In [ ]:
    
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
from sklearn.pipeline import Pipeline
from chainer import optimizers
from commonml.skchainer import MeanSquaredErrorRegressor, AutoEncoder
from tensorflow.contrib.learn import datasets
import logging
logging.basicConfig(format='%(levelname)s : %(message)s', level=logging.INFO)
logging.root.level = 20
    
In [ ]:
    
iris = datasets.load_iris()
    
In [ ]:
    
autoencoder = Pipeline([('autoencoder1',
                         AutoEncoder(4, 10, MeanSquaredErrorRegressor, dropout_ratio=0, optimizer=optimizers.AdaGrad(lr=0.1),
                                     batch_size=128, n_epoch=100, gpu=0)),
                        ('autoencoder2',
                         AutoEncoder(10, 20, MeanSquaredErrorRegressor, dropout_ratio=0, optimizer=optimizers.AdaGrad(lr=0.1),
                                     batch_size=128, n_epoch=100, gpu=0))])
    
In [ ]:
    
transformed = autoencoder.fit_transform(iris.data)
print(transformed)