This notebook replicates the existing ARMA notebook using the statsmodels.tsa.statespace.SARIMAX
class rather than the statsmodels.tsa.ARMA
class.
In [ ]:
%matplotlib inline
In [ ]:
from __future__ import print_function
import numpy as np
from scipy import stats
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
In [ ]:
from statsmodels.graphics.api import qqplot
In [ ]:
print(sm.datasets.sunspots.NOTE)
In [ ]:
dta = sm.datasets.sunspots.load_pandas().data
In [ ]:
dta.index = pd.Index(sm.tsa.datetools.dates_from_range('1700', '2008'))
del dta["YEAR"]
In [ ]:
dta.plot(figsize=(12,4));
In [ ]:
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(dta.values.squeeze(), lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(dta, lags=40, ax=ax2)
In [ ]:
arma_mod20 = sm.tsa.statespace.SARIMAX(dta, order=(2,0,0), trend='c').fit()
print(arma_mod20.params)
In [ ]:
arma_mod30 = sm.tsa.statespace.SARIMAX(dta, order=(3,0,0), trend='c').fit()
In [ ]:
print(arma_mod20.aic, arma_mod20.bic, arma_mod20.hqic)
In [ ]:
print(arma_mod30.params)
In [ ]:
print(arma_mod30.aic, arma_mod30.bic, arma_mod30.hqic)
In [ ]:
sm.stats.durbin_watson(arma_mod30.resid()[0])
In [ ]:
fig = plt.figure(figsize=(12,4))
ax = fig.add_subplot(111)
ax = plt.plot(arma_mod30.resid()[0])
In [ ]:
resid = arma_mod30.resid()[0]
In [ ]:
stats.normaltest(resid)
In [ ]:
fig = plt.figure(figsize=(12,4))
ax = fig.add_subplot(111)
fig = qqplot(resid, line='q', ax=ax, fit=True)
In [ ]:
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(resid, lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(resid, lags=40, ax=ax2)
In [ ]:
r,q,p = sm.tsa.acf(resid, qstat=True)
data = np.c_[range(1,41), r[1:], q, p]
table = pd.DataFrame(data, columns=['lag', "AC", "Q", "Prob(>Q)"])
print(table.set_index('lag'))
In [ ]:
predict_sunspots = arma_mod30.predict(start='1990', end='2012', dynamic=True)
index = pd.date_range('1990','2013',freq='A')
In [ ]:
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(dta.ix['1950':].index._mpl_repr(), dta.ix['1950':])
ax.plot(index, predict_sunspots[0], 'r');
In [ ]:
def mean_forecast_err(y, yhat):
return y.sub(yhat).mean()
In [ ]:
mean_forecast_err(dta.SUNACTIVITY, pd.Series(predict_sunspots[0], index=index))