DataFrames

DataFrames are the workhorse of pandas and are directly inspired by the R programming language. We can think of a DataFrame as a bunch of Series objects put together to share the same index. Let's use pandas to explore this topic!


In [1]:
import pandas as pd
import numpy as np

In [2]:
from numpy.random import randn
np.random.seed(101)

In [3]:
df = pd.DataFrame(randn(5, 4),
                  index = 'A B C D E'.split(),
                  columns = 'W X Y Z'.split())

In [4]:
df


Out[4]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509

Selection and Indexing

Let's learn the various methods to grab data from a DataFrame


In [5]:
df['W']


Out[5]:
A    2.706850
B    0.651118
C   -2.018168
D    0.188695
E    0.190794
Name: W, dtype: float64

In [6]:
# Pass a list of column names
df[['W', 'Z']]


Out[6]:
W Z
A 2.706850 0.503826
B 0.651118 0.605965
C -2.018168 -0.589001
D 0.188695 0.955057
E 0.190794 0.683509

In [7]:
# SQL Syntax (NOT RECOMMENDED!)
df.W


Out[7]:
A    2.706850
B    0.651118
C   -2.018168
D    0.188695
E    0.190794
Name: W, dtype: float64

DataFrame Columns are just Series


In [8]:
type(df['W'])


Out[8]:
pandas.core.series.Series

Creating a new column:


In [9]:
df['new'] = df['W'] + df['Y']

In [10]:
df


Out[10]:
W X Y Z new
A 2.706850 0.628133 0.907969 0.503826 3.614819
B 0.651118 -0.319318 -0.848077 0.605965 -0.196959
C -2.018168 0.740122 0.528813 -0.589001 -1.489355
D 0.188695 -0.758872 -0.933237 0.955057 -0.744542
E 0.190794 1.978757 2.605967 0.683509 2.796762

Removing Columns


In [11]:
df.drop('new',
        axis = 1)


Out[11]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509

In [12]:
# Not inplace unless specified!
df


Out[12]:
W X Y Z new
A 2.706850 0.628133 0.907969 0.503826 3.614819
B 0.651118 -0.319318 -0.848077 0.605965 -0.196959
C -2.018168 0.740122 0.528813 -0.589001 -1.489355
D 0.188695 -0.758872 -0.933237 0.955057 -0.744542
E 0.190794 1.978757 2.605967 0.683509 2.796762

In [13]:
df.drop('new',
        axis = 1,
        inplace = True)

In [14]:
df


Out[14]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509

Can also drop rows this way:


In [15]:
df.drop('E',
        axis = 0)


Out[15]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057

Selecting Rows


In [16]:
df.loc['A']


Out[16]:
W    2.706850
X    0.628133
Y    0.907969
Z    0.503826
Name: A, dtype: float64

Or select based off of position instead of label


In [17]:
df.iloc[2]


Out[17]:
W   -2.018168
X    0.740122
Y    0.528813
Z   -0.589001
Name: C, dtype: float64

Selecting subset of rows and columns


In [18]:
df.loc['B', 'Y']


Out[18]:
-0.84807698340363147

In [19]:
df.loc[['A', 'B'],
       ['W', 'Y']]


Out[19]:
W Y
A 2.706850 0.907969
B 0.651118 -0.848077

Conditional Selection

An important feature of pandas is conditional selection using bracket notation, very similar to numpy:


In [20]:
df


Out[20]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509

In [21]:
df > 0


Out[21]:
W X Y Z
A True True True True
B True False False True
C False True True False
D True False False True
E True True True True

In [22]:
df[df > 0]


Out[22]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 NaN NaN 0.605965
C NaN 0.740122 0.528813 NaN
D 0.188695 NaN NaN 0.955057
E 0.190794 1.978757 2.605967 0.683509

In [23]:
df[df['W'] > 0]


Out[23]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509

In [24]:
df[df['W'] > 0]['Y']


Out[24]:
A    0.907969
B   -0.848077
D   -0.933237
E    2.605967
Name: Y, dtype: float64

In [25]:
df[df['W'] > 0][['Y', 'X']]


Out[25]:
Y X
A 0.907969 0.628133
B -0.848077 -0.319318
D -0.933237 -0.758872
E 2.605967 1.978757

For two conditions you can use | and & with parenthesis:


In [26]:
df[(df['W'] > 0) & (df['Y'] > 1)]


Out[26]:
W X Y Z
E 0.190794 1.978757 2.605967 0.683509

More Index Details

Let's discuss some more features of indexing, including resetting the index or setting it something else. We'll also talk about index hierarchy!


In [27]:
df


Out[27]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509

In [28]:
# Reset to default 0,1...n index
df.reset_index()


Out[28]:
index W X Y Z
0 A 2.706850 0.628133 0.907969 0.503826
1 B 0.651118 -0.319318 -0.848077 0.605965
2 C -2.018168 0.740122 0.528813 -0.589001
3 D 0.188695 -0.758872 -0.933237 0.955057
4 E 0.190794 1.978757 2.605967 0.683509

In [29]:
newind = 'CA NY WY OR CO'.split()

In [30]:
df['States'] = newind

In [31]:
df


Out[31]:
W X Y Z States
A 2.706850 0.628133 0.907969 0.503826 CA
B 0.651118 -0.319318 -0.848077 0.605965 NY
C -2.018168 0.740122 0.528813 -0.589001 WY
D 0.188695 -0.758872 -0.933237 0.955057 OR
E 0.190794 1.978757 2.605967 0.683509 CO

In [32]:
df.set_index('States')


Out[32]:
W X Y Z
States
CA 2.706850 0.628133 0.907969 0.503826
NY 0.651118 -0.319318 -0.848077 0.605965
WY -2.018168 0.740122 0.528813 -0.589001
OR 0.188695 -0.758872 -0.933237 0.955057
CO 0.190794 1.978757 2.605967 0.683509

In [33]:
df


Out[33]:
W X Y Z States
A 2.706850 0.628133 0.907969 0.503826 CA
B 0.651118 -0.319318 -0.848077 0.605965 NY
C -2.018168 0.740122 0.528813 -0.589001 WY
D 0.188695 -0.758872 -0.933237 0.955057 OR
E 0.190794 1.978757 2.605967 0.683509 CO

In [34]:
df.set_index('States',
             inplace = True)

In [35]:
df


Out[35]:
W X Y Z
States
CA 2.706850 0.628133 0.907969 0.503826
NY 0.651118 -0.319318 -0.848077 0.605965
WY -2.018168 0.740122 0.528813 -0.589001
OR 0.188695 -0.758872 -0.933237 0.955057
CO 0.190794 1.978757 2.605967 0.683509

Multi-Index and Index Hierarchy

Let us go over how to work with Multi-Index, first we'll create a quick example of what a Multi-Indexed DataFrame would look like:


In [36]:
# Index Levels
outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2']
inside = [1, 2 , 3, 1, 2, 3]
hier_index = list(zip(outside,inside))
hier_index = pd.MultiIndex.from_tuples(hier_index)

In [37]:
hier_index


Out[37]:
MultiIndex(levels=[['G1', 'G2'], [1, 2, 3]],
           labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]])

In [38]:
df = pd.DataFrame(np.random.randn(6, 2),
                  index=hier_index,columns = ['A', 'B'])
df


Out[38]:
A B
G1 1 0.302665 1.693723
2 -1.706086 -1.159119
3 -0.134841 0.390528
G2 1 0.166905 0.184502
2 0.807706 0.072960
3 0.638787 0.329646

Now let's show how to index this! For index hierarchy we use df.loc[], if this was on the columns axis, you would just use normal bracket notation df[]. Calling one level of the index returns the sub-dataframe:


In [39]:
df.loc['G1']


Out[39]:
A B
1 0.302665 1.693723
2 -1.706086 -1.159119
3 -0.134841 0.390528

In [40]:
df.loc['G1'].loc[1]


Out[40]:
A    0.302665
B    1.693723
Name: 1, dtype: float64

In [41]:
df.index.names


Out[41]:
FrozenList([None, None])

In [42]:
df.index.names = ['Group', 'Num']

In [43]:
df


Out[43]:
A B
Group Num
G1 1 0.302665 1.693723
2 -1.706086 -1.159119
3 -0.134841 0.390528
G2 1 0.166905 0.184502
2 0.807706 0.072960
3 0.638787 0.329646

In [44]:
df.xs('G1')


Out[44]:
A B
Num
1 0.302665 1.693723
2 -1.706086 -1.159119
3 -0.134841 0.390528

In [45]:
df.xs(['G1', 1])


Out[45]:
A    0.302665
B    1.693723
Name: (G1, 1), dtype: float64

In [46]:
df.xs(1,
      level = 'Num')


Out[46]:
A B
Group
G1 0.302665 1.693723
G2 0.166905 0.184502

Great Job!