Numpy Exercise 2

Imports


In [2]:
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

Factorial

Write a function that computes the factorial of small numbers using np.arange and np.cumprod.


In [3]:
def np_fact(n):
    """Compute n! = n*(n-1)*...*1 using Numpy."""
    if n == 0:
        return 1
    else:
        vec = np.arange(1, n+1)
        return np.cumprod(vec)[-1]
np_fact(4)


Out[3]:
24

In [3]:
assert np_fact(0)==1
assert np_fact(1)==1
assert np_fact(10)==3628800
assert [np_fact(i) for i in range(0,11)]==[1,1,2,6,24,120,720,5040,40320,362880,3628800]

Write a function that computes the factorial of small numbers using a Python loop.


In [4]:
def loop_fact(n):
    """Compute n! using a Python for loop."""
    prod = 1
    for i in range(1,n+1):
        prod *= i
    return prod
loop_fact(4)


Out[4]:
24

In [5]:
assert loop_fact(0)==1
assert loop_fact(1)==1
assert loop_fact(10)==3628800
assert [loop_fact(i) for i in range(0,11)]==[1,1,2,6,24,120,720,5040,40320,362880,3628800]

Use the %timeit magic to time both versions of this function for an argument of 50. The syntax for %timeit is:

%timeit -n1 -r1 function_to_time()

In [6]:
%timeit -n1 -r1 np_fact(50)
%timeit -n1 -r1 loop_fact(50)


1 loops, best of 1: 52 µs per loop
1 loops, best of 1: 21.9 µs per loop

In the cell below, summarize your timing tests. Which version is faster? Why do you think that version is faster?

I'm a bit confused. I was expecting np to be faster, but it appears the python loop (loop_fact) is faster. I may be misinterpreting the output. It appears np_fact is taking 47 microseconds per loop, while loop_fact is taking 15. Now, maybe I should multiply the 15 by 50, but not the 47?