In [3]:
    
# install
# pip install seaborn
    
In [9]:
    
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
%matplotlib inline
    
In [14]:
    
# setting sns default
sns.set()
sns.set_style('darkgrid')
    
In [15]:
    
X = np.random.random_integers(10, 100, 15)
plt.plot(X)
    
    Out[15]:
    
Getting Data and Preprocessing
In [10]:
    
names = [
       'mpg'
    ,  'cylinders'
    ,  'displacement'
    ,  'horsepower'
    ,  'weight'
    ,  'acceleration'
    ,  'model_year'
    ,  'origin'
    ,  'car_name'
]
# reading the file and assigning the header
df = pd.read_csv("http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data", sep='\s+', names=names)
df['maker'] = df.car_name.map(lambda x: x.split()[0])
df.origin = df.origin.map({1: 'America', 2: 'Europe', 3: 'Asia'})
df=df.applymap(lambda x: np.nan if x == '?' else x).dropna()
df['horsepower'] = df.horsepower.astype(float)
df.head()
    
    Out[10]:
In [18]:
    
sns.factorplot(data=df, x="model_year", y="mpg")
    
    Out[18]:
    
In [19]:
    
sns.factorplot(data=df, x="model_year", y="mpg", col="origin")
    
    Out[19]:
    
In [ ]: