In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [2]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
a = np.array(a)
s = np.sign(np.diff(a))
d = np.diff(s)
ind = [i for i in range(len(d)) if d[i] == 2]
if s[-1] == 1:
ind.append(len(a)-1)
return(np.array(ind))
In [3]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
In [10]:
find_peaks([2,2,2,1,2,2,2])
Out[10]:
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [4]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [8]:
pi_int = np.array(list(pi_digits_str), dtype="int")
pks = find_peaks(pi_int)
pks_diff = np.diff(pks)
plt.hist(pks_diff, bins = range(0,max(pks_diff)+1))
min(pks_diff), max(pks_diff)
Out[8]:
In [6]:
pks
Out[6]:
In [7]:
assert True # use this for grading the pi digits histogram