Introduction

This is a basic tutorial on using Jupyter to use the scipy modules.

Example of plotting sine and cosine functions in the same plot

Install matplotlib through conda via:

conda install -y matplotlib

Below we plot a sine function from 0 to 2 pi. Pretty much what you would expect:


In [4]:
import math
import matplotlib as mpl
import matplotlib.pyplot as plt  
import numpy as np 

x = np.linspace(0, 3 * math.pi, 50)
y = np.sin(x)
plt.plot(x, y)
plt.show()


The x values limit the range of the plot.

Let's get help on the plt.plot function, so as to understand how to use it, in addition to the tutorial at http://matplotlib.org/users/pyplot_tutorial.html


In [5]:
help(plt.plot)


Help on function plot in module matplotlib.pyplot:

plot(*args, **kwargs)
    Plot lines and/or markers to the
    :class:`~matplotlib.axes.Axes`.  *args* is a variable length
    argument, allowing for multiple *x*, *y* pairs with an
    optional format string.  For example, each of the following is
    legal::
    
        plot(x, y)        # plot x and y using default line style and color
        plot(x, y, 'bo')  # plot x and y using blue circle markers
        plot(y)           # plot y using x as index array 0..N-1
        plot(y, 'r+')     # ditto, but with red plusses
    
    If *x* and/or *y* is 2-dimensional, then the corresponding columns
    will be plotted.
    
    If used with labeled data, make sure that the color spec is not
    included as an element in data, as otherwise the last case
    ``plot("v","r", data={"v":..., "r":...)``
    can be interpreted as the first case which would do ``plot(v, r)``
    using the default line style and color.
    
    If not used with labeled data (i.e., without a data argument),
    an arbitrary number of *x*, *y*, *fmt* groups can be specified, as in::
    
        a.plot(x1, y1, 'g^', x2, y2, 'g-')
    
    Return value is a list of lines that were added.
    
    By default, each line is assigned a different style specified by a
    'style cycle'.  To change this behavior, you can edit the
    axes.prop_cycle rcParam.
    
    The following format string characters are accepted to control
    the line style or marker:
    
    ================    ===============================
    character           description
    ================    ===============================
    ``'-'``             solid line style
    ``'--'``            dashed line style
    ``'-.'``            dash-dot line style
    ``':'``             dotted line style
    ``'.'``             point marker
    ``','``             pixel marker
    ``'o'``             circle marker
    ``'v'``             triangle_down marker
    ``'^'``             triangle_up marker
    ``'<'``             triangle_left marker
    ``'>'``             triangle_right marker
    ``'1'``             tri_down marker
    ``'2'``             tri_up marker
    ``'3'``             tri_left marker
    ``'4'``             tri_right marker
    ``'s'``             square marker
    ``'p'``             pentagon marker
    ``'*'``             star marker
    ``'h'``             hexagon1 marker
    ``'H'``             hexagon2 marker
    ``'+'``             plus marker
    ``'x'``             x marker
    ``'D'``             diamond marker
    ``'d'``             thin_diamond marker
    ``'|'``             vline marker
    ``'_'``             hline marker
    ================    ===============================
    
    
    The following color abbreviations are supported:
    
    ==========  ========
    character   color
    ==========  ========
    'b'         blue
    'g'         green
    'r'         red
    'c'         cyan
    'm'         magenta
    'y'         yellow
    'k'         black
    'w'         white
    ==========  ========
    
    In addition, you can specify colors in many weird and
    wonderful ways, including full names (``'green'``), hex
    strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or
    grayscale intensities as a string (``'0.8'``).  Of these, the
    string specifications can be used in place of a ``fmt`` group,
    but the tuple forms can be used only as ``kwargs``.
    
    Line styles and colors are combined in a single format string, as in
    ``'bo'`` for blue circles.
    
    The *kwargs* can be used to set line properties (any property that has
    a ``set_*`` method).  You can use this to set a line label (for auto
    legends), linewidth, anitialising, marker face color, etc.  Here is an
    example::
    
        plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
        plot([1,2,3], [1,4,9], 'rs',  label='line 2')
        axis([0, 4, 0, 10])
        legend()
    
    If you make multiple lines with one plot command, the kwargs
    apply to all those lines, e.g.::
    
        plot(x1, y1, x2, y2, antialiased=False)
    
    Neither line will be antialiased.
    
    You do not need to use format strings, which are just
    abbreviations.  All of the line properties can be controlled
    by keyword arguments.  For example, you can set the color,
    marker, linestyle, and markercolor with::
    
        plot(x, y, color='green', linestyle='dashed', marker='o',
             markerfacecolor='blue', markersize=12).
    
    See :class:`~matplotlib.lines.Line2D` for details.
    
    The kwargs are :class:`~matplotlib.lines.Line2D` properties:
    
      agg_filter: unknown
      alpha: float (0.0 transparent through 1.0 opaque) 
      animated: [True | False] 
      antialiased or aa: [True | False] 
      axes: an :class:`~matplotlib.axes.Axes` instance 
      clip_box: a :class:`matplotlib.transforms.Bbox` instance 
      clip_on: [True | False] 
      clip_path: [ (:class:`~matplotlib.path.Path`, :class:`~matplotlib.transforms.Transform`) | :class:`~matplotlib.patches.Patch` | None ] 
      color or c: any matplotlib color 
      contains: a callable function 
      dash_capstyle: ['butt' | 'round' | 'projecting'] 
      dash_joinstyle: ['miter' | 'round' | 'bevel'] 
      dashes: sequence of on/off ink in points 
      drawstyle: ['default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post'] 
      figure: a :class:`matplotlib.figure.Figure` instance 
      fillstyle: ['full' | 'left' | 'right' | 'bottom' | 'top' | 'none'] 
      gid: an id string 
      label: string or anything printable with '%s' conversion. 
      linestyle or ls: ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) | ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'None'`` | ``' '`` | ``''``]
      linewidth or lw: float value in points 
      marker: :mod:`A valid marker style <matplotlib.markers>`
      markeredgecolor or mec: any matplotlib color 
      markeredgewidth or mew: float value in points 
      markerfacecolor or mfc: any matplotlib color 
      markerfacecoloralt or mfcalt: any matplotlib color 
      markersize or ms: float 
      markevery: [None | int | length-2 tuple of int | slice | list/array of int | float | length-2 tuple of float]
      path_effects: unknown
      picker: float distance in points or callable pick function ``fn(artist, event)`` 
      pickradius: float distance in points 
      rasterized: [True | False | None] 
      sketch_params: unknown
      snap: unknown
      solid_capstyle: ['butt' | 'round' |  'projecting'] 
      solid_joinstyle: ['miter' | 'round' | 'bevel'] 
      transform: a :class:`matplotlib.transforms.Transform` instance 
      url: a url string 
      visible: [True | False] 
      xdata: 1D array 
      ydata: 1D array 
      zorder: any number 
    
    kwargs *scalex* and *scaley*, if defined, are passed on to
    :meth:`~matplotlib.axes.Axes.autoscale_view` to determine
    whether the *x* and *y* axes are autoscaled; the default is
    *True*.
    
    .. note::
        In addition to the above described arguments, this function can take a
        **data** keyword argument. If such a **data** argument is given, the
        following arguments are replaced by **data[<arg>]**:
    
        * All arguments with the following names: 'x', 'y'.

Let's add in 'bo' string to the mix to get dots on the trace:


In [10]:
import math
import matplotlib.pyplot as plt  
import numpy as np 

x = np.linspace(0, 2 * math.pi, 50)
y = np.sin(x)
plt.plot(x, y, 'bo')
plt.show()


Let's try to add two traces, the second one is a cosine function:


In [12]:
import math
import matplotlib.pyplot as plt  
import numpy as np 

x = np.linspace(0,2 * math.pi, 50)
y1 = np.sin(x)
y2 = np.cos(x)

plt.plot(x, y1, 'bo', x, y2, 'r+')
plt.show()



In [ ]:

Example of using optimize.fmin on the sine function


In [8]:
import math
import numpy as np
from scipy import linalg, optimize

# Here, we called this function "func2" which is pretty arbitrary. You will need to use better name in practice, of course:
def func2(x):
    return np.sin(x)

optimize.fmin(func2, math.pi - 0.01)


Optimization terminated successfully.
         Current function value: -1.000000
         Iterations: 17
         Function evaluations: 34
Out[8]:
array([ 4.71237414])

Pretty much what we expected. There is a minimum of -1 for this sine wave function (amplitude of 1 here ... would have been different if we multiplied the sine wave by some other factor). We can call the f function to see the value at that point which is pretty darn close to -1:


In [9]:
func2(4.71237414)


Out[9]:
-0.99999999988988153

In [19]:
math.pi * 2 * 0.75


Out[19]:
4.71238898038469

Example of using optimize.root on the sine function


In [22]:
help(optimize.root)


Help on function root in module scipy.optimize._root:

root(fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None, options=None)
    Find a root of a vector function.
    
    Parameters
    ----------
    fun : callable
        A vector function to find a root of.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to the objective function and its Jacobian.
    method : str, optional
        Type of solver.  Should be one of
    
            - 'hybr'             :ref:`(see here) <optimize.root-hybr>`
            - 'lm'               :ref:`(see here) <optimize.root-lm>`
            - 'broyden1'         :ref:`(see here) <optimize.root-broyden1>`
            - 'broyden2'         :ref:`(see here) <optimize.root-broyden2>`
            - 'anderson'         :ref:`(see here) <optimize.root-anderson>`
            - 'linearmixing'     :ref:`(see here) <optimize.root-linearmixing>`
            - 'diagbroyden'      :ref:`(see here) <optimize.root-diagbroyden>`
            - 'excitingmixing'   :ref:`(see here) <optimize.root-excitingmixing>`
            - 'krylov'           :ref:`(see here) <optimize.root-krylov>`
            - 'df-sane'          :ref:`(see here) <optimize.root-dfsane>`
    
    jac : bool or callable, optional
        If `jac` is a Boolean and is True, `fun` is assumed to return the
        value of Jacobian along with the objective function. If False, the
        Jacobian will be estimated numerically.
        `jac` can also be a callable returning the Jacobian of `fun`. In
        this case, it must accept the same arguments as `fun`.
    tol : float, optional
        Tolerance for termination. For detailed control, use solver-specific
        options.
    callback : function, optional
        Optional callback function. It is called on every iteration as
        ``callback(x, f)`` where `x` is the current solution and `f`
        the corresponding residual. For all methods but 'hybr' and 'lm'.
    options : dict, optional
        A dictionary of solver options. E.g. `xtol` or `maxiter`, see
        :obj:`show_options()` for details.
    
    Returns
    -------
    sol : OptimizeResult
        The solution represented as a ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the algorithm exited successfully and
        ``message`` which describes the cause of the termination. See
        `OptimizeResult` for a description of other attributes.
    
    See also
    --------
    show_options : Additional options accepted by the solvers
    
    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *hybr*.
    
    Method *hybr* uses a modification of the Powell hybrid method as
    implemented in MINPACK [1]_.
    
    Method *lm* solves the system of nonlinear equations in a least squares
    sense using a modification of the Levenberg-Marquardt algorithm as
    implemented in MINPACK [1]_.
    
    Method *df-sane* is a derivative-free spectral method. [3]_
    
    Methods *broyden1*, *broyden2*, *anderson*, *linearmixing*,
    *diagbroyden*, *excitingmixing*, *krylov* are inexact Newton methods,
    with backtracking or full line searches [2]_. Each method corresponds
    to a particular Jacobian approximations. See `nonlin` for details.
    
    - Method *broyden1* uses Broyden's first Jacobian approximation, it is
      known as Broyden's good method.
    - Method *broyden2* uses Broyden's second Jacobian approximation, it
      is known as Broyden's bad method.
    - Method *anderson* uses (extended) Anderson mixing.
    - Method *Krylov* uses Krylov approximation for inverse Jacobian. It
      is suitable for large-scale problem.
    - Method *diagbroyden* uses diagonal Broyden Jacobian approximation.
    - Method *linearmixing* uses a scalar Jacobian approximation.
    - Method *excitingmixing* uses a tuned diagonal Jacobian
      approximation.
    
    .. warning::
    
        The algorithms implemented for methods *diagbroyden*,
        *linearmixing* and *excitingmixing* may be useful for specific
        problems, but whether they will work may depend strongly on the
        problem.
    
    .. versionadded:: 0.11.0
    
    References
    ----------
    .. [1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom.
       1980. User Guide for MINPACK-1.
    .. [2] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear
        Equations. Society for Industrial and Applied Mathematics.
        <http://www.siam.org/books/kelley/>
    .. [3] W. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006).
    
    Examples
    --------
    The following functions define a system of nonlinear equations and its
    jacobian.
    
    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]
    
    >>> def jac(x):
    ...     return np.array([[1 + 1.5 * (x[0] - x[1])**2,
    ...                       -1.5 * (x[0] - x[1])**2],
    ...                      [-1.5 * (x[1] - x[0])**2,
    ...                       1 + 1.5 * (x[1] - x[0])**2]])
    
    A solution can be obtained as follows.
    
    >>> from scipy import optimize
    >>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
    >>> sol.x
    array([ 0.8411639,  0.1588361])

Let's evaludate the f function (which we know is a sine function) at not quite at the point where it is zero (at pi):


In [10]:
func2(math.pi * 0.75)


Out[10]:
0.70710678118654757

In [12]:
import math
import numpy as np
from scipy import linalg, optimize

# Here, we called this function "func2" which is pretty arbitrary. You will need to use better name in practice, of course:
def func2(x):
    return np.sin(x)

optimize.root(func2, math.pi * 0.75)


Out[12]:
    fjac: array([[-1.]])
     fun: array([  1.22464680e-16])
 message: 'The solution converged.'
    nfev: 7
     qtf: array([ -5.63483183e-09])
       r: array([ 1.])
  status: 1
 success: True
       x: array([ 3.14159265])

So it found the root at pi. Notice the "x" value at the end of the output.

You can turn off the verbose output using keyword arguments to the optimize.root function.