The smith chart is a nomogram used frequently in RF/Microwave Engineering. Since its inception it has been recognised that projecting the chart onto the reimen sphere [1].
[1]H. . Wheeler, “Reflection Charts Relating to Impedance Matching,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1008–1021, Sep. 1984.
In [1]:
#from IPython.display import SVG
#SVG('pics/smith_sphere.svg')
from galgebra.printer import Format, Fmt
In [2]:
from galgebra import ga
from galgebra.ga import Ga
from sympy import *
Format()
(o3d,er,ex,es) = Ga.build('e_r e_x e_s',g=[1,1,1])
(o2d,zr,zx) = Ga.build('z_r z_x',g=[1,1])
Bz = er^ex # impedance plance
Bs = es^ex # reflection coefficient plane
Bx = er^es
I = o3d.I()
def down(p, N):
'''
stereographically project a vector in G3 downto the bivector N
'''
n= -1*N.dual()
return -(n^p)*(n-n*(n|p)).inv()
def up(p):
'''
stereographically project a vector in G2 upto the space G3
'''
if (p^Bz).obj == 0:
N = Bz
elif (p^Bs).obj == 0:
N = Bs
n = -N.dual()
return n + 2*(p*p + 1).inv()*(p-n)
a,b,c,z,s,n = [o3d.mv(k,'vector') for k in ['a','b','c','z','s' ,'n']]
Starting with an impedance vector $z$, defined by a vector in the impedance plane $B_z$, this vector has two scalar components ( $z^r$, $z^x$) known as resistance and reactance
In [3]:
Bz.dual()
Out[3]:
In [4]:
Bz.is_zero()
Out[4]:
In [5]:
z = z.proj([er,ex])
z
Out[5]:
stereographically up-projecting this onto the sphere to point $p$,
In [6]:
p = up(z)
p
Out[6]:
In [7]:
simplify(p.norm2())
Out[7]:
If we stereo-project this back onto the impedance plane
In [8]:
down(p, Bz)
Out[8]:
In [9]:
down(p,Bs).simplify()
Out[9]:
In [10]:
(z-er)*(z+er).inv()
Out[10]:
In [11]:
p
Out[11]:
In [12]:
R=((-pi/4)*Bx).exp()
R
Out[12]:
In [13]:
R*p*R.rev()
Out[13]:
In [14]:
down(R*p*R.rev(),Bz)
Out[14]: