Algorithms Exercise 2

Imports


In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np

Peak finding

Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:

  • Properly handle local maxima at the endpoints of the input array.
  • Return a Numpy array of integer indices.
  • Handle any Python iterable as input.

In [2]:
def find_peaks(a):
    """Find the indices of the local maxima in a sequence."""
    a = np.array(a)
    s = np.sign(np.diff(a))
    d = np.diff(s)
    ind  = [i for i in range(len(d)) if d[i] == 2]
    if s[-1] == 1:
         ind.append(len(a)-1)
    return(np.array(ind))

In [3]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))

In [10]:
find_peaks([2,2,2,1,2,2,2])


Out[10]:
array([2])

Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:

  • Convert that string to a Numpy array of integers.
  • Find the indices of the local maxima in the digits of $\pi$.
  • Use np.diff to find the distances between consequtive local maxima.
  • Visualize that distribution using an appropriately customized histogram.

In [4]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]

In [8]:
pi_int = np.array(list(pi_digits_str), dtype="int")
pks = find_peaks(pi_int)
pks_diff = np.diff(pks)
plt.hist(pks_diff, bins = range(0,max(pks_diff)+1))
min(pks_diff), max(pks_diff)


Out[8]:
(2, 15)

In [6]:
pks


Out[6]:
array([   1,    4,    7, ..., 9993, 9995, 9999])

In [7]:
assert True # use this for grading the pi digits histogram