In [1]:
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
Write a function that computes the factorial of small numbers using np.arange
and np.cumprod
.
In [2]:
def np_fact(n):
"""Compute n! = n*(n-1)*...*1 using Numpy."""
if n == 0:
return 1
else:
c = np.arange(1, n+1, 1)
return c.cumprod()[n-1]
In [3]:
assert np_fact(0)==1
assert np_fact(1)==1
assert np_fact(10)==3628800
assert [np_fact(i) for i in range(0,11)]==[1,1,2,6,24,120,720,5040,40320,362880,3628800]
Write a function that computes the factorial of small numbers using a Python loop.
In [4]:
def loop_fact(n):
result = 1
"""Compute n! using a Python for loop."""
if n == 0:
return 1
else:
while n > 0:
result = result*n
n-=1
return result
In [5]:
assert loop_fact(0)==1
assert loop_fact(1)==1
assert loop_fact(10)==3628800
assert [loop_fact(i) for i in range(0,11)]==[1,1,2,6,24,120,720,5040,40320,362880,3628800]
Use the %timeit
magic to time both versions of this function for an argument of 50
. The syntax for %timeit
is:
%timeit -n1 -r1 function_to_time()
In [6]:
print("Argument of 50")
%timeit -n1 -r1 np_fact(50)
%timeit -n1 -r1 loop_fact(50)
print("Argument of 90000")
%timeit -n1 -r1 np_fact(90000)
%timeit -n1 -r1 loop_fact(90000)
In the cell below, summarize your timing tests. Which version is faster? Why do you think that version is faster?
Loop_fact is faster than np_fact for small values. I believe this is because np_fact is creating an array and every entry in the array, while loop_fact is only directly doing the computation. But you can notice that as the argument is increased to very large values np_fact is much faster.