In [ ]:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from sklearn import datasets, cross_validation, metrics
from sklearn import preprocessing
import chainer.functions as F
import chainer.links as L
from chainer import optimizers, Chain
from commonml.skchainer import ChainerEstimator, MeanSquaredErrorRegressor
import logging
logging.basicConfig(format='%(levelname)s : %(message)s', level=logging.INFO)
logging.root.level = 20
In [ ]:
boston = datasets.load_boston()
X, y = boston.data, boston.target
In [ ]:
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y,
test_size=0.2, random_state=42)
In [ ]:
scaler = preprocessing.StandardScaler()
X_train = scaler.fit_transform(X_train)
In [ ]:
class Model(Chain):
def __init__(self, in_size):
super(Model, self).__init__(l1=L.Linear(in_size, 10),
l2=L.Linear(10, 10),
l3=L.Linear(10, 1),
)
def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
h3 = self.l3(h2)
return h3
regressor = ChainerEstimator(model=MeanSquaredErrorRegressor(Model(X_train.shape[1])),
optimizer=optimizers.AdaGrad(lr=0.1),
batch_size=100,
device=0,
stop_trigger=(1000, 'epoch'))
In [ ]:
regressor.fit(X_train, y_train)
In [ ]:
score = metrics.mean_squared_error(regressor.predict(scaler.transform(X_test)), y_test)
print('MSE: {0:f}'.format(score))