In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [2]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
# standard local maxima checking, not much explanation needed
d=[]
if a[0]>a[1]:
d.append(0)
for i in range(1,len(a)-1):
if a[i]>a[i-1] and a[i]>a[i+1]:
d.append(i)
if a[-1]>a[-2]:
d.append(len(a)-1)
p=np.array(d)
return p
In [3]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [4]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [9]:
plt.figure(figsize=(10,6))
bins=range(0,15,1)
plt.hist(np.diff(find_peaks(pi_digits_str)),bins);
plt.xlim(left=2), plt.title('Differences between local maxima'),plt.xlabel('Difference'),plt.ylabel('Occurrance');
In [6]:
assert True # use this for grading the pi digits histogram