In [4]:
import numpy as np
import pandas as pd
In [6]:
%matplotlib inline
In [27]:
df = pd.DataFrame()
df['Time'] = range(15);
df['Sig1'] = df['Time'] / 14;
df['Sig2'] = np.sin(df['Time']);
df['Sig3'] = (np.sin(df['Sig1']) + np.cos(df['Sig2'])) / 2;
In [28]:
df.plot.line('Time' , ['Sig1', 'Sig2' , 'Sig3'])
Out[28]:
In [29]:
df.plot.line('Time' , ['Sig1', 'Sig2', 'Sig3'], color=['b' , 'r' , 'g'])
Out[29]:
In [30]:
df.plot.line('Time' , ['Sig1', 'Sig2', 'Sig3'], color=['r' , 'g' , 'b'])
Out[30]:
In [31]:
df.plot.line('Time' , ['Sig1', 'Sig2', 'Sig3'], color=['#FF0000' , '#00FF00' , '#0000FF'])
Out[31]:
http://matplotlib.org/api/colors_api.html
Commands which take color arguments can use several formats to specify the colors. For the basic built-in colors, you can use a single letter
b: blue
g: green
r: red
c: cyan
m: magenta
y: yellow
k: black
w: white
In [32]:
df.plot.line('Time' , ['Sig1', 'Sig2', 'Sig3'], color=['c' , 'm' , 'y'])
Out[32]:
In [33]:
df.plot.line('Time' , ['Sig1', 'Sig2', 'Sig3'], color=['#800000' , '#008000' , '#000080'])
Out[33]:
In [ ]:
df.plot.line('Time' , ['Sig1', 'Sig2', 'Sig3'], color=['r' , 'g' , 'b'])