2.1.1

$G = \{0, 1\}$ とする. $0\cdot0 = 0,\, 0\cdot1 = 1\cdot0 = 0,\, 1\cdot1 = 1$ と定義すると, $G$ はこの演算により群にならないことを証明せよ.

証明

$ 0 \cdot 0 = 0 \cdot 1 = 0 \\ 0^{-1} \cdot 0 \cdot 0 = 0^{-1} \cdot 0 \cdot 1 \\ 0 = 1 $

逆元が存在しないので, $G$ はこの演算により群ではない.

2.1.2

$a,b \in \mathbb{R}$ に対し, $a \circ b = a + b + ab$($a+b, ab$ は通常の加法と乗法)と定義する. この演算により $\mathbb{R}$ は群にならないことを証明せよ.

証明

単位元を $e$ であらわす.
$a \circ e = a + e + ae = a$ とすると,

$ a + e + ae = a\\ e + ae = 0 \\ e = 0 $

同様に,

$ e \circ a = e + a + ea = a\\ e + a + ea = a\\ e + ea = 0 \\ e = 0 $

よって, $e = 0$

$a \circ a^{-1} = e = 0$ とすると,

$ a + a^{-1} + aa^{-1} = 0\\ a^{-1} + aa^{-1} = -a\\ a^{-1}(1 + a) = -a\\ a^{-1} = \dfrac{-a}{(1+a)} $

となり、$a = -1$ のとき逆元が存在しない。
したがって, この演算により $\mathbb{R}$ は群にならない.

2.1.4

$G$ を群, $a,b,c,d \in G$ とするとき, $((ab)c)d = a((bc)d)$ であることを証明せよ.

$((ab)c)d = (a(bc))d = a((bc)d)$

2.1.3

$S_3$ の乗法表を作れ.

解答

$ (1) \\ (1 \, 2), (1 \, 3), (2 \, 3) \\ (1 \, 2 \, 3), (1 \, 3 \, 2) $

$ \begin{array}{ccccccc} \hline ab & 1 & (1 \, 2) & (1 \, 3) & (2 \, 3) & (1 \, 2 \, 3) & (1 \, 3 \, 2) \\\hline 1 & 1 & (1 \, 2) & (1 \, 3) & (2 \, 3) & (1 \, 2 \, 3) & (1 \, 3 \, 2) \\\hline (1 \, 2) & (1 \, 2) & 1 & (1 \, 3 \, 2) & (1 \, 2 \, 3) & (2 \, 3) & (1 \, 3) \\\hline (1 \, 3) & (1 \, 3) & (1 \, 2 \, 3) & 1 & (1 \, 3 \, 2) & (1 \, 2) & (2 \, 3) \\\hline (2 \, 3) & (2 \, 3) & (1 \, 3 \, 2) & (1 \, 2 \, 3) & 1 & (1 \, 3) & (1 \, 2) \\\hline (1 \, 2 \, 3) & (1 \, 2 \, 3) & (1 \, 3) & (2 \, 3) & (1 \, 2) & (1 \,3 \, 2) & 1 \\\hline (1 \, 3 \, 2) & (1 \, 3 \, 2) & (2 \, 3) & (1 \, 2) & (1 \, 3) & 1 & (1 \, 2 \, 3) \\\hline \end{array} $

2.1.5

$G$ を群, $a,b,c,d \in G$ で, $bac^{-1}d = abd$ であるとき, $c$ を他の元で表せ.

解答

$ bac^{-1}d = abd \\ (ba)^{-1}bac^{-1}dd^{-1} = (ba)^{-1}abdd^{-1} \\ c^{-1} = a^{-1}b^{-1}ab \\ c = b^{-1}a^{-1}ba $

$S_4$ の元,

$ \sigma_{1} = (1 \, 4 \, 3 \, 2) = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{array}\right) \\ \sigma_{2} = (1 \, 3)(2 \, 4) = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array}\right) \\ \sigma_{3} = (2 \, 3 \, 4) = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{array}\right) \\ \sigma_{4} = (1 \, 3) = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{array}\right) $

を考える. 次の元を求めよ.

$ (1)\, \sigma_1^{-1} \\ (2)\, \sigma_2^{-1} \\ (3)\, \sigma_1\sigma_3 \\ (4)\, \sigma_2^{-1}\sigma_4 \\ (5)\, \sigma_3\sigma_1\sigma_3^{-1} \\ (6)\, \sigma_2^{-1}\sigma_4\sigma_2 \\ $

解答

$ (1)\, \sigma_1^{-1} = (2\,3\,4\,1) = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right)\\ (2)\, \sigma_2^{-1} = (1\,3)(2\,4) = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array} \right) \\ (3)\, \sigma_1\sigma_3 = (1\,4\,3\,2)(2\,3\,4) = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{array} \right) \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{array} \right) = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{array} \right) = (1\,4) \\ (4)\, \sigma_2^{-1}\sigma_4 = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array} \right) \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{array} \right) = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{array} \right) = (2\,4) \\ (5)\, \sigma_3\sigma_1\sigma_3^{-1} = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{array} \right) \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{array} \right) \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{array} \right) = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{array} \right) = (1\,2\,4\,3) \\ (6)\, \sigma_2^{-1}\sigma_4\sigma_2 = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array} \right) \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{array} \right) \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array} \right) = \left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{array} \right) = (1\,3) \\ $


In [ ]: