DataFrames

DataFrames are the workhorse of pandas and are directly inspired by the R programming language. We can think of a DataFrame as a bunch of Series objects put together to share the same index. Let's use pandas to explore this topic!


In [183]:
import pandas as pd
import numpy as np

In [184]:
from numpy.random import randn
np.random.seed(101)

In [185]:
df = pd.DataFrame(randn(5,4),index='A B C D E'.split(),columns='W X Y Z'.split())

In [186]:
df


Out[186]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509

Selection and Indexing

Let's learn the various methods to grab data from a DataFrame


In [187]:
df['W']


Out[187]:
A    2.706850
B    0.651118
C   -2.018168
D    0.188695
E    0.190794
Name: W, dtype: float64

In [188]:
# Pass a list of column names
df[['W','Z']]


Out[188]:
W Z
A 2.706850 0.503826
B 0.651118 0.605965
C -2.018168 -0.589001
D 0.188695 0.955057
E 0.190794 0.683509

In [189]:
# SQL Syntax (NOT RECOMMENDED!)
df.W


Out[189]:
A    2.706850
B    0.651118
C   -2.018168
D    0.188695
E    0.190794
Name: W, dtype: float64

DataFrame Columns are just Series


In [190]:
type(df['W'])


Out[190]:
pandas.core.series.Series

Creating a new column:


In [191]:
df['new'] = df['W'] + df['Y']

In [192]:
df


Out[192]:
W X Y Z new
A 2.706850 0.628133 0.907969 0.503826 3.614819
B 0.651118 -0.319318 -0.848077 0.605965 -0.196959
C -2.018168 0.740122 0.528813 -0.589001 -1.489355
D 0.188695 -0.758872 -0.933237 0.955057 -0.744542
E 0.190794 1.978757 2.605967 0.683509 2.796762

Removing Columns


In [193]:
df.drop('new',axis=1)


Out[193]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509

In [194]:
# Not inplace unless specified!
df


Out[194]:
W X Y Z new
A 2.706850 0.628133 0.907969 0.503826 3.614819
B 0.651118 -0.319318 -0.848077 0.605965 -0.196959
C -2.018168 0.740122 0.528813 -0.589001 -1.489355
D 0.188695 -0.758872 -0.933237 0.955057 -0.744542
E 0.190794 1.978757 2.605967 0.683509 2.796762

In [195]:
df.drop('new',axis=1,inplace=True)

In [196]:
df


Out[196]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509

Can also drop rows this way:


In [197]:
df.drop('E',axis=0)


Out[197]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057

Selecting Rows


In [198]:
df.loc['A']


Out[198]:
W    2.706850
X    0.628133
Y    0.907969
Z    0.503826
Name: A, dtype: float64

Or select based off of position instead of label


In [199]:
df.iloc[2]


Out[199]:
W   -2.018168
X    0.740122
Y    0.528813
Z   -0.589001
Name: C, dtype: float64

Selecting subset of rows and columns


In [200]:
df.loc['B','Y']


Out[200]:
-0.84807698340363147

In [201]:
df.loc[['A','B'],['W','Y']]


Out[201]:
W Y
A 2.706850 0.907969
B 0.651118 -0.848077

Conditional Selection

An important feature of pandas is conditional selection using bracket notation, very similar to numpy:


In [202]:
df


Out[202]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509

In [203]:
df>0


Out[203]:
W X Y Z
A True True True True
B True False False True
C False True True False
D True False False True
E True True True True

In [204]:
df[df>0]


Out[204]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 NaN NaN 0.605965
C NaN 0.740122 0.528813 NaN
D 0.188695 NaN NaN 0.955057
E 0.190794 1.978757 2.605967 0.683509

In [205]:
df[df['W']>0]


Out[205]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509

In [206]:
df[df['W']>0]['Y']


Out[206]:
A    0.907969
B   -0.848077
D   -0.933237
E    2.605967
Name: Y, dtype: float64

In [207]:
df[df['W']>0][['Y','X']]


Out[207]:
Y X
A 0.907969 0.628133
B -0.848077 -0.319318
D -0.933237 -0.758872
E 2.605967 1.978757

For two conditions you can use | and & with parenthesis:


In [208]:
df[(df['W']>0) & (df['Y'] > 1)]


Out[208]:
W X Y Z
E 0.190794 1.978757 2.605967 0.683509

More Index Details

Let's discuss some more features of indexing, including resetting the index or setting it something else. We'll also talk about index hierarchy!


In [209]:
df


Out[209]:
W X Y Z
A 2.706850 0.628133 0.907969 0.503826
B 0.651118 -0.319318 -0.848077 0.605965
C -2.018168 0.740122 0.528813 -0.589001
D 0.188695 -0.758872 -0.933237 0.955057
E 0.190794 1.978757 2.605967 0.683509

In [210]:
# Reset to default 0,1...n index
df.reset_index()


Out[210]:
index W X Y Z
0 A 2.706850 0.628133 0.907969 0.503826
1 B 0.651118 -0.319318 -0.848077 0.605965
2 C -2.018168 0.740122 0.528813 -0.589001
3 D 0.188695 -0.758872 -0.933237 0.955057
4 E 0.190794 1.978757 2.605967 0.683509

In [211]:
newind = 'CA NY WY OR CO'.split()

In [212]:
df['States'] = newind

In [213]:
df


Out[213]:
W X Y Z States
A 2.706850 0.628133 0.907969 0.503826 CA
B 0.651118 -0.319318 -0.848077 0.605965 NY
C -2.018168 0.740122 0.528813 -0.589001 WY
D 0.188695 -0.758872 -0.933237 0.955057 OR
E 0.190794 1.978757 2.605967 0.683509 CO

In [214]:
df.set_index('States')


Out[214]:
W X Y Z
States
CA 2.706850 0.628133 0.907969 0.503826
NY 0.651118 -0.319318 -0.848077 0.605965
WY -2.018168 0.740122 0.528813 -0.589001
OR 0.188695 -0.758872 -0.933237 0.955057
CO 0.190794 1.978757 2.605967 0.683509

In [215]:
df


Out[215]:
W X Y Z States
A 2.706850 0.628133 0.907969 0.503826 CA
B 0.651118 -0.319318 -0.848077 0.605965 NY
C -2.018168 0.740122 0.528813 -0.589001 WY
D 0.188695 -0.758872 -0.933237 0.955057 OR
E 0.190794 1.978757 2.605967 0.683509 CO

In [216]:
df.set_index('States',inplace=True)

In [218]:
df


Out[218]:
W X Y Z
States
CA 2.706850 0.628133 0.907969 0.503826
NY 0.651118 -0.319318 -0.848077 0.605965
WY -2.018168 0.740122 0.528813 -0.589001
OR 0.188695 -0.758872 -0.933237 0.955057
CO 0.190794 1.978757 2.605967 0.683509

Multi-Index and Index Hierarchy

Let us go over how to work with Multi-Index, first we'll create a quick example of what a Multi-Indexed DataFrame would look like:


In [253]:
# Index Levels
outside = ['G1','G1','G1','G2','G2','G2']
inside = [1,2,3,1,2,3]
hier_index = list(zip(outside,inside))
hier_index = pd.MultiIndex.from_tuples(hier_index)

In [254]:
hier_index


Out[254]:
MultiIndex(levels=[['G1', 'G2'], [1, 2, 3]],
           labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]])

In [257]:
df = pd.DataFrame(np.random.randn(6,2),index=hier_index,columns=['A','B'])
df


Out[257]:
A B
G1 1 0.153661 0.167638
2 -0.765930 0.962299
3 0.902826 -0.537909
G2 1 -1.549671 0.435253
2 1.259904 -0.447898
3 0.266207 0.412580

Now let's show how to index this! For index hierarchy we use df.loc[], if this was on the columns axis, you would just use normal bracket notation df[]. Calling one level of the index returns the sub-dataframe:


In [260]:
df.loc['G1']


Out[260]:
A B
1 0.153661 0.167638
2 -0.765930 0.962299
3 0.902826 -0.537909

In [263]:
df.loc['G1'].loc[1]


Out[263]:
A    0.153661
B    0.167638
Name: 1, dtype: float64

In [265]:
df.index.names


Out[265]:
FrozenList([None, None])

In [266]:
df.index.names = ['Group','Num']

In [267]:
df


Out[267]:
A B
Group Num
G1 1 0.153661 0.167638
2 -0.765930 0.962299
3 0.902826 -0.537909
G2 1 -1.549671 0.435253
2 1.259904 -0.447898
3 0.266207 0.412580

In [270]:
df.xs('G1')


Out[270]:
A B
Num
1 0.153661 0.167638
2 -0.765930 0.962299
3 0.902826 -0.537909

In [271]:
df.xs(['G1',1])


Out[271]:
A    0.153661
B    0.167638
Name: (G1, 1), dtype: float64

In [273]:
df.xs(1,level='Num')


Out[273]:
A B
Group
G1 0.153661 0.167638
G2 -1.549671 0.435253

Great Job!