SFR package example

Demonstrates functionality of Flopy SFR module using the example documented by Prudic and others (2004):

Problem description:

  • Grid dimensions: 1 Layer, 15 Rows, 10 Columns
  • Stress periods: 1 steady
  • Flow package: LPF
  • Stress packages: SFR, GHB, EVT, RCH
  • Solver: SIP


In [1]:
% matplotlib inline
import sys
sys.path.append('/Users/aleaf/Documents/GitHub/flopy3/')
import platform
import os
import numpy as np
import glob
import shutil
import matplotlib as mpl
import matplotlib.pyplot as plt
import flopy
import flopy.utils.binaryfile as bf
from flopy.utils.sfroutputfile import SfrFile

mpl.rcParams['figure.figsize'] = (11, 8.5)

print(sys.version)
print('numpy version: {}'.format(np.__version__))
print('matplotlib version: {}'.format(mpl.__version__))
print('flopy version: {}'.format(flopy.__version__))


3.5.2 |Anaconda 4.2.0 (x86_64)| (default, Jul  2 2016, 17:52:12) 
[GCC 4.2.1 Compatible Apple LLVM 4.2 (clang-425.0.28)]
numpy version: 1.11.1
matplotlib version: 1.5.3
flopy version: 3.2.7

In [2]:
#Set name of MODFLOW exe
#  assumes executable is in users path statement
exe_name = 'mf2005'
if platform.system() == 'Windows':
    exe_name += '.exe'

copy over the example files to the working directory


In [3]:
path = 'data'
if os.path.isfile(path):
    os.remove(path)
elif os.path.isdir(path):
    shutil.rmtree(path)
os.mkdir(path)
gpth = os.path.join('..', 'data', 'mf2005_test', 'test1ss.*')
for f in glob.glob(gpth):
    shutil.copy(f, path)
gpth = os.path.join('..', 'data', 'mf2005_test', 'test1tr.*')
for f in glob.glob(gpth):
    shutil.copy(f, path)

Load example dataset, skipping the SFR package


In [4]:
m = flopy.modflow.Modflow.load('test1ss.nam', version='mf2005', exe_name=exe_name, 
                               model_ws=path, load_only=['ghb', 'evt', 'rch', 'dis', 'bas6', 'oc', 'sip', 'lpf'])

In [5]:
oc = m.oc
oc.stress_period_data


Out[5]:
{(-1, -1): [],
 (0, 0): ['print budget', 'print head', 'save head', 'save budget']}

Read pre-prepared reach and segment data into numpy recarrays using numpy.genfromtxt()

Reach data (Item 2 in the SFR input instructions), are input and stored in a numpy record array
http://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html
This allows for reach data to be indexed by their variable names, as described in the SFR input instructions.

For more information on Item 2, see the Online Guide to MODFLOW:
http://water.usgs.gov/nrp/gwsoftware/modflow2000/MFDOC/index.html?sfr.htm


In [6]:
rpth = os.path.join('..', 'data', 'sfr_examples', 'test1ss_reach_data.csv')
reach_data = np.genfromtxt(rpth, delimiter=',', names=True)
reach_data


Out[6]:
array([(0.0, 0.0, 0.0, 1.0, 1.0, 4500.0),
       (0.0, 1.0, 1.0, 1.0, 2.0, 7000.0),
       (0.0, 2.0, 2.0, 1.0, 3.0, 6000.0),
       (0.0, 2.0, 3.0, 1.0, 4.0, 5550.0),
       (0.0, 3.0, 4.0, 2.0, 1.0, 6500.0),
       (0.0, 4.0, 5.0, 2.0, 2.0, 5000.0),
       (0.0, 5.0, 5.0, 2.0, 3.0, 5000.0),
       (0.0, 6.0, 5.0, 2.0, 4.0, 5000.0),
       (0.0, 7.0, 5.0, 2.0, 5.0, 5000.0),
       (0.0, 2.0, 4.0, 3.0, 1.0, 5000.0),
       (0.0, 2.0, 5.0, 3.0, 2.0, 5000.0),
       (0.0, 2.0, 6.0, 3.0, 3.0, 4500.0),
       (0.0, 3.0, 7.0, 3.0, 4.0, 6000.0),
       (0.0, 4.0, 7.0, 3.0, 5.0, 5000.0),
       (0.0, 5.0, 7.0, 3.0, 6.0, 2000.0),
       (0.0, 4.0, 9.0, 4.0, 1.0, 2500.0),
       (0.0, 4.0, 8.0, 4.0, 2.0, 5000.0),
       (0.0, 5.0, 7.0, 4.0, 3.0, 3500.0),
       (0.0, 5.0, 7.0, 5.0, 1.0, 4000.0),
       (0.0, 6.0, 6.0, 5.0, 2.0, 5000.0),
       (0.0, 7.0, 6.0, 5.0, 3.0, 3500.0),
       (0.0, 7.0, 5.0, 5.0, 4.0, 2500.0),
       (0.0, 8.0, 5.0, 6.0, 1.0, 5000.0),
       (0.0, 9.0, 6.0, 6.0, 2.0, 5000.0),
       (0.0, 10.0, 6.0, 6.0, 3.0, 5000.0),
       (0.0, 11.0, 6.0, 6.0, 4.0, 5000.0),
       (0.0, 12.0, 6.0, 6.0, 5.0, 2000.0),
       (0.0, 13.0, 8.0, 7.0, 1.0, 5000.0),
       (0.0, 12.0, 7.0, 7.0, 2.0, 5500.0),
       (0.0, 12.0, 6.0, 7.0, 3.0, 5000.0),
       (0.0, 12.0, 5.0, 8.0, 1.0, 5000.0),
       (0.0, 12.0, 4.0, 8.0, 2.0, 5000.0),
       (0.0, 12.0, 3.0, 8.0, 3.0, 5000.0),
       (0.0, 12.0, 2.0, 8.0, 4.0, 5000.0),
       (0.0, 12.0, 1.0, 8.0, 5.0, 5000.0),
       (0.0, 12.0, 0.0, 8.0, 6.0, 3000.0)], 
      dtype=[('k', '<f8'), ('i', '<f8'), ('j', '<f8'), ('iseg', '<f8'), ('ireach', '<f8'), ('rchlen', '<f8')])

Segment Data structure

Segment data are input and stored in a dictionary of record arrays, which


In [7]:
spth = os.path.join('..', 'data', 'sfr_examples', 'test1ss_segment_data.csv')
ss_segment_data = np.genfromtxt(spth, delimiter=',', names=True)
segment_data = {0: ss_segment_data}
segment_data[0][0:1]['width1']


Out[7]:
array([ 0.])

define dataset 6e (channel flow data) for segment 1

dataset 6e is stored in a nested dictionary keyed by stress period and segment,
with a list of the following lists defined for each segment with icalc == 4
FLOWTAB(1) FLOWTAB(2) ... FLOWTAB(NSTRPTS)
DPTHTAB(1) DPTHTAB(2) ... DPTHTAB(NSTRPTS)
WDTHTAB(1) WDTHTAB(2) ... WDTHTAB(NSTRPTS)


In [8]:
channel_flow_data = {0: {1: [[0.5, 1.0, 2.0, 4.0, 7.0, 10.0, 20.0, 30.0, 50.0, 75.0, 100.0],
                             [0.25, 0.4, 0.55, 0.7, 0.8, 0.9, 1.1, 1.25, 1.4, 1.7, 2.6],
                             [3.0, 3.5, 4.2, 5.3, 7.0, 8.5, 12.0, 14.0, 17.0, 20.0, 22.0]]}}

define dataset 6d (channel geometry data) for segments 7 and 8

dataset 6d is stored in a nested dictionary keyed by stress period and segment,
with a list of the following lists defined for each segment with icalc == 4
FLOWTAB(1) FLOWTAB(2) ... FLOWTAB(NSTRPTS)
DPTHTAB(1) DPTHTAB(2) ... DPTHTAB(NSTRPTS)
WDTHTAB(1) WDTHTAB(2) ... WDTHTAB(NSTRPTS)


In [9]:
channel_geometry_data = {0: {7: [[0.0, 10.0, 80.0, 100.0, 150.0, 170.0, 240.0, 250.0],
                                 [20.0, 13.0, 10.0, 2.0, 0.0, 10.0, 13.0, 20.0]],
                             8: [[0.0, 10.0, 80.0, 100.0, 150.0, 170.0, 240.0, 250.0],
                                 [25.0, 17.0, 13.0, 4.0, 0.0, 10.0, 16.0, 20.0]]}}

Define SFR package variables


In [10]:
nstrm = len(reach_data) # number of reaches
nss = len(segment_data[0]) # number of segments
nsfrpar = 0 # number of parameters (not supported)
nparseg = 0
const = 1.486 # constant for manning's equation, units of cfs
dleak = 0.0001 # closure tolerance for stream stage computation
ipakcb = 53 # flag for writing SFR output to cell-by-cell budget (on unit 53)
istcb2 = 81 # flag for writing SFR output to text file
dataset_5 = {0: [nss, 0, 0]} # dataset 5 (see online guide)

Instantiate SFR package

Input arguments generally follow the variable names defined in the Online Guide to MODFLOW


In [11]:
sfr = flopy.modflow.ModflowSfr2(m, nstrm=nstrm, nss=nss, const=const, dleak=dleak, ipakcb=ipakcb, istcb2=istcb2, 
                                reach_data=reach_data,
                                segment_data=segment_data,
                                channel_geometry_data=channel_geometry_data,
                                channel_flow_data=channel_flow_data,
                                dataset_5=dataset_5, unit_number=15)

In [12]:
sfr.reach_data[0:1]


Out[12]:
rec.array([ (1, 0, 0, 0, 1, 1, 4500.0, -10000000000.0, -10000000000.0, -10000000000.0, -10000000000.0, -10000000000.0, -10000000000.0, -10000000000.0, -10000000000.0, 1, 2)], 
          dtype=[('node', '<i8'), ('k', '<i8'), ('i', '<i8'), ('j', '<i8'), ('iseg', '<i8'), ('ireach', '<i8'), ('rchlen', '<f4'), ('strtop', '<f4'), ('slope', '<f4'), ('strthick', '<f4'), ('strhc1', '<f4'), ('thts', '<f4'), ('thti', '<f4'), ('eps', '<f4'), ('uhc', '<f4'), ('reachID', '<i8'), ('outreach', '<i8')])

Plot the SFR segments

any column in the reach_data array can be plotted using the key argument


In [13]:
sfr.plot(key='iseg');


/Users/aleaf/anaconda/lib/python3.5/site-packages/matplotlib/colors.py:581: RuntimeWarning: invalid value encountered in less
  cbook._putmask(xa, xa < 0.0, -1)

Check the SFR dataset for errors


In [14]:
chk = sfr.check()


Checking for continuity in segment and reach numbering...
passed.

Checking for increasing segment numbers in downstream direction...
passed.

Checking for circular routing...
passed.

Checking for model cells with multiple non-zero SFR conductances...
3 model cells with multiple non-zero SFR conductances found.
This may lead to circular routing between collocated reaches.
Nodes with overlapping conductances:
node	k	i	j	iseg	ireach	rchlen
76	0	7	5	2	5	5000.000000
58	0	5	7	3	6	2000.000000
58	0	5	7	4	3	3500.000000
58	0	5	7	5	1	4000.000000
76	0	7	5	5	4	2500.000000
127	0	12	6	6	5	2000.000000
127	0	12	6	7	3	5000.000000

Checking segment_data for downstream rises in streambed elevation...
passed.

Checking reach_data for downstream rises in streambed elevation...
Reach strtop not specified for nstrm=36, reachinput=False and isfropt=0
passed.

Checking reach_data for inconsistencies between streambed elevations and the model grid...
Reach strtop, strthick not specified for nstrm=36, reachinput=False and isfropt=0
passed.

Checking segment_data for inconsistencies between segment end elevations and the model grid...
passed.

Checking for streambed slopes of less than 0.0001...
slope not specified for isfropt=0
passed.

Checking for streambed slopes of greater than 1.0...
slope not specified for isfropt=0
passed.


In [15]:
m.external_fnames = [os.path.split(f)[1] for f in m.external_fnames]
m.external_fnames


Out[15]:
['test1ss.sg1',
 'test1ss.sg2',
 'test1ss.sg3',
 'test1ss.sg4',
 'test1ss.sg5',
 'test1ss.sg6',
 'test1ss.sg7',
 'test1ss.sg8',
 'test1ss.dvsg9']

In [16]:
m.write_input()


warning: assuming SpatialReference units are meters

In [17]:
#m.run_model()

Load SFR formated water balance output into pandas dataframe using the SfrFile class

  • requires the pandas library

In [18]:
sfr_outfile = os.path.join('..', 'data', 'sfr_examples', 'test1ss.flw')
sfrout = SfrFile(sfr_outfile)
df = sfrout.get_dataframe()
df.head()


Out[18]:
layer row column segment reach Qin Qaquifer Qout Qovr Qprecip Qet stage depth width Cond gradient kstpkper k i j
0 1 1 1 1 1 25.0000 0.7923 24.2080 0.0 0.0 0.0 1094.22 1.174 12.98 0.5843 0.4520 (0, 0) 0 0 0
1 1 2 2 1 2 24.2080 2.1408 22.0670 0.0 0.0 0.0 1089.21 1.152 12.68 0.8878 0.8038 (0, 0) 0 1 1
2 1 3 3 1 3 22.0670 2.9909 19.0760 0.0 0.0 0.0 1083.53 1.110 12.13 0.7278 1.3700 (0, 0) 0 2 2
3 1 3 4 1 4 19.0760 2.5538 16.5220 0.0 0.0 0.0 1078.47 1.064 11.32 0.6285 1.3550 (0, 0) 0 2 3
4 1 4 5 2 1 6.5222 2.7058 3.8163 0.0 0.0 0.0 1072.40 0.469 12.00 0.7800 1.1560 (0, 0) 0 3 4

Plot streamflow and stream/aquifer interactions for a segment


In [19]:
inds = df.segment == 3
ax = df.ix[inds, ['Qin', 'Qaquifer', 'Qout']].plot(x=df.reach[inds])
ax.set_ylabel('Flow, in cubic feet per second')
ax.set_xlabel('SFR reach')


Out[19]:
<matplotlib.text.Text at 0x118251208>

Look at stage, model top, and streambed top


In [20]:
streambed_top = m.sfr.segment_data[0][m.sfr.segment_data[0].nseg == 3][['elevup', 'elevdn']][0]
streambed_top


Out[20]:
(1075.0, 1060.0)

In [21]:
df['model_top'] = m.dis.top.array[df.row.values - 1, df.column.values -1]
fig, ax = plt.subplots()
plt.plot([1, 6], list(streambed_top), label='streambed top')
ax = df.ix[inds, ['stage', 'model_top']].plot(ax=ax, x=df.reach[inds])
ax.set_ylabel('Elevation, in feet')
plt.legend()


Out[21]:
<matplotlib.legend.Legend at 0x118940f28>

Get SFR leakage results from cell budget file


In [23]:
bpth = os.path.join('data', 'test1ss.cbc')
cbbobj = bf.CellBudgetFile(bpth)
cbbobj.list_records()


(1, 1, b'  STREAM LEAKAGE', 10, 15, 1, 0, 0.0, 0.0, 0.0, b'', b'', b'', b'')

In [24]:
sfrleak = cbbobj.get_data(text='  STREAM LEAKAGE')[0]
sfrleak[sfrleak == 0] = np.nan # remove zero values

Plot leakage in plan view


In [25]:
im = plt.imshow(sfrleak[0], interpolation='none', cmap='coolwarm', vmin = -3, vmax=3)
cb = plt.colorbar(im, label='SFR Leakage, in cubic feet per second');


Plot total streamflow


In [26]:
sfrQ = sfrleak[0].copy()
sfrQ[sfrQ == 0] = np.nan
sfrQ[df.row.values-1, df.column.values-1] = df[['Qin', 'Qout']].mean(axis=1).values
im = plt.imshow(sfrQ, interpolation='none')
plt.colorbar(im, label='Streamflow, in cubic feet per second');


Reading transient SFR formatted output

the SfrFile class handles this the same way

files for the transient version of the above example were already copied to the data folder in the third cell above first run the transient model to get the output:

>mf2005 test1tr.nam

In [27]:
sfrout_tr = SfrFile('data/test1tr.flw')
dftr = sfrout_tr.get_dataframe()
dftr.head()


Out[27]:
layer row column segment reach Qin Qaquifer Qout Qovr Qprecip Qet stage depth width Cond gradient kstpkper k i j
0 1 1 1 1 1 25.0000 0.77759 24.2220 0.0 0.0 0.0 1094.22 1.1740 12.98 0.5843 0.4436 (0, 0) 0 0 0
1 1 2 2 1 2 24.2220 2.21540 22.0070 0.0 0.0 0.0 1089.21 1.1510 12.68 0.8875 0.8321 (0, 0) 0 1 1
2 1 3 3 1 3 22.0070 2.98700 19.0200 0.0 0.0 0.0 1083.53 1.1090 12.12 0.7270 1.3700 (0, 0) 0 2 2
3 1 3 4 1 4 19.0200 2.54940 16.4710 0.0 0.0 0.0 1078.47 1.0630 11.31 0.6275 1.3540 (0, 0) 0 2 3
4 1 4 5 2 1 6.4706 2.70370 3.7669 0.0 0.0 0.0 1072.40 0.4663 12.00 0.7800 1.1550 (0, 0) 0 3 4

plot a hydrograph

plot Qout (simulated streamflow) and Qaquifer (simulated stream leakage) through time


In [28]:
fig, axes = plt.subplots(2, 1, sharex=True)
dftr8 = dftr.loc[(dftr.segment == 8) & (dftr.reach == 5)]
dftr8.Qout.plot(ax=axes[0])
axes[0].set_ylabel('Simulated streamflow, cfs')
dftr8.Qaquifer.plot(ax=axes[1])
axes[1].set_ylabel('Leakage to aquifer, cfs')


Out[28]:
<matplotlib.text.Text at 0x118fdf2e8>

In [ ]: