In this iPython notebook we implement a policy and model network which work in tandem to solve the CartPole reinforcement learning problem. To learn more, read here: https://medium.com/p/9a6fe0cce99
For more reinforcment learning tutorials, see: https://github.com/awjuliani/DeepRL-Agents
In [ ]:
from __future__ import print_function
import numpy as np
try:
import cPickle as pickle
except ModuleNotFoundError:
import pickle
import tensorflow as tf
%matplotlib inline
import matplotlib.pyplot as plt
import math
In [ ]:
import sys
if sys.version_info.major > 2:
xrange = range
del sys
In [ ]:
import gym
env = gym.make('CartPole-v0')
In [ ]:
# hyperparameters
H = 8 # number of hidden layer neurons
learning_rate = 1e-2
gamma = 0.99 # discount factor for reward
decay_rate = 0.99 # decay factor for RMSProp leaky sum of grad^2
resume = False # resume from previous checkpoint?
model_bs = 3 # Batch size when learning from model
real_bs = 3 # Batch size when learning from real environment
# model initialization
D = 4 # input dimensionality
In [ ]:
tf.reset_default_graph()
observations = tf.placeholder(tf.float32, [None,4] , name="input_x")
W1 = tf.get_variable("W1", shape=[4, H],
initializer=tf.contrib.layers.xavier_initializer())
layer1 = tf.nn.relu(tf.matmul(observations,W1))
W2 = tf.get_variable("W2", shape=[H, 1],
initializer=tf.contrib.layers.xavier_initializer())
score = tf.matmul(layer1,W2)
probability = tf.nn.sigmoid(score)
tvars = tf.trainable_variables()
input_y = tf.placeholder(tf.float32,[None,1], name="input_y")
advantages = tf.placeholder(tf.float32,name="reward_signal")
adam = tf.train.AdamOptimizer(learning_rate=learning_rate)
W1Grad = tf.placeholder(tf.float32,name="batch_grad1")
W2Grad = tf.placeholder(tf.float32,name="batch_grad2")
batchGrad = [W1Grad,W2Grad]
loglik = tf.log(input_y*(input_y - probability) + (1 - input_y)*(input_y + probability))
loss = -tf.reduce_mean(loglik * advantages)
newGrads = tf.gradients(loss,tvars)
updateGrads = adam.apply_gradients(zip(batchGrad,tvars))
In [ ]:
mH = 256 # model layer size
input_data = tf.placeholder(tf.float32, [None, 5])
with tf.variable_scope('rnnlm'):
softmax_w = tf.get_variable("softmax_w", [mH, 50])
softmax_b = tf.get_variable("softmax_b", [50])
previous_state = tf.placeholder(tf.float32, [None,5] , name="previous_state")
W1M = tf.get_variable("W1M", shape=[5, mH],
initializer=tf.contrib.layers.xavier_initializer())
B1M = tf.Variable(tf.zeros([mH]),name="B1M")
layer1M = tf.nn.relu(tf.matmul(previous_state,W1M) + B1M)
W2M = tf.get_variable("W2M", shape=[mH, mH],
initializer=tf.contrib.layers.xavier_initializer())
B2M = tf.Variable(tf.zeros([mH]),name="B2M")
layer2M = tf.nn.relu(tf.matmul(layer1M,W2M) + B2M)
wO = tf.get_variable("wO", shape=[mH, 4],
initializer=tf.contrib.layers.xavier_initializer())
wR = tf.get_variable("wR", shape=[mH, 1],
initializer=tf.contrib.layers.xavier_initializer())
wD = tf.get_variable("wD", shape=[mH, 1],
initializer=tf.contrib.layers.xavier_initializer())
bO = tf.Variable(tf.zeros([4]),name="bO")
bR = tf.Variable(tf.zeros([1]),name="bR")
bD = tf.Variable(tf.ones([1]),name="bD")
predicted_observation = tf.matmul(layer2M,wO,name="predicted_observation") + bO
predicted_reward = tf.matmul(layer2M,wR,name="predicted_reward") + bR
predicted_done = tf.sigmoid(tf.matmul(layer2M,wD,name="predicted_done") + bD)
true_observation = tf.placeholder(tf.float32,[None,4],name="true_observation")
true_reward = tf.placeholder(tf.float32,[None,1],name="true_reward")
true_done = tf.placeholder(tf.float32,[None,1],name="true_done")
predicted_state = tf.concat([predicted_observation,predicted_reward,predicted_done],1)
observation_loss = tf.square(true_observation - predicted_observation)
reward_loss = tf.square(true_reward - predicted_reward)
done_loss = tf.multiply(predicted_done, true_done) + tf.multiply(1-predicted_done, 1-true_done)
done_loss = -tf.log(done_loss)
model_loss = tf.reduce_mean(observation_loss + done_loss + reward_loss)
modelAdam = tf.train.AdamOptimizer(learning_rate=learning_rate)
updateModel = modelAdam.minimize(model_loss)
In [ ]:
def resetGradBuffer(gradBuffer):
for ix,grad in enumerate(gradBuffer):
gradBuffer[ix] = grad * 0
return gradBuffer
def discount_rewards(r):
""" take 1D float array of rewards and compute discounted reward """
discounted_r = np.zeros_like(r)
running_add = 0
for t in reversed(xrange(0, r.size)):
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
# This function uses our model to produce a new state when given a previous state and action
def stepModel(sess, xs, action):
toFeed = np.reshape(np.hstack([xs[-1][0],np.array(action)]),[1,5])
myPredict = sess.run([predicted_state],feed_dict={previous_state: toFeed})
reward = myPredict[0][:,4]
observation = myPredict[0][:,0:4]
observation[:,0] = np.clip(observation[:,0],-2.4,2.4)
observation[:,2] = np.clip(observation[:,2],-0.4,0.4)
doneP = np.clip(myPredict[0][:,5],0,1)
if doneP > 0.1 or len(xs)>= 300:
done = True
else:
done = False
return observation, reward, done
In [ ]:
xs,drs,ys,ds = [],[],[],[]
running_reward = None
reward_sum = 0
episode_number = 1
real_episodes = 1
init = tf.global_variables_initializer()
batch_size = real_bs
drawFromModel = False # When set to True, will use model for observations
trainTheModel = True # Whether to train the model
trainThePolicy = False # Whether to train the policy
switch_point = 1
# Launch the graph
with tf.Session() as sess:
rendering = False
sess.run(init)
observation = env.reset()
x = observation
gradBuffer = sess.run(tvars)
gradBuffer = resetGradBuffer(gradBuffer)
while episode_number <= 5000:
# Start displaying environment once performance is acceptably high.
if (reward_sum/batch_size > 150 and drawFromModel == False) or rendering == True :
env.render()
rendering = True
x = np.reshape(observation,[1,4])
tfprob = sess.run(probability,feed_dict={observations: x})
action = 1 if np.random.uniform() < tfprob else 0
# record various intermediates (needed later for backprop)
xs.append(x)
y = 1 if action == 0 else 0
ys.append(y)
# step the model or real environment and get new measurements
if drawFromModel == False:
observation, reward, done, info = env.step(action)
else:
observation, reward, done = stepModel(sess,xs,action)
reward_sum += reward
ds.append(done*1)
drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
if done:
if drawFromModel == False:
real_episodes += 1
episode_number += 1
# stack together all inputs, hidden states, action gradients, and rewards for this episode
epx = np.vstack(xs)
epy = np.vstack(ys)
epr = np.vstack(drs)
epd = np.vstack(ds)
xs,drs,ys,ds = [],[],[],[] # reset array memory
if trainTheModel == True:
actions = np.array([np.abs(y-1) for y in epy][:-1])
state_prevs = epx[:-1,:]
state_prevs = np.hstack([state_prevs,actions])
state_nexts = epx[1:,:]
rewards = np.array(epr[1:,:])
dones = np.array(epd[1:,:])
state_nextsAll = np.hstack([state_nexts,rewards,dones])
feed_dict={previous_state: state_prevs, true_observation: state_nexts,true_done:dones,true_reward:rewards}
loss,pState,_ = sess.run([model_loss,predicted_state,updateModel],feed_dict)
if trainThePolicy == True:
discounted_epr = discount_rewards(epr).astype('float32')
discounted_epr -= np.mean(discounted_epr)
discounted_epr /= np.std(discounted_epr)
tGrad = sess.run(newGrads,feed_dict={observations: epx, input_y: epy, advantages: discounted_epr})
# If gradients becom too large, end training process
if np.sum(tGrad[0] == tGrad[0]) == 0:
break
for ix,grad in enumerate(tGrad):
gradBuffer[ix] += grad
if switch_point + batch_size == episode_number:
switch_point = episode_number
if trainThePolicy == True:
sess.run(updateGrads,feed_dict={W1Grad: gradBuffer[0],W2Grad:gradBuffer[1]})
gradBuffer = resetGradBuffer(gradBuffer)
running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
if drawFromModel == False:
print('World Perf: Episode %f. Reward %f. action: %f. mean reward %f.' % (real_episodes,reward_sum/real_bs,action, running_reward/real_bs))
if reward_sum/batch_size > 200:
break
reward_sum = 0
# Once the model has been trained on 100 episodes, we start alternating between training the policy
# from the model and training the model from the real environment.
if episode_number > 100:
drawFromModel = not drawFromModel
trainTheModel = not trainTheModel
trainThePolicy = not trainThePolicy
if drawFromModel == True:
observation = np.random.uniform(-0.1,0.1,[4]) # Generate reasonable starting point
batch_size = model_bs
else:
observation = env.reset()
batch_size = real_bs
print(real_episodes)
In [ ]:
plt.figure(figsize=(8, 12))
for i in range(6):
plt.subplot(6, 2, 2*i + 1)
plt.plot(pState[:,i])
plt.subplot(6,2,2*i+1)
plt.plot(state_nextsAll[:,i])
plt.tight_layout()
In [ ]: