In [ ]:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
from sklearn.pipeline import Pipeline
from chainer import optimizers
from commonml.skchainer import MeanSquaredErrorRegressor, AutoEncoder
from tensorflow.contrib.learn import datasets
import logging
logging.basicConfig(format='%(levelname)s : %(message)s', level=logging.INFO)
logging.root.level = 20
In [ ]:
iris = datasets.load_iris()
In [ ]:
autoencoder = Pipeline([('autoencoder1',
AutoEncoder(4, 10, MeanSquaredErrorRegressor, dropout_ratio=0, optimizer=optimizers.AdaGrad(lr=0.1),
batch_size=128, n_epoch=100, gpu=0)),
('autoencoder2',
AutoEncoder(10, 20, MeanSquaredErrorRegressor, dropout_ratio=0, optimizer=optimizers.AdaGrad(lr=0.1),
batch_size=128, n_epoch=100, gpu=0))])
In [ ]:
transformed = autoencoder.fit_transform(iris.data)
print(transformed)