In [2]:
import numpy as np #include numpy package
import matplotlib.pyplot as plt #include matplotlib package
#to allow drawing the plots inside jupyter notebook
%matplotlib inline
In [4]:
x = np.linspace(0,5*np.pi,500) # data of x axis
ySine = np.sin(x) # data of y axis (sine wave)
plt.plot(x,ySine) # plot the sine wave
plt.xlabel('x axis label') # add label to the x-axis
plt.ylabel('y axis label') # add label to the y-axis
plt.xlim(0,16) # limit the x-axes to region 0:16
plt.ylim(-1,1) # limit the y-axes to region -1:1
plt.title('Sine Wave') # title of the figure
plt.legend(['Sine']) # add legend to the figure
plt.grid(True) # show the grid layout
plt.savefig("./figures/test-Sine-Wave.png") # save figure
In [5]:
x = np.linspace(0,5*np.pi,50) # data of x axis
ySine = np.sin(x) # data of y axis (sine wave)
plt.scatter(x,ySine)
plt.xlabel('x axis label') # label of x axis
plt.ylabel('y axis label') # label of y axis
plt.xlim(0,16)
plt.ylim(-1,1)
plt.title('Sine Wave') # title of the plot
plt.legend(['Sine']) # legend of the plot
plt.grid(True)
In [9]:
mu, sigma = 1, 0.5 # mean and std
x = np.random.normal(mu,sigma,50000) # generate data with the aformentioned mean and std
y = plt.hist(x,bins=50,normed=True,color='r') # plot the generated data as histogram
In [15]:
# fake up some data
spread = np.random.rand(50) * 100
center = np.ones(25) * 50
flier_high = np.random.rand(10) * 100 + 100
flier_low = np.random.rand(10) * -100
data = np.concatenate((spread, center, flier_high, flier_low), 0)
# basic plot
plt.subplot(1,5,1)
plt.boxplot(data)
plt.subplot(1,5,2)
plt.boxplot(data,notch=False)
plt.subplot(1,5,3)
plt.boxplot(data,notch=True)
plt.subplot(1,5,4)
plt.boxplot(data, 0, 'gD')
plt.subplot(1,5,5)
plt.boxplot(data, 0, ' ')
Out[15]:
In [34]:
x = np.linspace(0,5*np.pi,500) # data of x axis
ySine = np.sin(x) # data of y axis for sine wave
yCosine = np.cos(x) # data of y axis for cosine wave
plt.plot(x,ySine,'r') # plot sine wave with red color
plt.plot(x,yCosine,'b') # plot sine wave with blue color
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.xlim(0,16)
plt.ylim(-1,1)
plt.title('Sine and Cosine Waves')
plt.legend(['Sine','Cosine'])
plt.grid(True)
In [36]:
x = np.linspace(0,5*np.pi,500) # data of x axis
ySine = np.sin(x) # data of y axis for sine wave
yCosine = np.cos(x) # data of y axis for cosine wave
plt.subplot(2,1,1)
plt.plot(x,ySine,'r.') # plot sine wave with red color
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.xlim(0,16)
plt.ylim(-1,1)
plt.title('Sine Wave')
plt.legend(['Sine'])
plt.grid(True)
plt.subplot(2,1,2)
plt.plot(x,yCosine,'b^') # plot sine wave with blue color
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.xlim(0,16)
plt.ylim(-1,1)
plt.title('Cosine Wave')
plt.legend(['Cosine'])
plt.grid(True)