These results plot our simulation metrics against increasing conflict probability.
This notebook is intended to read a simulation results file with multiple simulations and results and create aggregate analyses and visualizations.
Goal:
Experimental control variables:
Metrics:
In [1]:
%load_ext memory_profiler
%matplotlib inline
import os
import sys
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib as mpl
import graph_tool.all as gt
import matplotlib.pyplot as plt
from operator import itemgetter
from itertools import groupby, chain
from collections import defaultdict, Counter
# Modify the Notebook path
sys.path.append(os.path.join(os.getcwd(), ".."))
from cloudscope.colors import ColorMap
from cloudscope.results import Results
from cloudscope.results.graph import extract_graph
from cloudscope.results.analysis import create_per_replica_dataframe as create_replica_dataframe
from cloudscope.results.analysis import create_per_experiment_dataframe as create_dataframe
In [2]:
sns.set_style('whitegrid')
sns.set_context('poster')
sns.set_palette('Set1')
In [3]:
# Specify a path to a results file
# If None, will attempt to look one up
FIXTURES = os.path.join("..", "fixtures", "results")
FIGURES = os.path.join("..", "fixtures", "figures", "conflict-experiment")
RESULTS = os.path.join(FIXTURES, "federated-conflict-backpressure-full-20161005.json")
def get_results_data(path=RESULTS):
with open(path, 'r') as f:
for line in f:
yield Results.load(line)
In [27]:
%%memit
df = create_dataframe(get_results_data())
In [28]:
# Uncomment below if you need to see the columns
# print("\n".join(df.columns))
# Add the ename to identify the experiment
df['ename'] = "Pc = " + df['conflict probability'].apply(str) + " " + df['T parameter model']
df['type'] = df['type'].apply(lambda s: s.title())
In [29]:
df['conflict probability'] = df['conflict probability'].apply(float)
In [30]:
df = df.sort_values(['type'])
markers=["s","x","o", "d"]
In [62]:
# Remove stentor if required
df = df[df.type != "Stentor"]
markers=["x","D","o"]
In [8]:
%%memit
def get_message_rows(df):
for row in df[['message types', 'tick metric (T)', 'type', 'eid', 'users', 'T parameter model', 'conflict probability']].itertuples():
item = row[1]
item['experiment'] = "{} Pc = {:0.2f}".format(row[3], row[7])
yield item
# Create the data frame
msgs = pd.DataFrame(sorted(get_message_rows(df), key=lambda item: item['experiment']))
# Create the figure
fig = plt.figure(figsize=(14,48))
ax = fig.add_subplot(111)
mpl.rcParams.update({'font.size': 22})
# Plot the bar chart
g = msgs.plot(
x='experiment', kind='barh', stacked=True, ax=ax,
title="Message Counts by Type", color=sns.color_palette()
)
# Modify the figure
ax.set_xlabel("message count")
ax.yaxis.grid(False)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'message_counts.png'))
In [64]:
# Forked Writes (two keys: "inconsistent writes" and "forked writes")
g = sns.lmplot(
x="conflict probability", y="forked writes", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Writes Forked for {:,} Accesses".format(df.writes.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(-100,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'forked_writes.png'))
In [65]:
# Forked Writes (two keys: "inconsistent writes" and "forked writes")
g = sns.lmplot(
x="conflict probability", y="inconsistent writes", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Inconsistent Writes for {:,} Accesses".format(df.writes.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(-100,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'inconsistent_writes.png'))
In [66]:
# Dropped Writes
g = sns.lmplot(
x="conflict probability", y="dropped writes", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Dropped Writes for {:,} Accesses".format(df.writes.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(-100,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'dropped_writes.png'))
In [67]:
# Stale Reads
g = sns.lmplot(
x="conflict probability", y="stale reads", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Stale Reads for {:,} Accesses".format(df.reads.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(-100,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'stale_reads.png'))
In [68]:
# Stale Writes
g = sns.lmplot(
x="conflict probability", y="stale writes", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Stale Writes for {:,} Accesses".format(df.writes.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(-100,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'stale_writes.png'))
In [69]:
# Version Staleness
g = sns.lmplot(
x="conflict probability", y="mean read version staleness", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Mean Read Version Staleness for {:,} Accesses".format(df.reads.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(-0.5,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'mean_version_staleness.png'))
In [70]:
# Cumulative Time Staleness
g = sns.lmplot(
x="conflict probability", y="cumulative read time staleness (ms)", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Cumulative Read Time Staleness for {:,} Accesses".format(df.reads.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(0,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'cumulative_read_time_staleness.png'))
In [71]:
df['percent visible writes'] = (df['visible writes'] / df['writes']) * 100
# Visible Writes
g = sns.lmplot(
x="conflict probability", y="percent visible writes", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Percent Visible Writes for {:,} Accesses".format(df.writes.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(0,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'visible_writes.png'))
In [72]:
# Comitted Writes
g = sns.lmplot(
x="conflict probability", y="committed writes", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Committed Writes for {:,} Accesses".format(df.writes.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(-100,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'committed_writes.png'))
In [73]:
# Number of Messages
g = sns.lmplot(
x="conflict probability", y="sent messages", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Total Sent Messages"
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(-100,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'messages_sent.png'))
In [74]:
# Read cost (ms delay before read)
g = sns.lmplot(
x="conflict probability", y="mean read latency (ms)", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Read Latency for {:,} Accesses".format(df.reads.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'read_latency.png'))
In [75]:
# Write Cost (ms delay before write)
g = sns.lmplot(
x="conflict probability", y="mean write latency (ms)", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Write Latency for {:,} Accesses".format(df.writes.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(-100,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'write_latency.png'))
In [76]:
# Replication Cost (Visibility Latency)
g = sns.lmplot(
x="conflict probability", y="mean visibility latency (ms)", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Replication (Visibility) Latency for {:,} Accesses".format(df.writes.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(-100,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'visibility_latency.png'))
In [77]:
# Commit Cost (Commit Latency)
g = sns.lmplot(
x="conflict probability", y="mean commit latency (ms)", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Commit Latency for {:,} Accesses".format(df.writes.max())
g.ax.set_title(title_fmt)
# Modify the axis limits
for ax in g.axes:
ax[0].set_ylim(-100,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'commit_latency.png'))
In [78]:
# Simulation Time
g = sns.lmplot(
x="conflict probability", y="simulation time (secs)", hue='type',
data=df, fit_reg=False, size=7, aspect=1.4, markers=markers,
palette=["#e31a1c", "#33a02c", "#1f78b4"],
scatter_kws={'s': 64}
)
# Set the title and the labels
title_fmt = "Elapsed Real Simulation Time"
g.ax.set_title(title_fmt)
g.set(yscale="log")
g.set(ylabel="simulation time (secs - log scale)")
# Modify the axis limits
for ax in g.axes:
# ax[0].set_ylim(-100,)
ax[0].set_xlim(-0.1,1.1)
# Save the figure to disk
plt.savefig(os.path.join(FIGURES, 'simulation_time.png'))
In [79]:
def find_results(etype='federated', Pc=None):
for result in get_results_data():
if result.settings['type'] == etype:
if (Pc and str(Pc) in result.settings['trace']) or Pc is None:
name = "{}-Pc{}.png".format(etype, Pc)
return result, name
return None, None
# Find the desired results
result, name = find_results('federated', 0.6)
if result is None: raise ValueError("Could not find results!")
# Extract the Graph Tool graph
G = extract_graph(result, by_message_type=True)
# Draw the graph
vlabel = G.vp['id']
vsize = G.vp['writes']
vsize = gt.prop_to_size(vsize, ma=60, mi=20)
# Set the vertex color
vcolor = G.new_vertex_property('string')
vcmap = ColorMap('flatui', shuffle=False)
for vertex in G.vertices():
vcolor[vertex] = vcmap(G.vp['consistency'][vertex])
# Set the edge color
ecolor = G.new_edge_property('string')
ecmap = ColorMap('paired', shuffle=False)
for edge in G.edges():
ecolor[edge] = ecmap(G.ep['label'][edge])
elabel = G.ep['label']
esize = G.ep['norm']
esize = gt.prop_to_size(esize, mi=2, ma=5)
# Create the layout with the edge weights.
# pos = gt.arf_layout(G, weight=G.ep['weight'])
pos = gt.sfdp_layout(G, eweight=G.ep['weight'], vweight=vsize)
# pos = gt.fruchterman_reingold_layout(G, weight=G.ep['weight'])
gt.graph_draw(
G, pos=pos, output_size=(1200,1200), output=os.path.join(FIGURES, name),
vertex_text=vlabel, vertex_size=vsize, vertex_font_weight=1,
vertex_pen_width=1.3, vertex_fill_color=vcolor,
edge_pen_width=esize, edge_color=ecolor, edge_text=elabel
)
Out[79]: