In this iPython notebook we implement a Q-Network algorithm that solves the FrozenLake problem. To learn more, read here: https://medium.com/@awjuliani/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0
For more reinforcment learning tutorials, see: https://github.com/awjuliani/DeepRL-Agents
In [1]:
from __future__ import division
import gym
import numpy as np
import random
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
In [2]:
env = gym.make('FrozenLake-v0')
In [3]:
tf.reset_default_graph()
In [4]:
#These lines establish the feed-forward part of the network used to choose actions
inputs1 = tf.placeholder(shape=[1,16],dtype=tf.float32)
W = tf.Variable(tf.random_uniform([16,4],0,0.01))
Qout = tf.matmul(inputs1,W)
predict = tf.argmax(Qout,1)
#Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values.
nextQ = tf.placeholder(shape=[1,4],dtype=tf.float32)
loss = tf.reduce_sum(tf.square(nextQ - Qout))
trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
updateModel = trainer.minimize(loss)
In [5]:
init = tf.global_variables_initializer()
# Set learning parameters
y = .99
e = 0.1
num_episodes = 2000
#create lists to contain total rewards and steps per episode
jList = []
rList = []
with tf.Session() as sess:
sess.run(init)
for i in range(num_episodes):
#Reset environment and get first new observation
s = env.reset()
rAll = 0
d = False
j = 0
#The Q-Network
while j < 99:
j+=1
#Choose an action by greedily (with e chance of random action) from the Q-network
a,allQ = sess.run([predict,Qout],feed_dict={inputs1:np.identity(16)[s:s+1]})
if np.random.rand(1) < e:
a[0] = env.action_space.sample()
#Get new state and reward from environment
s1,r,d,_ = env.step(a[0])
#Obtain the Q' values by feeding the new state through our network
Q1 = sess.run(Qout,feed_dict={inputs1:np.identity(16)[s1:s1+1]})
#Obtain maxQ' and set our target value for chosen action.
maxQ1 = np.max(Q1)
targetQ = allQ
targetQ[0,a[0]] = r + y*maxQ1
#Train our network using target and predicted Q values
_,W1 = sess.run([updateModel,W],feed_dict={inputs1:np.identity(16)[s:s+1],nextQ:targetQ})
rAll += r
s = s1
if d == True:
#Reduce chance of random action as we train the model.
e = 1./((i/50) + 10)
break
jList.append(j)
rList.append(rAll)
print("Percent of succesful episodes: " + str(sum(rList)/num_episodes) + "%")
We can see that the network beings to consistly reach the goal around the 750 episode mark.
In [6]:
plt.plot(rList)
Out[6]:
It also begins to progress through the environment for longer than chance aroudn the 750 mark as well.
In [7]:
plt.plot(jList)
Out[7]:
In [ ]: