In this Lab, you will practice training a model by using Mini-Batch Gradient Descent.
Estimated Time Needed: 30 min
</div>We'll need the following libraries:
In [ ]:
# Import the libraries we need for this lab
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
The class plot_error_surfaces
is just to help you visualize the data space and the parameter space during training and has nothing to do with PyTorch.
In [ ]:
# The class for plotting the diagrams
class plot_error_surfaces(object):
# Constructor
def __init__(self, w_range, b_range, X, Y, n_samples = 30, go = True):
W = np.linspace(-w_range, w_range, n_samples)
B = np.linspace(-b_range, b_range, n_samples)
w, b = np.meshgrid(W, B)
Z = np.zeros((30, 30))
count1 = 0
self.y = Y.numpy()
self.x = X.numpy()
for w1, b1 in zip(w, b):
count2 = 0
for w2, b2 in zip(w1, b1):
Z[count1, count2] = np.mean((self.y - w2 * self.x + b2) ** 2)
count2 += 1
count1 += 1
self.Z = Z
self.w = w
self.b = b
self.W = []
self.B = []
self.LOSS = []
self.n = 0
if go == True:
plt.figure()
plt.figure(figsize = (7.5, 5))
plt.axes(projection = '3d').plot_surface(self.w, self.b, self.Z, rstride = 1, cstride = 1, cmap = 'viridis', edgecolor = 'none')
plt.title('Loss Surface')
plt.xlabel('w')
plt.ylabel('b')
plt.show()
plt.figure()
plt.title('Loss Surface Contour')
plt.xlabel('w')
plt.ylabel('b')
plt.contour(self.w, self.b, self.Z)
plt.show()
# Setter
def set_para_loss(self, W, B, loss):
self.n = self.n + 1
self.W.append(W)
self.B.append(B)
self.LOSS.append(loss)
# Plot diagram
def final_plot(self):
ax = plt.axes(projection = '3d')
ax.plot_wireframe(self.w, self.b, self.Z)
ax.scatter(self.W, self.B, self.LOSS, c = 'r', marker = 'x', s = 200, alpha = 1)
plt.figure()
plt.contour(self.w, self.b, self.Z)
plt.scatter(self.W, self.B, c = 'r', marker = 'x')
plt.xlabel('w')
plt.ylabel('b')
plt.show()
# Plot diagram
def plot_ps(self):
plt.subplot(121)
plt.ylim()
plt.plot(self.x, self.y, 'ro', label = "training points")
plt.plot(self.x, self.W[-1] * self.x + self.B[-1], label = "estimated line")
plt.xlabel('x')
plt.ylabel('y')
plt.title('Data Space Iteration: '+ str(self.n))
plt.show()
plt.subplot(122)
plt.contour(self.w, self.b, self.Z)
plt.scatter(self.W, self.B, c = 'r', marker = 'x')
plt.title('Loss Surface Contour')
plt.xlabel('w')
plt.ylabel('b')
Import PyTorch and set random seed:
In [ ]:
# Import PyTorch library
import torch
torch.manual_seed(1)
Generate values from -3 to 3 that create a line with a slope of 1 and a bias of -1. This is the line that you need to estimate. Add some noise to the data:
In [ ]:
# Generate the data with noise and the line
X = torch.arange(-3, 3, 0.1).view(-1, 1)
f = 1 * X - 1
Y = f + 0.1 * torch.randn(X.size())
Plot the results:
In [ ]:
# Plot the line and the data
plt.plot(X.numpy(), Y.numpy(), 'rx', label = 'y')
plt.plot(X.numpy(), f.numpy(), label = 'f')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
Define the forward
function:
In [ ]:
# Define the prediction function
def forward(x):
return w * x + b
Define the cost or criterion function:
In [ ]:
# Define the cost function
def criterion(yhat, y):
return torch.mean((yhat - y) ** 2)
Create a plot_error_surfaces
object to visualize the data space and the parameter space during training:
In [ ]:
# Create a plot_error_surfaces object.
get_surface = plot_error_surfaces(15, 13, X, Y, 30)
Define train_model_BGD
function.
In [ ]:
# Define the function for training model
w = torch.tensor(-15.0, requires_grad = True)
b = torch.tensor(-10.0, requires_grad = True)
lr = 0.1
LOSS_BGD = []
def train_model_BGD(epochs):
for epoch in range(epochs):
Yhat = forward(X)
loss = criterion(Yhat, Y)
LOSS_BGD.append(loss)
get_surface.set_para_loss(w.data.tolist(), b.data.tolist(), loss.tolist())
get_surface.plot_ps()
loss.backward()
w.data = w.data - lr * w.grad.data
b.data = b.data - lr * b.grad.data
w.grad.data.zero_()
b.grad.data.zero_()
Run 10 epochs of batch gradient descent: bug data space is 1 iteration ahead of parameter space.
In [ ]:
# Run train_model_BGD with 10 iterations
train_model_BGD(10)
Create a plot_error_surfaces
object to visualize the data space and the parameter space during training:
In [ ]:
# Create a plot_error_surfaces object.
get_surface = plot_error_surfaces(15, 13, X, Y, 30, go = False)
Import Dataset
and DataLoader
libraries
In [ ]:
# Import libraries
from torch.utils.data import Dataset, DataLoader
Create Data
class
In [ ]:
# Create class Data
class Data(Dataset):
# Constructor
def __init__(self):
self.x = torch.arange(-3, 3, 0.1).view(-1, 1)
self.y = 1 * X - 1
self.len = self.x.shape[0]
# Getter
def __getitem__(self, index):
return self.x[index], self.y[index]
# Get length
def __len__(self):
return self.len
Create a dataset object and a dataloader object:
In [ ]:
# Create Data object and DataLoader object
dataset = Data()
trainloader = DataLoader(dataset = dataset, batch_size = 1)
Define train_model_SGD
function for training the model.
In [ ]:
# Define train_model_SGD function
w = torch.tensor(-15.0, requires_grad = True)
b = torch.tensor(-10.0, requires_grad = True)
LOSS_SGD = []
lr = 0.1
def train_model_SGD(epochs):
for epoch in range(epochs):
Yhat = forward(X)
get_surface.set_para_loss(w.data.tolist(), b.data.tolist(), criterion(Yhat, Y).tolist())
get_surface.plot_ps()
LOSS_SGD.append(criterion(forward(X), Y).tolist())
for x, y in trainloader:
yhat = forward(x)
loss = criterion(yhat, y)
get_surface.set_para_loss(w.data.tolist(), b.data.tolist(), loss.tolist())
loss.backward()
w.data = w.data - lr * w.grad.data
b.data = b.data - lr * b.grad.data
w.grad.data.zero_()
b.grad.data.zero_()
get_surface.plot_ps()
Run 10 epochs of stochastic gradient descent: bug data space is 1 iteration ahead of parameter space.
In [ ]:
# Run train_model_SGD(iter) with 10 iterations
train_model_SGD(10)
Create a plot_error_surfaces
object to visualize the data space and the parameter space during training:
In [ ]:
# Create a plot_error_surfaces object.
get_surface = plot_error_surfaces(15, 13, X, Y, 30, go = False)
Create Data
object and create a Dataloader
object where the batch size equals 5:
In [ ]:
# Create DataLoader object and Data object
dataset = Data()
trainloader = DataLoader(dataset = dataset, batch_size = 5)
Define train_model_Mini5
function to train the model.
In [ ]:
# Define train_model_Mini5 function
w = torch.tensor(-15.0, requires_grad = True)
b = torch.tensor(-10.0, requires_grad = True)
LOSS_MINI5 = []
lr = 0.1
def train_model_Mini5(epochs):
for epoch in range(epochs):
Yhat = forward(X)
get_surface.set_para_loss(w.data.tolist(), b.data.tolist(), criterion(Yhat, Y).tolist())
get_surface.plot_ps()
LOSS_MINI5.append(criterion(forward(X), Y).tolist())
for x, y in trainloader:
yhat = forward(x)
loss = criterion(yhat, y)
get_surface.set_para_loss(w.data.tolist(), b.data.tolist(), loss.tolist())
loss.backward()
w.data = w.data - lr * w.grad.data
b.data = b.data - lr * b.grad.data
w.grad.data.zero_()
b.grad.data.zero_()
Run 10 epochs of mini-batch gradient descent: bug data space is 1 iteration ahead of parameter space.
In [ ]:
# Run train_model_Mini5 with 10 iterations.
train_model_Mini5(10)
Create a plot_error_surfaces
object to visualize the data space and the parameter space during training:
In [ ]:
# Create a plot_error_surfaces object.
get_surface = plot_error_surfaces(15, 13, X, Y, 30, go = False)
Create Data
object and create a Dataloader
object batch size equals 10
In [ ]:
# Create DataLoader object
dataset = Data()
trainloader = DataLoader(dataset = dataset, batch_size = 10)
Define train_model_Mini10
function for training the model.
In [ ]:
# Define train_model_Mini5 function
w = torch.tensor(-15.0, requires_grad = True)
b = torch.tensor(-10.0, requires_grad = True)
LOSS_MINI10 = []
lr = 0.1
def train_model_Mini10(epochs):
for epoch in range(epochs):
Yhat = forward(X)
get_surface.set_para_loss(w.data.tolist(), b.data.tolist(), criterion(Yhat, Y).tolist())
get_surface.plot_ps()
LOSS_MINI10.append(criterion(forward(X),Y).tolist())
for x, y in trainloader:
yhat = forward(x)
loss = criterion(yhat, y)
get_surface.set_para_loss(w.data.tolist(), b.data.tolist(), loss.tolist())
loss.backward()
w.data = w.data - lr * w.grad.data
b.data = b.data - lr * b.grad.data
w.grad.data.zero_()
b.grad.data.zero_()
Run 10 epochs of mini-batch gradient descent: bug data space is 1 iteration ahead of parameter space.
In [ ]:
# Run train_model_Mini5 with 10 iterations.
train_model_Mini10(10)
Plot the loss for each epoch:
In [ ]:
# Plot out the LOSS for each method
plt.plot(LOSS_BGD,label = "Batch Gradient Descent")
plt.plot(LOSS_SGD,label = "Stochastic Gradient Descent")
plt.plot(LOSS_MINI5,label = "Mini-Batch Gradient Descent, Batch size: 5")
plt.plot(LOSS_MINI10,label = "Mini-Batch Gradient Descent, Batch size: 10")
plt.legend()
Perform mini batch gradient descent with a batch size of 20. Store the total loss for each epoch in the list LOSS20.
In [ ]:
# Practice: Perform mini batch gradient descent with a batch size of 20.
dataset = Data()
Double-click here for the solution.
Plot a graph that shows the LOSS results for all the methods.
In [ ]:
# Practice: Plot a graph to show all the LOSS functions
# Type your code here
Double-click here for the solution.
Joseph Santarcangelo has a PhD in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.
Other contributors: Michelle Carey, Mavis Zhou
Copyright © 2018 cognitiveclass.ai. This notebook and its source code are released under the terms of the MIT License.