.plot(x1_lim, [1, 1], "k:")
    plt.plot(x1_lim, [-1, -1], "k:")
    plt.axhline(y=0, color='k')
    plt.axvline(x=0, color='k')
    plt.plot([m, m], [0, 1], "k--")
    plt.plot([-m, -m], [0, -1], "k--")
    plt.plot([-m, m], [0, 0], "k-o", linewidth=3)
    plt.axis(x1_lim + [-2, 2])
    plt.xlabel(r"$x_1$", fontsize=16)
    if ylabel:
        plt.ylabel(r"$w_1 x_1$  ", rotation=0, fontsize=16)
    plt.title(r"$w_1 = {}$".format(w), fontsize=16)

plt.figure(figsize=(12, 3.2))
plt.subplot(121)
plot_2D_decision_function(1, 0)
plt.subplot(122)
plot_2D_decision_function(0.5, 0, ylabel=False)
save_fig("small_w_large_margin_plot")
plt.show()


Saving figure small_w_large_margin_plot

In [33]:
from sklearn.svm import SVC
from sklearn import datasets

iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64) # Iris-Virginica

svm_clf = SVC(kernel="linear", C=1)
svm_clf.fit(X, y)
svm_clf.predict([[5.3, 1.3]])


Out[33]:
array([ 1.])

Hinge loss


In [34]:
t = np.linspace(-2, 4, 200)
h = np.where(1 - t < 0, 0, 1 - t)  # max(0, 1-t)

plt.figure(figsize=(5,2.8))
plt.plot(t, h, "b-", linewidth=2, label="$max(0, 1 - t)$")
plt.grid(True, which='both')
plt.axhline(y=0, color='k')
plt.axvline(x=0, color='k')
plt.yticks(np.arange(-1, 2.5, 1))
plt.xlabel("$t$", fontsize=16)
plt.axis([-2, 4, -1, 2.5])
plt.legend(loc="upper right", fontsize=16)
save_fig("hinge_plot")
plt.show()


Saving figure hinge_plot

Extra material

Training time


In [35]:
X, y = make_moons(n_samples=1000, noise=0.4, random_state=42)
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")


Out[35]:
[<matplotlib.lines.Line2D at 0x7fe67facc908>]

In [36]:
import time

tol = 0.1
tols = []
times = []
for i in range(10):
    svm_clf = SVC(kernel="poly", gamma=3, C=10, tol=tol, verbose=1)
    t1 = time.time()
    svm_clf.fit(X, y)
    t2 = time.time()
    times.append(t2-t1)
    tols.append(tol)
    print(i, tol, t2-t1)
    tol /= 10
plt.semilogx(tols, times)


[LibSVM]0 0.1 0.24260568618774414
[LibSVM]1 0.01 0.2221059799194336
[LibSVM]2 0.001 0.2712545394897461
[LibSVM]3 0.0001 0.49069976806640625
[LibSVM]4 1e-05 0.7979280948638916
[LibSVM]5 1.0000000000000002e-06 0.8101603984832764
[LibSVM]6 1.0000000000000002e-07 6.707451581954956
[LibSVM]7 1.0000000000000002e-08 0.893460750579834
[LibSVM]8 1.0000000000000003e-09 0.8796014785766602
[LibSVM]9 1.0000000000000003e-10 0.8945713043212891
Out[36]:
[<matplotlib.lines.Line2D at 0x7fe67fb5cc50>]

Linear SVM classifier implementation using Batch Gradient Descent


In [37]:
# Training set
X = iris["data"][:, (2, 3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64).reshape(-1, 1) # Iris-Virginica

In [38]:
from sklearn.base import BaseEstimator

class MyLinearSVC(BaseEstimator):
    def __init__(self, C=1, eta0=1, eta_d=10000, n_epochs=1000, random_state=None):
        self.C = C
        self.eta0 = eta0
        self.n_epochs = n_epochs
        self.random_state = random_state
        self.eta_d = eta_d

    def eta(self, epoch):
        return self.eta0 / (epoch + self.eta_d)
        
    def fit(self, X, y):
        # Random initialization
        if self.random_state:
            np.random.seed(self.random_state)
        w = np.random.randn(X.shape[1], 1) # n feature weights
        b = 0

        m = len(X)
        t = y * 2 - 1  # -1 if t==0, +1 if t==1
        X_t = X * t
        self.Js=[]

        # Training
        for epoch in range(self.n_epochs):
            support_vectors_idx = (X_t.dot(w) + t * b < 1).ravel()
            X_t_sv = X_t[support_vectors_idx]
            t_sv = t[support_vectors_idx]

            J = 1/2 * np.sum(w * w) + self.C * (np.sum(1 - X_t_sv.dot(w)) - b * np.sum(t_sv))
            self.Js.append(J)

            w_gradient_vector = w - self.C * np.sum(X_t_sv, axis=0).reshape(-1, 1)
            b_derivative = -C * np.sum(t_sv)
                
            w = w - self.eta(epoch) * w_gradient_vector
            b = b - self.eta(epoch) * b_derivative
            

        self.intercept_ = np.array([b])
        self.coef_ = np.array([w])
        support_vectors_idx = (X_t.dot(w) + b < 1).ravel()
        self.support_vectors_ = X[support_vectors_idx]
        return self

    def decision_function(self, X):
        return X.dot(self.coef_[0]) + self.intercept_[0]

    def predict(self, X):
        return (self.decision_function(X) >= 0).astype(np.float64)

C=2
svm_clf = MyLinearSVC(C=C, eta0 = 10, eta_d = 1000, n_epochs=60000, random_state=2)
svm_clf.fit(X, y)
svm_clf.predict(np.array([[5, 2], [4, 1]]))


Out[38]:
array([[ 1.],
       [ 0.]])

In [39]:
plt.plot(range(svm_clf.n_epochs), svm_clf.Js)
plt.axis([0, svm_clf.n_epochs, 0, 100])


Out[39]:
[0, 60000, 0, 100]

In [40]:
print(svm_clf.intercept_, svm_clf.coef_)


[-15.56780998] [[[ 2.28129013]
  [ 2.71597487]]]

In [41]:
svm_clf2 = SVC(kernel="linear", C=C)
svm_clf2.fit(X, y.ravel())
print(svm_clf2.intercept_, svm_clf2.coef_)


[-15.51721253] [[ 2.27128546  2.71287145]]

In [42]:
yr = y.ravel()
plt.figure(figsize=(12,3.2))
plt.subplot(121)
plt.plot(X[:, 0][yr==1], X[:, 1][yr==1], "g^", label="Iris-Virginica")
plt.plot(X[:, 0][yr==0], X[:, 1][yr==0], "bs", label="Not Iris-Virginica")
plot_svc_decision_boundary(svm_clf, 4, 6)
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.title("MyLinearSVC", fontsize=14)
plt.axis([4, 6, 0.8, 2.8])

plt.subplot(122)
plt.plot(X[:, 0][yr==1], X[:, 1][yr==1], "g^")
plt.plot(X[:, 0][yr==0], X[:, 1][yr==0], "bs")
plot_svc_decision_boundary(svm_clf2, 4, 6)
plt.xlabel("Petal length", fontsize=14)
plt.title("SVC", fontsize=14)
plt.axis([4, 6, 0.8, 2.8])


Out[42]:
[4, 6, 0.8, 2.8]

In [43]:
from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(loss="hinge", alpha = 0.017, n_iter = 50, random_state=42)
sgd_clf.fit(X, y.ravel())

m = len(X)
t = y * 2 - 1  # -1 if t==0, +1 if t==1
X_b = np.c_[np.ones((m, 1)), X]  # Add bias input x0=1
X_b_t = X_b * t
sgd_theta = np.r_[sgd_clf.intercept_[0], sgd_clf.coef_[0]]
print(sgd_theta)
support_vectors_idx = (X_b_t.dot(sgd_theta) < 1).ravel()
sgd_clf.support_vectors_ = X[support_vectors_idx]
sgd_clf.C = C

plt.figure(figsize=(5.5,3.2))
plt.plot(X[:, 0][yr==1], X[:, 1][yr==1], "g^")
plt.plot(X[:, 0][yr==0], X[:, 1][yr==0], "bs")
plot_svc_decision_boundary(sgd_clf, 4, 6)
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.title("SGDClassifier", fontsize=14)
plt.axis([4, 6, 0.8, 2.8])


[-14.062485     2.24179316   1.79750198]
Out[43]:
[4, 6, 0.8, 2.8]

Exercise solutions

1. to 7.

See appendix A.

8.

Exercise: train a LinearSVC on a linearly separable dataset. Then train an SVC and a SGDClassifier on the same dataset. See if you can get them to produce roughly the same model.

Let's use the Iris dataset: the Iris Setosa and Iris Versicolor classes are linearly separable.


In [44]:
from sklearn import datasets

iris = datasets.load_iris()
X = iris["data"][:, (2, 3)]  # petal length, petal width
y = iris["target"]

setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]

In [45]:
from sklearn.svm import SVC, LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.preprocessing import StandardScaler

C = 5
alpha = 1 / (C * len(X))

lin_clf = LinearSVC(loss="hinge", C=C, random_state=42)
svm_clf = SVC(kernel="linear", C=C)
sgd_clf = SGDClassifier(loss="hinge", learning_rate="constant", eta0=0.001, alpha=alpha,
                        n_iter=100000, random_state=42)

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

lin_clf.fit(X_scaled, y)
svm_clf.fit(X_scaled, y)
sgd_clf.fit(X_scaled, y)

print("LinearSVC:                   ", lin_clf.intercept_, lin_clf.coef_)
print("SVC:                         ", svm_clf.intercept_, svm_clf.coef_)
print("SGDClassifier(alpha={:.5f}):".format(sgd_clf.alpha), sgd_clf.intercept_, sgd_clf.coef_)


LinearSVC:                    [ 0.28480668] [[ 1.05542422  1.09851637]]
SVC:                          [ 0.31933577] [[ 1.1223101   1.02531081]]
SGDClassifier(alpha=0.00200): [ 0.32] [[ 1.12293103  1.02620763]]

Let's plot the decision boundaries of these three models:


In [46]:
# Compute the slope and bias of each decision boundary
w1 = -lin_clf.coef_[0, 0]/lin_clf.coef_[0, 1]
b1 = -lin_clf.intercept_[0]/lin_clf.coef_[0, 1]
w2 = -svm_clf.coef_[0, 0]/svm_clf.coef_[0, 1]
b2 = -svm_clf.intercept_[0]/svm_clf.coef_[0, 1]
w3 = -sgd_clf.coef_[0, 0]/sgd_clf.coef_[0, 1]
b3 = -sgd_clf.intercept_[0]/sgd_clf.coef_[0, 1]

# Transform the decision boundary lines back to the original scale
line1 = scaler.inverse_transform([[-10, -10 * w1 + b1], [10, 10 * w1 + b1]])
line2 = scaler.inverse_transform([[-10, -10 * w2 + b2], [10, 10 * w2 + b2]])
line3 = scaler.inverse_transform([[-10, -10 * w3 + b3], [10, 10 * w3 + b3]])

# Plot all three decision boundaries
plt.figure(figsize=(11, 4))
plt.plot(line1[:, 0], line1[:, 1], "k:", label="LinearSVC")
plt.plot(line2[:, 0], line2[:, 1], "b--", linewidth=2, label="SVC")
plt.plot(line3[:, 0], line3[:, 1], "r-", label="SGDClassifier")
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs") # label="Iris-Versicolor"
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "yo") # label="Iris-Setosa"
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.legend(loc="upper center", fontsize=14)
plt.axis([0, 5.5, 0, 2])

plt.show()


Close enough!

9.

Exercise: train an SVM classifier on the MNIST dataset. Since SVM classifiers are binary classifiers, you will need to use one-versus-all to classify all 10 digits. You may want to tune the hyperparameters using small validation sets to speed up the process. What accuracy can you reach?

First, let's load the dataset and split it into a training set and a test set. We could use train_test_split() but people usually just take the first 60,000 instances for the training set, and the last 10,000 instances for the test set (this makes it possible to compare your model's performance with others):


In [47]:
from sklearn.datasets import fetch_mldata

mnist = fetch_mldata("MNIST original")
X = mnist["data"]
y = mnist["target"]

X_train = X[:60000]
y_train = y[:60000]
X_test = X[60000:]
y_test = y[60000:]

Many training algorithms are sensitive to the order of the training instances, so it's generally good practice to shuffle them first:


In [48]:
np.random.seed(42)
rnd_idx = np.random.permutation(60000)
X_train = X_train[rnd_idx]
y_train = y_train[rnd_idx]

Let's start simple, with a linear SVM classifier. It will automatically use the One-vs-All (also called One-vs-the-Rest, OvR) strategy, so there's nothing special we need to do. Easy!


In [49]:
lin_clf = LinearSVC(random_state=42)
lin_clf.fit(X_train, y_train)


Out[49]:
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
     intercept_scaling=1, loss='squared_hinge', max_iter=1000,
     multi_class='ovr', penalty='l2', random_state=42, tol=0.0001,
     verbose=0)

Let's make predictions on the training set and measure the accuracy (we don't want to measure it on the test set yet, since we have not selected and trained the final model yet):


In [50]:
from sklearn.metrics import accuracy_score

y_pred = lin_clf.predict(X_train)
accuracy_score(y_train, y_pred)


Out[50]:
0.82633333333333336

Wow, 82% accuracy on MNIST is a really bad performance. This linear model is certainly too simple for MNIST, but perhaps we just needed to scale the data first:


In [51]:
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train.astype(np.float32))
X_test_scaled = scaler.transform(X_test.astype(np.float32))

In [52]:
lin_clf = LinearSVC(random_state=42)
lin_clf.fit(X_train_scaled, y_train)


Out[52]:
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
     intercept_scaling=1, loss='squared_hinge', max_iter=1000,
     multi_class='ovr', penalty='l2', random_state=42, tol=0.0001,
     verbose=0)

In [53]:
y_pred = lin_clf.predict(X_train_scaled)
accuracy_score(y_train, y_pred)


Out[53]:
0.9224

That's much better (we cut the error rate in two), but still not great at all for MNIST. If we want to use an SVM, we will have to use a kernel. Let's try an SVC with an RBF kernel (the default).

Warning: if you are using Scikit-Learn ≤ 0.19, the SVC class will use the One-vs-One (OvO) strategy by default, so you must explicitly set decision_function_shape="ovr" if you want to use the OvR strategy instead (OvR is the default since 0.19).


In [54]:
svm_clf = SVC(decision_function_shape="ovr")
svm_clf.fit(X_train_scaled[:10000], y_train[:10000])


Out[54]:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

In [55]:
y_pred = svm_clf.predict(X_train_scaled)
accuracy_score(y_train, y_pred)


Out[55]:
0.94615000000000005

That's promising, we get better performance even though we trained the model on 6 times less data. Let's tune the hyperparameters by doing a randomized search with cross validation. We will do this on a small dataset just to speed up the process:


In [56]:
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import reciprocal, uniform

param_distributions = {"gamma": reciprocal(0.001, 0.1), "C": uniform(1, 10)}
rnd_search_cv = RandomizedSearchCV(svm_clf, param_distributions, n_iter=10, verbose=2)
rnd_search_cv.fit(X_train_scaled[:1000], y_train[:1000])


Fitting 3 folds for each of 10 candidates, totalling 30 fits
[CV] gamma=0.00176607465048, C=8.85231605842 .........................
[CV] .......... gamma=0.00176607465048, C=8.85231605842, total=   0.8s
[CV] gamma=0.00176607465048, C=8.85231605842 .........................
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    1.2s remaining:    0.0s
[CV] .......... gamma=0.00176607465048, C=8.85231605842, total=   0.8s
[CV] gamma=0.00176607465048, C=8.85231605842 .........................
[CV] .......... gamma=0.00176607465048, C=8.85231605842, total=   0.8s
[CV] gamma=0.00184893979432, C=1.1070059007 ..........................
[CV] ........... gamma=0.00184893979432, C=1.1070059007, total=   0.8s
[CV] gamma=0.00184893979432, C=1.1070059007 ..........................
[CV] ........... gamma=0.00184893979432, C=1.1070059007, total=   0.8s
[CV] gamma=0.00184893979432, C=1.1070059007 ..........................
[CV] ........... gamma=0.00184893979432, C=1.1070059007, total=   0.8s
[CV] gamma=0.0408025396137, C=9.88773818971 ..........................
[CV] ........... gamma=0.0408025396137, C=9.88773818971, total=   1.0s
[CV] gamma=0.0408025396137, C=9.88773818971 ..........................
[CV] ........... gamma=0.0408025396137, C=9.88773818971, total=   1.0s
[CV] gamma=0.0408025396137, C=9.88773818971 ..........................
[CV] ........... gamma=0.0408025396137, C=9.88773818971, total=   1.0s
[CV] gamma=0.00464565003701, C=5.7997015194 ..........................
[CV] ........... gamma=0.00464565003701, C=5.7997015194, total=   0.9s
[CV] gamma=0.00464565003701, C=5.7997015194 ..........................
[CV] ........... gamma=0.00464565003701, C=5.7997015194, total=   0.9s
[CV] gamma=0.00464565003701, C=5.7997015194 ..........................
[CV] ........... gamma=0.00464565003701, C=5.7997015194, total=   1.0s
[CV] gamma=0.0157352905643, C=6.84899112775 ..........................
[CV] ........... gamma=0.0157352905643, C=6.84899112775, total=   1.0s
[CV] gamma=0.0157352905643, C=6.84899112775 ..........................
[CV] ........... gamma=0.0157352905643, C=6.84899112775, total=   1.0s
[CV] gamma=0.0157352905643, C=6.84899112775 ..........................
[CV] ........... gamma=0.0157352905643, C=6.84899112775, total=   1.0s
[CV] gamma=0.0294618722484, C=9.74491791678 ..........................
[CV] ........... gamma=0.0294618722484, C=9.74491791678, total=   1.0s
[CV] gamma=0.0294618722484, C=9.74491791678 ..........................
[CV] ........... gamma=0.0294618722484, C=9.74491791678, total=   1.0s
[CV] gamma=0.0294618722484, C=9.74491791678 ..........................
[CV] ........... gamma=0.0294618722484, C=9.74491791678, total=   1.0s
[CV] gamma=0.00614152194782, C=3.82271785963 .........................
[CV] .......... gamma=0.00614152194782, C=3.82271785963, total=   1.0s
[CV] gamma=0.00614152194782, C=3.82271785963 .........................
[CV] .......... gamma=0.00614152194782, C=3.82271785963, total=   1.0s
[CV] gamma=0.00614152194782, C=3.82271785963 .........................
[CV] .......... gamma=0.00614152194782, C=3.82271785963, total=   1.0s
[CV] gamma=0.0219465853153, C=3.7155233269 ...........................
[CV] ............ gamma=0.0219465853153, C=3.7155233269, total=   1.0s
[CV] gamma=0.0219465853153, C=3.7155233269 ...........................
[CV] ............ gamma=0.0219465853153, C=3.7155233269, total=   1.0s
[CV] gamma=0.0219465853153, C=3.7155233269 ...........................
[CV] ............ gamma=0.0219465853153, C=3.7155233269, total=   1.0s
[CV] gamma=0.00374501745191, C=5.22924613427 .........................
[CV] .......... gamma=0.00374501745191, C=5.22924613427, total=   0.9s
[CV] gamma=0.00374501745191, C=5.22924613427 .........................
[CV] .......... gamma=0.00374501745191, C=5.22924613427, total=   0.9s
[CV] gamma=0.00374501745191, C=5.22924613427 .........................
[CV] .......... gamma=0.00374501745191, C=5.22924613427, total=   0.9s
[CV] gamma=0.0224153322878, C=4.89867874863 ..........................
[CV] ........... gamma=0.0224153322878, C=4.89867874863, total=   1.0s
[CV] gamma=0.0224153322878, C=4.89867874863 ..........................
[CV] ........... gamma=0.0224153322878, C=4.89867874863, total=   1.0s
[CV] gamma=0.0224153322878, C=4.89867874863 ..........................
[CV] ........... gamma=0.0224153322878, C=4.89867874863, total=   1.1s
[Parallel(n_jobs=1)]: Done  30 out of  30 | elapsed:   40.7s finished
Out[56]:
RandomizedSearchCV(cv=None, error_score='raise',
          estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False),
          fit_params={}, iid=True, n_iter=10, n_jobs=1,
          param_distributions={'C': <scipy.stats._distn_infrastructure.rv_frozen object at 0x7fe67f7a2470>, 'gamma': <scipy.stats._distn_infrastructure.rv_frozen object at 0x7fe67f7a2908>},
          pre_dispatch='2*n_jobs', random_state=None, refit=True,
          return_train_score=True, scoring=None, verbose=2)

In [57]:
rnd_search_cv.best_estimator_


Out[57]:
SVC(C=8.8523160584230869, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=0.001766074650481071,
  kernel='rbf', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)

In [58]:
rnd_search_cv.best_score_


Out[58]:
0.85599999999999998

This looks pretty low but remember we only trained the model on 1,000 instances. Let's retrain the best estimator on the whole training set (run this at night, it will take hours):


In [59]:
rnd_search_cv.best_estimator_.fit(X_train_scaled, y_train)


Out[59]:
SVC(C=8.8523160584230869, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=0.001766074650481071,
  kernel='rbf', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)

In [60]:
y_pred = rnd_search_cv.best_estimator_.predict(X_train_scaled)
accuracy_score(y_train, y_pred)


Out[60]:
0.99965000000000004

Ah, this looks good! Let's select this model. Now we can test it on the test set:


In [61]:
y_pred = rnd_search_cv.best_estimator_.predict(X_test_scaled)
accuracy_score(y_test, y_pred)


Out[61]:
0.97089999999999999

Not too bad, but apparently the model is overfitting slightly. It's tempting to tweak the hyperparameters a bit more (e.g. decreasing C and/or gamma), but we would run the risk of overfitting the test set. Other people have found that the hyperparameters C=5 and gamma=0.005 yield even better performance (over 98% accuracy). By running the randomized search for longer and on a larger part of the training set, you may be able to find this as well.

10.

Exercise: train an SVM regressor on the California housing dataset.

Let's load the dataset using Scikit-Learn's fetch_california_housing() function:


In [62]:
from sklearn.datasets import fetch_california_housing

housing = fetch_california_housing()
X = housing["data"]
y = housing["target"]

Split it into a training set and a test set:


In [63]:
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Don't forget to scale the data:


In [64]:
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

Let's train a simple LinearSVR first:


In [65]:
from sklearn.svm import LinearSVR

lin_svr = LinearSVR(random_state=42)
lin_svr.fit(X_train_scaled, y_train)


Out[65]:
LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True,
     intercept_scaling=1.0, loss='epsilon_insensitive', max_iter=1000,
     random_state=42, tol=0.0001, verbose=0)

Let's see how it performs on the training set:


In [66]:
from sklearn.metrics import mean_squared_error

y_pred = lin_svr.predict(X_train_scaled)
mse = mean_squared_error(y_train, y_pred)
mse


Out[66]:
0.94996882221722923

Let's look at the RMSE:


In [67]:
np.sqrt(mse)


Out[67]:
0.97466344048457532

In this training set, the targets are tens of thousands of dollars. The RMSE gives a rough idea of the kind of error you should expect (with a higher weight for large errors): so with this model we can expect errors somewhere around $10,000. Not great. Let's see if we can do better with an RBF Kernel. We will use randomized search with cross validation to find the appropriate hyperparameter values for C and gamma:


In [68]:
from sklearn.svm import SVR
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import reciprocal, uniform

param_distributions = {"gamma": reciprocal(0.001, 0.1), "C": uniform(1, 10)}
rnd_search_cv = RandomizedSearchCV(SVR(), param_distributions, n_iter=10, verbose=2, random_state=42)
rnd_search_cv.fit(X_train_scaled, y_train)


Fitting 3 folds for each of 10 candidates, totalling 30 fits
[CV] gamma=0.0796945481864, C=4.74540118847 ..........................
[CV] ........... gamma=0.0796945481864, C=4.74540118847, total=  11.4s
[CV] gamma=0.0796945481864, C=4.74540118847 ..........................
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:   15.4s remaining:    0.0s
[CV] ........... gamma=0.0796945481864, C=4.74540118847, total=  11.4s
[CV] gamma=0.0796945481864, C=4.74540118847 ..........................
[CV] ........... gamma=0.0796945481864, C=4.74540118847, total=  11.5s
[CV] gamma=0.0157513204998, C=8.31993941811 ..........................
[CV] ........... gamma=0.0157513204998, C=8.31993941811, total=  11.2s
[CV] gamma=0.0157513204998, C=8.31993941811 ..........................
[CV] ........... gamma=0.0157513204998, C=8.31993941811, total=  10.9s
[CV] gamma=0.0157513204998, C=8.31993941811 ..........................
[CV] ........... gamma=0.0157513204998, C=8.31993941811, total=  11.2s
[CV] gamma=0.00205111041884, C=2.56018640442 .........................
[CV] .......... gamma=0.00205111041884, C=2.56018640442, total=  10.6s
[CV] gamma=0.00205111041884, C=2.56018640442 .........................
[CV] .......... gamma=0.00205111041884, C=2.56018640442, total=   9.9s
[CV] gamma=0.00205111041884, C=2.56018640442 .........................
[CV] .......... gamma=0.00205111041884, C=2.56018640442, total=  10.5s
[CV] gamma=0.0539948440979, C=1.58083612168 ..........................
[CV] ........... gamma=0.0539948440979, C=1.58083612168, total=  10.4s
[CV] gamma=0.0539948440979, C=1.58083612168 ..........................
[CV] ........... gamma=0.0539948440979, C=1.58083612168, total=   9.9s
[CV] gamma=0.0539948440979, C=1.58083612168 ..........................
[CV] ........... gamma=0.0539948440979, C=1.58083612168, total=  10.0s
[CV] gamma=0.0260702475837, C=7.01115011743 ..........................
[CV] ........... gamma=0.0260702475837, C=7.01115011743, total=  10.0s
[CV] gamma=0.0260702475837, C=7.01115011743 ..........................
[CV] ........... gamma=0.0260702475837, C=7.01115011743, total=  11.8s
[CV] gamma=0.0260702475837, C=7.01115011743 ..........................
[CV] ........... gamma=0.0260702475837, C=7.01115011743, total=  11.5s
[CV] gamma=0.087060208783, C=1.20584494296 ...........................
[CV] ............ gamma=0.087060208783, C=1.20584494296, total=   9.9s
[CV] gamma=0.087060208783, C=1.20584494296 ...........................
[CV] ............ gamma=0.087060208783, C=1.20584494296, total=  10.4s
[CV] gamma=0.087060208783, C=1.20584494296 ...........................
[CV] ............ gamma=0.087060208783, C=1.20584494296, total=  10.1s
[CV] gamma=0.00265875439833, C=9.324426408 ...........................
[CV] ............ gamma=0.00265875439833, C=9.324426408, total=  10.4s
[CV] gamma=0.00265875439833, C=9.324426408 ...........................
[CV] ............ gamma=0.00265875439833, C=9.324426408, total=  10.7s
[CV] gamma=0.00265875439833, C=9.324426408 ...........................
[CV] ............ gamma=0.00265875439833, C=9.324426408, total=   9.8s
[CV] gamma=0.00232706770838, C=2.81824967207 .........................
[CV] .......... gamma=0.00232706770838, C=2.81824967207, total=  10.8s
[CV] gamma=0.00232706770838, C=2.81824967207 .........................
[CV] .......... gamma=0.00232706770838, C=2.81824967207, total=  10.3s
[CV] gamma=0.00232706770838, C=2.81824967207 .........................
[CV] .......... gamma=0.00232706770838, C=2.81824967207, total=  10.3s
[CV] gamma=0.0112076062119, C=4.0424224296 ...........................
[CV] ............ gamma=0.0112076062119, C=4.0424224296, total=  10.0s
[CV] gamma=0.0112076062119, C=4.0424224296 ...........................
[CV] ............ gamma=0.0112076062119, C=4.0424224296, total=  10.0s
[CV] gamma=0.0112076062119, C=4.0424224296 ...........................
[CV] ............ gamma=0.0112076062119, C=4.0424224296, total=  10.1s
[CV] gamma=0.00382347522468, C=5.31945018642 .........................
[CV] .......... gamma=0.00382347522468, C=5.31945018642, total=   9.8s
[CV] gamma=0.00382347522468, C=5.31945018642 .........................
[CV] .......... gamma=0.00382347522468, C=5.31945018642, total=   9.8s
[CV] gamma=0.00382347522468, C=5.31945018642 .........................
[CV] .......... gamma=0.00382347522468, C=5.31945018642, total=   9.9s
[Parallel(n_jobs=1)]: Done  30 out of  30 | elapsed:  7.3min finished
Out[68]:
RandomizedSearchCV(cv=None, error_score='raise',
          estimator=SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto',
  kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False),
          fit_params={}, iid=True, n_iter=10, n_jobs=1,
          param_distributions={'C': <scipy.stats._distn_infrastructure.rv_frozen object at 0x7fe67f74ec50>, 'gamma': <scipy.stats._distn_infrastructure.rv_frozen object at 0x7fe67f74eb00>},
          pre_dispatch='2*n_jobs', random_state=42, refit=True,
          return_train_score=True, scoring=None, verbose=2)

In [69]:
rnd_search_cv.best_estimator_


Out[69]:
SVR(C=4.7454011884736254, cache_size=200, coef0=0.0, degree=3, epsilon=0.1,
  gamma=0.079694548186439285, kernel='rbf', max_iter=-1, shrinking=True,
  tol=0.001, verbose=False)

Now let's measure the RMSE on the training set:


In [70]:
y_pred = rnd_search_cv.best_estimator_.predict(X_train_scaled)
mse = mean_squared_error(y_train, y_pred)
np.sqrt(mse)


Out[70]:
0.5727524770785356

Looks much better than the linear model. Let's select this model and evaluate it on the test set:


In [71]:
y_pred = rnd_search_cv.best_estimator_.predict(X_test_scaled)
mse = mean_squared_error(y_test, y_pred)
np.sqrt(mse)


Out[71]:
0.59291683855287403

In [ ]: