In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy import integrate
The 2d polar integral of a scalar function $f(r, \theta)$ is defined as:
$$ I(r_{max}) = \int_0^{r_{max}} \int_0^{2\pi} f(r, \theta) r dr d\theta $$Write a function integrate_polar(f, rmax) that performs this integral numerically using scipy.integrate.dblquad.
In [4]:
def integrate_polar(f, rmax):
"""Integrate the function f(r, theta) over r=[0,rmax], theta=[0,2*np.pi]"""
new_f = lambda r,t: r*f(r,t)
rlower = lambda r: 0
rupper = lambda r: rmax
I,e=integrate.dblquad(new_f, 0, 2*np.pi, rlower, rupper)
return I
In [5]:
assert np.allclose(integrate_polar(lambda r,t: 1, 1.0), np.pi)
assert np.allclose(integrate_polar(lambda r, t: np.exp(-r)*(np.cos(t)**2), np.inf), np.pi)