In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
In [2]:
from datetime import datetime
In [3]:
# To illustrate the order of arguments
my_year = 2017
my_month = 1
my_day = 2
my_hour = 13
my_minute = 30
my_second = 15
In [4]:
# January 2nd, 2017
my_date = datetime(my_year,my_month, my_day)
In [5]:
# Defaults to 0:00
my_date
Out[5]:
In [6]:
# January 2nd, 2017 at 13:30:15
my_date_time = datetime(my_year, my_month, my_day, my_hour, my_minute, my_second)
In [7]:
my_date_time
Out[7]:
You can grab any part of the datetime object you want
In [8]:
my_date.day
Out[8]:
In [9]:
my_date_time.hour
Out[9]:
In [10]:
# Create an example datetime list/array
first_two = [datetime(2016, 1, 1), datetime(2016, 1, 2)]
first_two
Out[10]:
In [11]:
# Converted to an index
dt_ind = pd.DatetimeIndex(first_two)
dt_ind
Out[11]:
In [12]:
# Attached to some random data
data = np.random.randn(2, 2)
print(data)
cols = ['A','B']
In [13]:
df = pd.DataFrame(data,dt_ind,cols)
In [14]:
df
Out[14]:
In [15]:
df.index
Out[15]:
In [16]:
# Latest Date Location
df.index.argmax()
Out[16]:
In [17]:
df.index.max()
Out[17]:
In [18]:
# Earliest Date Index Location
df.index.argmin()
Out[18]:
In [19]:
df.index.min()
Out[19]: