In [1]:
import tensorflow as tf
import numpy as np
import os, sys
from time import time
from matplotlib import pyplot as plt
from itertools import cycle
import random
from utils import optimistic_restore, save
import layers
PWD = os.getcwd()
sys.path.insert(0, os.path.abspath(os.path.join(PWD, '..')))
import pickle_utils
import cifar_utils
import pdb
In [2]:
'''
HYPERPARAMS
'''
BATCH_SIZE = 10
DATA_PATH = '/media/red/capstone/data/cifar-100/cifar-custom'
LEARNING_RATE = 1e-4
BETA1 = 0.9
BETA2 = 0.99
NUM_CLASSES = 40
NUM_EPOCH = 100
RANDOM_SEED = 1234
SUMMARY_EVERY = 10
VALIDATION_PERCENTAGE = 0.05
SNAPSHOT_MAX = 10 # Keeps the last best 10 snapshots (best determined by validation accuracy)
SNAPSHOT_DIR = '/media/red/capstone/snapshots/feature_extractor_vgg16'
PRETRAINED_WEIGHT_FILE = '/media/red/capstone/pretrained_weights/vgg16_weights.npz'
np.random.seed(seed=RANDOM_SEED)
In [3]:
'''
Load custom CIFAR data.
'''
# cifar_raw = pickle_utils.load(DATA_PATH)
custom_dataset = pickle_utils.load(DATA_PATH)
data_x, data_y = [], []
for label in custom_dataset['training'].keys():
for item in custom_dataset['training'][label]:
data_x.append(item) # 28 x 28 x 3
data_y.append(label) # 0-39
data_x = np.stack(data_x).astype(np.float32)
data_x = np.flip(data_x, axis=-1) # BGR
data_y = np.stack(data_y).astype(np.int32)
# Normalize x
data_x = (data_x / 255.0) - 0.5
def round_to(n, precision):
return int( n/precision+0.5 ) * precision
n_total_data = data_x.shape[0]
n_validation = round_to(VALIDATION_PERCENTAGE * n_total_data, BATCH_SIZE)
batches_per_epoch = np.round((n_total_data - n_validation) / BATCH_SIZE)
# Shuffle data
random_indices = np.random.permutation(n_total_data)
train_indices = cycle(random_indices[n_validation:])
validation_indices = random_indices[:n_validation]
In [ ]:
'''
Declare model
'''
class vgg16:
'''
VGG16 Model with ImageNet pretrained weight loader method
Weights can be downloaded from:
https://www.cs.toronto.edu/~frossard/vgg16/vgg16_weights.npz
'''
def __init__(self, x, y, phase):
'''
Sets up network enough to do a forward pass.
'''
""" init the model with hyper-parameters etc """
# List used for loading weights from vgg16.npz (if necessary)
self.parameters = []
self.CONV_ACTIVATION = 'relu'
self.FC_ACTIVATION = 'relu'
########
# Misc #
########
self.global_step = tf.get_variable('global_step', dtype=tf.int32, trainable=False,
initializer=0)
self.learning_rate = LEARNING_RATE
self.IM_SHAPE = [224, 224, 3]
####################
# I/O placeholders #
####################
self.x = x
self.x.set_shape([None]+self.IM_SHAPE)
self.y = tf.to_int32(y)
###############
# Main Layers #
###############
with tf.variable_scope('conv_layers'):
self._convlayers()
with tf.variable_scope('fc_layers'):
self._fc_layers()
######################
# Define Collections #
######################
self.conv_trainable = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
"conv_layers")
self.fc_trainable = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
"fc_layers")
def evaluate(self):
'''
Returns the count of correct classifications (Tensor).
'''
# Bool Tensor where 1 is correct and 0 is incorrect
correct = tf.nn.in_top_k(self.predictions, self.y, 1)
# Average them to get accuracy. Must cast to a float32
self.accuracy = tf.reduce_mean(tf.to_float(correct))
return self.accuracy
#####################
# Private Functions #
#####################
def _convlayers(self):
'''
All conv and pooling layers of VGG16
'''
# zero-mean input; resizing has to be done beforehand for uniform tensor shape
with tf.variable_scope('preprocess'):
mean = tf.constant([123.68, 116.779, 103.939],
dtype=tf.float32,
shape=[1, 1, 1, 3],
name='img_mean')
self.images = self.x*255.0 - mean
# conv1_1
self.conv1_1, weights, biases = layers.conv2d(name='conv1_1',
input=self.images,
shape=(3,3,3,64),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# conv1_2
self.conv1_2, weights, biases = layers.conv2d(name='conv1_2',
input=self.conv1_1,
shape=(3,3,64,64),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# pool1
self.pool1 = tf.nn.max_pool(self.conv1_2,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool1')
# conv2_1
self.conv2_1, weights, biases = layers.conv2d(name='conv2_1',
input=self.pool1,
shape=(3,3,64,128),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# conv2_2
self.conv2_2, weights, biases = layers.conv2d(name='conv2_2',
input=self.conv2_1,
shape=(3,3,128,128),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# pool2
self.pool2 = tf.nn.max_pool(self.conv2_2,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool2')
# conv3_1
self.conv3_1, weights, biases = layers.conv2d(name='conv3_1',
input=self.pool2,
shape=(3,3,128,256),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# conv3_2
self.conv3_2, weights, biases = layers.conv2d(name='conv3_2',
input=self.conv3_1,
shape=(3,3,256,256),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# conv3_3
self.conv3_3, weights, biases = layers.conv2d(name='conv3_3',
input=self.conv3_2,
shape=(3,3,256,256),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# pool3
self.pool3 = tf.nn.max_pool(self.conv3_3,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool3')
# conv4_1
self.conv4_1, weights, biases = layers.conv2d(name='conv4_1',
input=self.pool3,
shape=(3,3,256,512),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# conv4_2
self.conv4_2, weights, biases = layers.conv2d(name='conv4_2',
input=self.conv4_1,
shape=(3,3,512,512),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# conv4_3
self.conv4_3, weights, biases = layers.conv2d(name='conv4_3',
input=self.conv4_2,
shape=(3,3,512,512),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# pool4
self.pool4 = tf.nn.max_pool(self.conv4_3,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool4')
# conv5_1
self.conv5_1, weights, biases = layers.conv2d(name='conv5_1',
input=self.pool4,
shape=(3,3,512,512),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# conv5_2
self.conv5_2, weights, biases = layers.conv2d(name='conv5_2',
input=self.conv5_1,
shape=(3,3,512,512),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# conv5_3
self.conv5_3, weights, biases = layers.conv2d(name='conv5_3',
input=self.conv5_2,
shape=(3,3,512,512),
padding='SAME',
strides = [1,1,1,1],
activation=self.CONV_ACTIVATION)
self.parameters += [weights, biases]
# pool5
self.pool5 = tf.nn.max_pool(self.conv5_3,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool5')
def _fc_layers(self):
'''
All FC layers of VGG16 (+custom layers)
'''
# fc1
self.fc1, weights, biases = layers.fc(name='fc1',
input=tf.contrib.layers.flatten(self.pool5),
units=4096,
activation=self.FC_ACTIVATION)
self.parameters += [weights, biases]
# fc2
self.fc2, weights, biases = layers.fc(name='fc2',
input=self.fc1,
units=4096,
activation=self.FC_ACTIVATION)
self.parameters += [weights, biases]
# fc3
self.fc3, weights, biases = layers.fc(name='fc3',
input=self.fc2,
units=NUM_CLASSES,
activation='linear')
def load_pretrained_weights(self, sess):
'''
Load Pretrained VGG16 weights from .npz file
(weights converted from Caffe)
To only be used when no TensorFlow Snapshot is avaialable.
Assumes layers are properly added to self.parameters.
'''
print("Loading Imagenet Weights.")
weights = np.load(PRETRAINED_WEIGHT_FILE)
keys = sorted(weights.keys())
for i, k in enumerate(keys):
print(i, k, np.shape(weights[k]))
try:
sess.run(self.parameters[i].assign(weights[k]))
except:
print("%s layer not found." % k)
In [ ]:
'''
Model Setup
'''
x = tf.placeholder(dtype=tf.float32, shape=(BATCH_SIZE, 32, 32, 3))
x_resized = tf.image.resize_images(x, (224, 224))
y = tf.placeholder(dtype=tf.int32, shape=(BATCH_SIZE))
is_training = tf.placeholder(dtype=tf.bool)
net = vgg16(x_resized, y, is_training)
'''
Loss, Metrics, and Optimization Setup
'''
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=y, #GT probability distribution
logits=net.fc3, # unscaled log prob
name='sparse_softmax_cross_entropy')
reduced_loss = tf.reduce_mean(loss)
train_loss_summary = tf.summary.scalar('training_loss', reduced_loss)
optimizer = tf.train.AdamOptimizer(
learning_rate=LEARNING_RATE,
beta1=BETA1,
beta2=BETA2,
name='AdamOptimizer')
train_op = optimizer.minimize(reduced_loss)
pred = tf.nn.softmax(
logits=net.fc3,
name='softmax')
pred_class = tf.cast(tf.argmax(pred, axis=1), tf.int32)
acc = tf.reduce_mean(tf.cast(
tf.equal(y, pred_class),
tf.float32))
train_acc_summary = tf.summary.scalar('training_accuracy', acc)
'''
TensorBoard Setup
'''
all_train_summary = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(SNAPSHOT_DIR,
graph=tf.get_default_graph())
'''
Tensorflow Saver Setup
'''
saver = tf.train.Saver(var_list=tf.global_variables(),
max_to_keep=SNAPSHOT_MAX)
'''
Tensorflow Session Setup
'''
tf.set_random_seed(RANDOM_SEED)
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.8
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
sess = tf.Session(config=config)
init = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
sess.run(init)
'''
Load Pretrained Weights (ImageNet)
'''
net.load_pretrained_weights(sess)
'''
Declare Validation Loop
'''
def run_validation():
global best_acc
start_t = time()
overall_acc = 0
overall_loss = 0
for j in range(0, n_validation, BATCH_SIZE):
# Assemble Batch
idx = validation_indices[j:(j+BATCH_SIZE)]
x_batch = data_x[idx,...]
y_batch = data_y[idx,...]
feed_dict = {x:x_batch,
y:y_batch,
is_training: False}
loss_v, acc_v, pred_v = sess.run(
[reduced_loss, acc, pred],
feed_dict=feed_dict)
overall_acc += acc_v
overall_loss += loss_v
duration = time() - start_t
overall_acc /= (n_validation / BATCH_SIZE)
overall_loss /= (n_validation / BATCH_SIZE)
overall_acc_summary = tf.Summary()
overall_acc_summary.value.add(tag='validation_accuracy', simple_value=overall_acc)
overall_loss_summary = tf.Summary()
overall_loss_summary.value.add(tag='validation_loss', simple_value=overall_loss)
summary_writer.add_summary(overall_acc_summary, step)
summary_writer.add_summary(overall_loss_summary, step)
print('VALIDATION \t acc = {:.3f} ({:.3f} sec)'.format(
overall_acc, duration))
if overall_acc > best_acc:
print('New Best Accuracy {:.3f} > Old Best {:.3f}. Saving...'.format(
overall_acc, best_acc))
best_acc = overall_acc
save(saver, sess, SNAPSHOT_DIR, step)
'''
Main Training Loop
'''
step = 0
epoch = 0
best_acc = 0
while epoch < NUM_EPOCH:
step += 1
# Allocate Space For Batch
x_batch = np.zeros((BATCH_SIZE,) + data_x.shape[1:], dtype=np.float32)
y_batch = np.zeros((BATCH_SIZE,) + data_y.shape[1:], dtype=np.int32)
# Run Validation
if step % batches_per_epoch == 0:
epoch += 1
run_validation()
# Form Training Batch
start_t = time()
for i in range(BATCH_SIZE):
idx = next(train_indices)
x_batch[i,...] = data_x[idx, ...]
y_batch[i,...] = data_y[idx, ...]
# Data Augmentation
if random.random() < 0.5:
x_batch = np.fliplr(x_batch)
# Prepare Feed Dictionary
feed_dict = {x:x_batch,
y:y_batch,
is_training: True}
# Run Training Summary
if step % SUMMARY_EVERY == 0:
loss_v, _, summary_v, acc_v, pred_v = sess.run(
[reduced_loss, train_op, all_train_summary, acc, pred],
feed_dict=feed_dict)
summary_writer.add_summary(summary_v, step)
duration = time() - start_t
print('step {:d} \t loss = {:.3f}, train_acc = {:.3f} ({:.3f} sec/step)'.format(
step, loss_v, acc_v, duration))
else: # Run Simple Train
loss_v, _ = sess.run([reduced_loss, train_op],
feed_dict=feed_dict)
Loading Imagenet Weights.
0 conv1_1_W (3, 3, 3, 64)
1 conv1_1_b (64,)
2 conv1_2_W (3, 3, 64, 64)
3 conv1_2_b (64,)
4 conv2_1_W (3, 3, 64, 128)
5 conv2_1_b (128,)
6 conv2_2_W (3, 3, 128, 128)
7 conv2_2_b (128,)
8 conv3_1_W (3, 3, 128, 256)
9 conv3_1_b (256,)
10 conv3_2_W (3, 3, 256, 256)
11 conv3_2_b (256,)
12 conv3_3_W (3, 3, 256, 256)
13 conv3_3_b (256,)
14 conv4_1_W (3, 3, 256, 512)
15 conv4_1_b (512,)
16 conv4_2_W (3, 3, 512, 512)
17 conv4_2_b (512,)
18 conv4_3_W (3, 3, 512, 512)
19 conv4_3_b (512,)
20 conv5_1_W (3, 3, 512, 512)
21 conv5_1_b (512,)
22 conv5_2_W (3, 3, 512, 512)
23 conv5_2_b (512,)
24 conv5_3_W (3, 3, 512, 512)
25 conv5_3_b (512,)
26 fc6_W (25088, 4096)
27 fc6_b (4096,)
28 fc7_W (4096, 4096)
29 fc7_b (4096,)
30 fc8_W (4096, 1000)
fc8_W layer not found.
31 fc8_b (1000,)
fc8_b layer not found.
step 10 loss = 3.749, train_acc = 0.100 (3.224 sec/step)
step 20 loss = 3.924, train_acc = 0.000 (3.242 sec/step)
step 30 loss = 3.812, train_acc = 0.100 (3.191 sec/step)
step 40 loss = 3.663, train_acc = 0.000 (3.239 sec/step)
step 50 loss = 3.736, train_acc = 0.100 (3.197 sec/step)
step 60 loss = 3.770, train_acc = 0.100 (3.209 sec/step)
step 70 loss = 3.609, train_acc = 0.000 (3.224 sec/step)
step 80 loss = 3.862, train_acc = 0.000 (3.178 sec/step)
step 90 loss = 3.491, train_acc = 0.200 (3.193 sec/step)
step 100 loss = 3.687, train_acc = 0.000 (3.193 sec/step)
step 110 loss = 3.317, train_acc = 0.200 (3.315 sec/step)
step 120 loss = 3.695, train_acc = 0.000 (3.201 sec/step)
step 130 loss = 3.367, train_acc = 0.100 (3.185 sec/step)
step 140 loss = 3.552, train_acc = 0.000 (3.215 sec/step)
step 150 loss = 3.880, train_acc = 0.000 (3.166 sec/step)
step 160 loss = 3.772, train_acc = 0.000 (3.178 sec/step)
step 170 loss = 3.485, train_acc = 0.000 (3.192 sec/step)
step 180 loss = 3.660, train_acc = 0.000 (3.206 sec/step)
step 190 loss = 3.580, train_acc = 0.000 (3.193 sec/step)
step 200 loss = 3.870, train_acc = 0.000 (3.164 sec/step)
step 210 loss = 3.813, train_acc = 0.000 (3.203 sec/step)
step 220 loss = 3.541, train_acc = 0.100 (3.208 sec/step)
step 230 loss = 3.413, train_acc = 0.000 (3.191 sec/step)
step 240 loss = 3.331, train_acc = 0.200 (3.295 sec/step)
step 250 loss = 3.420, train_acc = 0.100 (3.186 sec/step)
step 260 loss = 3.743, train_acc = 0.000 (3.233 sec/step)
step 270 loss = 3.414, train_acc = 0.100 (3.189 sec/step)
step 280 loss = 3.919, train_acc = 0.000 (3.220 sec/step)
step 290 loss = 3.261, train_acc = 0.100 (3.187 sec/step)
step 300 loss = 3.381, train_acc = 0.100 (3.197 sec/step)
step 310 loss = 3.582, train_acc = 0.000 (3.243 sec/step)
step 320 loss = 3.779, train_acc = 0.000 (3.293 sec/step)
step 330 loss = 3.360, train_acc = 0.100 (3.192 sec/step)
step 340 loss = 3.624, train_acc = 0.000 (3.236 sec/step)
step 350 loss = 3.287, train_acc = 0.200 (3.245 sec/step)
step 360 loss = 3.478, train_acc = 0.100 (3.219 sec/step)
step 370 loss = 3.961, train_acc = 0.000 (3.160 sec/step)
step 380 loss = 3.953, train_acc = 0.100 (3.182 sec/step)
step 390 loss = 3.356, train_acc = 0.100 (3.207 sec/step)
step 400 loss = 3.489, train_acc = 0.000 (3.178 sec/step)
step 410 loss = 3.822, train_acc = 0.100 (3.287 sec/step)
step 420 loss = 3.065, train_acc = 0.200 (3.204 sec/step)
step 430 loss = 3.400, train_acc = 0.100 (3.171 sec/step)
step 440 loss = 3.333, train_acc = 0.200 (3.254 sec/step)
step 450 loss = 3.873, train_acc = 0.100 (3.190 sec/step)
step 460 loss = 3.055, train_acc = 0.200 (3.173 sec/step)
step 470 loss = 2.861, train_acc = 0.100 (3.196 sec/step)
step 480 loss = 3.089, train_acc = 0.100 (3.242 sec/step)
step 490 loss = 3.548, train_acc = 0.000 (3.206 sec/step)
step 500 loss = 3.587, train_acc = 0.000 (3.205 sec/step)
step 510 loss = 2.981, train_acc = 0.300 (3.209 sec/step)
step 520 loss = 3.169, train_acc = 0.100 (3.180 sec/step)
step 530 loss = 2.735, train_acc = 0.200 (3.161 sec/step)
step 540 loss = 2.973, train_acc = 0.100 (3.206 sec/step)
step 550 loss = 3.063, train_acc = 0.200 (3.230 sec/step)
step 560 loss = 3.698, train_acc = 0.000 (3.183 sec/step)
step 570 loss = 3.069, train_acc = 0.200 (3.201 sec/step)
step 580 loss = 3.473, train_acc = 0.000 (3.207 sec/step)
step 590 loss = 3.343, train_acc = 0.100 (3.177 sec/step)
step 600 loss = 3.223, train_acc = 0.200 (3.179 sec/step)
step 610 loss = 3.174, train_acc = 0.200 (3.196 sec/step)
step 620 loss = 3.466, train_acc = 0.300 (3.193 sec/step)
step 630 loss = 3.514, train_acc = 0.100 (3.200 sec/step)
step 640 loss = 2.835, train_acc = 0.300 (3.228 sec/step)
step 650 loss = 3.591, train_acc = 0.000 (3.202 sec/step)
step 660 loss = 3.251, train_acc = 0.000 (3.181 sec/step)
step 670 loss = 3.758, train_acc = 0.000 (3.193 sec/step)
step 680 loss = 3.138, train_acc = 0.100 (3.209 sec/step)
step 690 loss = 3.036, train_acc = 0.300 (3.175 sec/step)
step 700 loss = 3.376, train_acc = 0.000 (3.201 sec/step)
step 710 loss = 2.955, train_acc = 0.300 (3.180 sec/step)
step 720 loss = 3.178, train_acc = 0.200 (3.187 sec/step)
step 730 loss = 3.447, train_acc = 0.100 (3.190 sec/step)
step 740 loss = 3.035, train_acc = 0.100 (3.242 sec/step)
step 750 loss = 3.515, train_acc = 0.000 (3.202 sec/step)
step 760 loss = 3.681, train_acc = 0.100 (3.198 sec/step)
step 770 loss = 2.782, train_acc = 0.100 (3.218 sec/step)
step 780 loss = 2.646, train_acc = 0.300 (3.303 sec/step)
step 790 loss = 2.569, train_acc = 0.200 (3.286 sec/step)
step 800 loss = 2.806, train_acc = 0.400 (3.287 sec/step)
step 810 loss = 3.202, train_acc = 0.000 (3.192 sec/step)
step 820 loss = 2.516, train_acc = 0.100 (3.203 sec/step)
step 830 loss = 2.389, train_acc = 0.500 (3.207 sec/step)
step 840 loss = 3.013, train_acc = 0.100 (3.182 sec/step)
step 850 loss = 3.388, train_acc = 0.200 (3.200 sec/step)
step 860 loss = 2.790, train_acc = 0.300 (3.208 sec/step)
step 870 loss = 2.859, train_acc = 0.100 (3.201 sec/step)
step 880 loss = 3.392, train_acc = 0.100 (3.227 sec/step)
step 890 loss = 2.994, train_acc = 0.100 (3.195 sec/step)
step 900 loss = 3.403, train_acc = 0.000 (3.200 sec/step)
step 910 loss = 3.615, train_acc = 0.100 (3.197 sec/step)
step 920 loss = 2.902, train_acc = 0.400 (3.184 sec/step)
step 930 loss = 3.228, train_acc = 0.100 (3.192 sec/step)
step 940 loss = 3.192, train_acc = 0.100 (3.226 sec/step)
step 950 loss = 2.435, train_acc = 0.500 (3.223 sec/step)
step 960 loss = 3.112, train_acc = 0.100 (3.216 sec/step)
step 970 loss = 3.190, train_acc = 0.200 (3.210 sec/step)
step 980 loss = 3.091, train_acc = 0.200 (3.186 sec/step)
step 990 loss = 3.206, train_acc = 0.200 (3.233 sec/step)
step 1000 loss = 2.444, train_acc = 0.200 (3.160 sec/step)
step 1010 loss = 2.805, train_acc = 0.100 (3.172 sec/step)
step 1020 loss = 3.222, train_acc = 0.200 (3.217 sec/step)
step 1030 loss = 3.045, train_acc = 0.000 (3.225 sec/step)
step 1040 loss = 3.148, train_acc = 0.200 (3.256 sec/step)
step 1050 loss = 3.178, train_acc = 0.300 (3.236 sec/step)
step 1060 loss = 3.261, train_acc = 0.100 (3.179 sec/step)
step 1070 loss = 3.294, train_acc = 0.300 (3.180 sec/step)
step 1080 loss = 2.827, train_acc = 0.200 (3.198 sec/step)
step 1090 loss = 3.392, train_acc = 0.100 (3.193 sec/step)
step 1100 loss = 3.132, train_acc = 0.100 (3.170 sec/step)
step 1110 loss = 3.185, train_acc = 0.200 (3.211 sec/step)
step 1120 loss = 2.765, train_acc = 0.300 (3.215 sec/step)
step 1130 loss = 3.131, train_acc = 0.200 (3.209 sec/step)
step 1140 loss = 2.993, train_acc = 0.100 (3.204 sec/step)
step 1150 loss = 3.022, train_acc = 0.200 (3.199 sec/step)
step 1160 loss = 2.854, train_acc = 0.200 (3.180 sec/step)
step 1170 loss = 3.656, train_acc = 0.100 (3.201 sec/step)
step 1180 loss = 3.329, train_acc = 0.200 (3.177 sec/step)
step 1190 loss = 2.766, train_acc = 0.000 (3.185 sec/step)
step 1200 loss = 3.147, train_acc = 0.300 (3.209 sec/step)
step 1210 loss = 3.267, train_acc = 0.100 (3.255 sec/step)
step 1220 loss = 2.764, train_acc = 0.300 (3.178 sec/step)
step 1230 loss = 3.047, train_acc = 0.200 (3.344 sec/step)
step 1240 loss = 2.525, train_acc = 0.400 (3.197 sec/step)
step 1250 loss = 2.940, train_acc = 0.100 (3.203 sec/step)
step 1260 loss = 2.873, train_acc = 0.300 (3.195 sec/step)
step 1270 loss = 3.208, train_acc = 0.400 (3.190 sec/step)
step 1280 loss = 2.925, train_acc = 0.200 (3.194 sec/step)
step 1290 loss = 2.769, train_acc = 0.200 (3.161 sec/step)
step 1300 loss = 2.631, train_acc = 0.300 (3.186 sec/step)
step 1310 loss = 3.048, train_acc = 0.100 (3.290 sec/step)
step 1320 loss = 2.554, train_acc = 0.300 (3.225 sec/step)
step 1330 loss = 2.437, train_acc = 0.300 (3.242 sec/step)
step 1340 loss = 2.954, train_acc = 0.200 (3.270 sec/step)
step 1350 loss = 2.880, train_acc = 0.300 (3.183 sec/step)
step 1360 loss = 2.997, train_acc = 0.200 (3.257 sec/step)
step 1370 loss = 2.674, train_acc = 0.300 (3.181 sec/step)
step 1380 loss = 3.235, train_acc = 0.000 (3.190 sec/step)
step 1390 loss = 3.177, train_acc = 0.100 (3.224 sec/step)
step 1400 loss = 2.540, train_acc = 0.200 (3.181 sec/step)
step 1410 loss = 3.177, train_acc = 0.200 (3.174 sec/step)
step 1420 loss = 2.520, train_acc = 0.400 (3.206 sec/step)
step 1430 loss = 3.084, train_acc = 0.100 (3.212 sec/step)
step 1440 loss = 2.552, train_acc = 0.400 (3.227 sec/step)
step 1450 loss = 3.576, train_acc = 0.100 (3.201 sec/step)
step 1460 loss = 2.487, train_acc = 0.300 (3.188 sec/step)
step 1470 loss = 2.851, train_acc = 0.200 (3.189 sec/step)
step 1480 loss = 3.434, train_acc = 0.100 (3.210 sec/step)
step 1490 loss = 3.440, train_acc = 0.100 (3.192 sec/step)
step 1500 loss = 3.102, train_acc = 0.000 (3.184 sec/step)
step 1510 loss = 2.710, train_acc = 0.200 (3.204 sec/step)
step 1520 loss = 2.934, train_acc = 0.200 (3.183 sec/step)
step 1530 loss = 2.547, train_acc = 0.500 (3.178 sec/step)
step 1540 loss = 2.443, train_acc = 0.200 (3.337 sec/step)
step 1550 loss = 2.314, train_acc = 0.400 (3.197 sec/step)
step 1560 loss = 2.676, train_acc = 0.300 (3.212 sec/step)
step 1570 loss = 2.846, train_acc = 0.100 (3.201 sec/step)
step 1580 loss = 3.102, train_acc = 0.200 (3.208 sec/step)
step 1590 loss = 2.887, train_acc = 0.400 (3.171 sec/step)
step 1600 loss = 2.950, train_acc = 0.100 (3.208 sec/step)
step 1610 loss = 2.124, train_acc = 0.500 (3.170 sec/step)
step 1620 loss = 2.109, train_acc = 0.400 (3.204 sec/step)
step 1630 loss = 3.814, train_acc = 0.000 (3.269 sec/step)
step 1640 loss = 2.923, train_acc = 0.100 (3.261 sec/step)
step 1650 loss = 3.333, train_acc = 0.000 (3.258 sec/step)
step 1660 loss = 3.011, train_acc = 0.100 (3.228 sec/step)
step 1670 loss = 2.846, train_acc = 0.200 (3.182 sec/step)
step 1680 loss = 2.126, train_acc = 0.300 (3.186 sec/step)
step 1690 loss = 3.178, train_acc = 0.100 (3.152 sec/step)
step 1700 loss = 2.379, train_acc = 0.200 (3.182 sec/step)
step 1710 loss = 2.838, train_acc = 0.100 (3.237 sec/step)
step 1720 loss = 2.078, train_acc = 0.500 (3.249 sec/step)
step 1730 loss = 3.604, train_acc = 0.000 (3.168 sec/step)
step 1740 loss = 2.904, train_acc = 0.300 (3.183 sec/step)
step 1750 loss = 2.635, train_acc = 0.200 (3.180 sec/step)
step 1760 loss = 2.513, train_acc = 0.200 (3.191 sec/step)
step 1770 loss = 1.885, train_acc = 0.500 (3.216 sec/step)
step 1780 loss = 2.678, train_acc = 0.300 (3.232 sec/step)
step 1790 loss = 2.541, train_acc = 0.400 (3.152 sec/step)
step 1800 loss = 2.816, train_acc = 0.500 (3.228 sec/step)
step 1810 loss = 2.397, train_acc = 0.300 (3.177 sec/step)
step 1820 loss = 2.290, train_acc = 0.200 (3.166 sec/step)
step 1830 loss = 2.726, train_acc = 0.300 (3.225 sec/step)
step 1840 loss = 2.870, train_acc = 0.300 (3.203 sec/step)
step 1850 loss = 1.888, train_acc = 0.500 (3.261 sec/step)
step 1860 loss = 2.943, train_acc = 0.400 (3.260 sec/step)
step 1870 loss = 2.408, train_acc = 0.400 (3.201 sec/step)
step 1880 loss = 2.295, train_acc = 0.200 (3.234 sec/step)
step 1890 loss = 3.603, train_acc = 0.100 (3.184 sec/step)
VALIDATION acc = 0.207 (3.633 sec)
New Best Accuracy 0.207 > Old Best 0.000. Saving...
The checkpoint has been created.
step 1900 loss = 3.928, train_acc = 0.100 (3.277 sec/step)
step 1910 loss = 2.984, train_acc = 0.200 (3.206 sec/step)
step 1920 loss = 2.253, train_acc = 0.200 (3.192 sec/step)
step 1930 loss = 2.733, train_acc = 0.300 (3.183 sec/step)
step 1940 loss = 2.528, train_acc = 0.100 (3.208 sec/step)
step 1950 loss = 2.973, train_acc = 0.300 (3.219 sec/step)
step 1960 loss = 2.188, train_acc = 0.400 (3.230 sec/step)
step 1970 loss = 2.363, train_acc = 0.100 (3.158 sec/step)
step 1980 loss = 2.895, train_acc = 0.200 (3.223 sec/step)
step 1990 loss = 2.331, train_acc = 0.400 (3.213 sec/step)
step 2000 loss = 2.734, train_acc = 0.300 (3.232 sec/step)
step 2010 loss = 2.918, train_acc = 0.300 (3.215 sec/step)
step 2020 loss = 2.567, train_acc = 0.300 (3.196 sec/step)
step 2030 loss = 1.782, train_acc = 0.400 (3.248 sec/step)
step 2040 loss = 2.504, train_acc = 0.300 (3.220 sec/step)
step 2050 loss = 2.683, train_acc = 0.200 (3.186 sec/step)
step 2060 loss = 2.590, train_acc = 0.400 (3.172 sec/step)
step 2070 loss = 2.206, train_acc = 0.400 (3.182 sec/step)
step 2080 loss = 2.674, train_acc = 0.000 (3.209 sec/step)
step 2090 loss = 2.575, train_acc = 0.200 (3.253 sec/step)
step 2100 loss = 2.972, train_acc = 0.200 (3.206 sec/step)
step 2110 loss = 2.718, train_acc = 0.300 (3.257 sec/step)
step 2120 loss = 3.146, train_acc = 0.300 (3.176 sec/step)
step 2130 loss = 1.599, train_acc = 0.500 (3.187 sec/step)
step 2140 loss = 2.012, train_acc = 0.400 (3.240 sec/step)
step 2150 loss = 2.993, train_acc = 0.100 (3.203 sec/step)
step 2160 loss = 2.813, train_acc = 0.200 (3.219 sec/step)
step 2170 loss = 3.018, train_acc = 0.400 (3.190 sec/step)
step 2180 loss = 2.737, train_acc = 0.300 (3.227 sec/step)
step 2190 loss = 2.210, train_acc = 0.400 (3.202 sec/step)
step 2200 loss = 2.879, train_acc = 0.200 (3.201 sec/step)
step 2210 loss = 2.873, train_acc = 0.200 (3.221 sec/step)
step 2220 loss = 3.133, train_acc = 0.200 (3.238 sec/step)
step 2230 loss = 2.646, train_acc = 0.100 (3.229 sec/step)
step 2240 loss = 2.515, train_acc = 0.300 (3.169 sec/step)
step 2250 loss = 1.652, train_acc = 0.600 (3.182 sec/step)
step 2260 loss = 2.667, train_acc = 0.300 (3.199 sec/step)
step 2270 loss = 1.983, train_acc = 0.400 (3.212 sec/step)
step 2280 loss = 2.276, train_acc = 0.400 (3.245 sec/step)
step 2290 loss = 1.312, train_acc = 0.700 (3.220 sec/step)
step 2300 loss = 2.443, train_acc = 0.300 (3.198 sec/step)
step 2310 loss = 2.699, train_acc = 0.300 (3.210 sec/step)
step 2320 loss = 2.271, train_acc = 0.400 (3.236 sec/step)
step 2330 loss = 1.992, train_acc = 0.400 (3.235 sec/step)
step 2340 loss = 2.240, train_acc = 0.500 (3.210 sec/step)
step 2350 loss = 2.856, train_acc = 0.400 (3.172 sec/step)
step 2360 loss = 2.326, train_acc = 0.500 (3.179 sec/step)
step 2370 loss = 2.034, train_acc = 0.300 (3.229 sec/step)
step 2380 loss = 2.113, train_acc = 0.400 (3.242 sec/step)
step 2390 loss = 2.182, train_acc = 0.400 (3.211 sec/step)
step 2400 loss = 2.454, train_acc = 0.300 (3.201 sec/step)
step 2410 loss = 1.654, train_acc = 0.500 (3.186 sec/step)
step 2420 loss = 2.497, train_acc = 0.200 (3.200 sec/step)
step 2430 loss = 2.461, train_acc = 0.200 (3.202 sec/step)
step 2440 loss = 2.065, train_acc = 0.400 (3.210 sec/step)
step 2450 loss = 1.988, train_acc = 0.300 (3.231 sec/step)
step 2460 loss = 2.847, train_acc = 0.200 (3.252 sec/step)
step 2470 loss = 1.730, train_acc = 0.700 (3.205 sec/step)
step 2480 loss = 3.123, train_acc = 0.200 (3.216 sec/step)
step 2490 loss = 2.289, train_acc = 0.300 (3.198 sec/step)
step 2500 loss = 3.085, train_acc = 0.200 (3.208 sec/step)
step 2510 loss = 2.459, train_acc = 0.200 (3.225 sec/step)
step 2520 loss = 2.290, train_acc = 0.300 (3.178 sec/step)
step 2530 loss = 3.457, train_acc = 0.100 (3.247 sec/step)
step 2540 loss = 1.819, train_acc = 0.300 (3.206 sec/step)
step 2550 loss = 2.864, train_acc = 0.000 (3.242 sec/step)
step 2560 loss = 2.228, train_acc = 0.500 (3.234 sec/step)
step 2570 loss = 3.141, train_acc = 0.100 (3.206 sec/step)
step 2580 loss = 1.275, train_acc = 0.500 (3.187 sec/step)
step 2590 loss = 2.228, train_acc = 0.200 (3.216 sec/step)
step 2600 loss = 3.435, train_acc = 0.100 (3.178 sec/step)
step 2610 loss = 1.807, train_acc = 0.500 (3.188 sec/step)
step 2620 loss = 1.691, train_acc = 0.500 (3.209 sec/step)
step 2630 loss = 2.978, train_acc = 0.200 (3.210 sec/step)
step 2640 loss = 1.743, train_acc = 0.500 (3.161 sec/step)
step 2650 loss = 2.362, train_acc = 0.300 (3.236 sec/step)
step 2660 loss = 2.810, train_acc = 0.200 (3.202 sec/step)
step 2670 loss = 1.655, train_acc = 0.400 (3.208 sec/step)
step 2680 loss = 1.747, train_acc = 0.500 (3.178 sec/step)
step 2690 loss = 2.042, train_acc = 0.300 (3.180 sec/step)
step 2700 loss = 1.282, train_acc = 0.700 (3.199 sec/step)
step 2710 loss = 2.180, train_acc = 0.300 (3.216 sec/step)
step 2720 loss = 1.733, train_acc = 0.600 (3.184 sec/step)
step 2730 loss = 2.027, train_acc = 0.400 (3.196 sec/step)
step 2740 loss = 3.035, train_acc = 0.200 (3.219 sec/step)
step 2750 loss = 2.442, train_acc = 0.500 (3.180 sec/step)
step 2760 loss = 1.685, train_acc = 0.600 (3.166 sec/step)
step 2770 loss = 2.394, train_acc = 0.300 (3.205 sec/step)
step 2780 loss = 2.557, train_acc = 0.300 (3.204 sec/step)
step 2790 loss = 1.933, train_acc = 0.400 (3.343 sec/step)
step 2800 loss = 3.714, train_acc = 0.000 (3.209 sec/step)
step 2810 loss = 2.827, train_acc = 0.200 (3.257 sec/step)
step 2820 loss = 1.814, train_acc = 0.500 (3.223 sec/step)
step 2830 loss = 2.398, train_acc = 0.200 (3.194 sec/step)
step 2840 loss = 2.890, train_acc = 0.200 (3.200 sec/step)
step 2850 loss = 2.204, train_acc = 0.300 (3.321 sec/step)
step 2860 loss = 1.565, train_acc = 0.400 (3.215 sec/step)
step 2870 loss = 2.355, train_acc = 0.300 (3.268 sec/step)
step 2880 loss = 1.743, train_acc = 0.500 (3.201 sec/step)
step 2890 loss = 2.201, train_acc = 0.200 (3.209 sec/step)
step 2900 loss = 1.280, train_acc = 0.700 (3.202 sec/step)
step 2910 loss = 2.564, train_acc = 0.200 (3.196 sec/step)
step 2920 loss = 2.619, train_acc = 0.200 (3.247 sec/step)
step 2930 loss = 1.911, train_acc = 0.500 (3.199 sec/step)
step 2940 loss = 2.704, train_acc = 0.200 (3.200 sec/step)
step 2950 loss = 2.474, train_acc = 0.400 (3.263 sec/step)
step 2960 loss = 2.347, train_acc = 0.300 (3.164 sec/step)
step 2970 loss = 2.550, train_acc = 0.300 (3.192 sec/step)
step 2980 loss = 1.964, train_acc = 0.400 (3.197 sec/step)
step 2990 loss = 3.278, train_acc = 0.100 (3.200 sec/step)
step 3000 loss = 2.323, train_acc = 0.100 (3.201 sec/step)
step 3010 loss = 1.892, train_acc = 0.400 (3.180 sec/step)
step 3020 loss = 1.712, train_acc = 0.400 (3.206 sec/step)
step 3030 loss = 2.633, train_acc = 0.300 (3.172 sec/step)
step 3040 loss = 2.942, train_acc = 0.200 (3.197 sec/step)
step 3050 loss = 1.382, train_acc = 0.700 (3.205 sec/step)
step 3060 loss = 1.751, train_acc = 0.500 (3.221 sec/step)
step 3070 loss = 2.681, train_acc = 0.100 (3.195 sec/step)
step 3080 loss = 2.500, train_acc = 0.500 (3.193 sec/step)
step 3090 loss = 1.903, train_acc = 0.400 (3.236 sec/step)
step 3100 loss = 2.183, train_acc = 0.300 (3.310 sec/step)
step 3110 loss = 2.834, train_acc = 0.400 (3.218 sec/step)
step 3120 loss = 1.962, train_acc = 0.400 (3.221 sec/step)
step 3130 loss = 1.838, train_acc = 0.400 (3.229 sec/step)
step 3140 loss = 2.031, train_acc = 0.500 (3.195 sec/step)
step 3150 loss = 1.325, train_acc = 0.600 (3.246 sec/step)
step 3160 loss = 1.998, train_acc = 0.500 (3.217 sec/step)
step 3170 loss = 2.038, train_acc = 0.500 (3.222 sec/step)
step 3180 loss = 2.175, train_acc = 0.300 (3.248 sec/step)
step 3190 loss = 3.402, train_acc = 0.100 (3.196 sec/step)
step 3200 loss = 1.839, train_acc = 0.400 (3.171 sec/step)
step 3210 loss = 2.094, train_acc = 0.400 (3.215 sec/step)
step 3220 loss = 1.972, train_acc = 0.400 (3.225 sec/step)
step 3230 loss = 1.735, train_acc = 0.500 (3.217 sec/step)
step 3240 loss = 1.934, train_acc = 0.400 (3.221 sec/step)
step 3250 loss = 2.813, train_acc = 0.300 (3.233 sec/step)
step 3260 loss = 2.569, train_acc = 0.300 (3.197 sec/step)
step 3270 loss = 1.508, train_acc = 0.500 (3.176 sec/step)
step 3280 loss = 2.074, train_acc = 0.100 (3.210 sec/step)
step 3290 loss = 2.968, train_acc = 0.200 (3.208 sec/step)
step 3300 loss = 2.665, train_acc = 0.200 (3.199 sec/step)
step 3310 loss = 2.461, train_acc = 0.300 (3.176 sec/step)
step 3320 loss = 1.767, train_acc = 0.700 (3.213 sec/step)
step 3330 loss = 2.030, train_acc = 0.500 (3.195 sec/step)
step 3340 loss = 1.777, train_acc = 0.600 (3.204 sec/step)
step 3350 loss = 2.403, train_acc = 0.100 (3.214 sec/step)
step 3360 loss = 1.464, train_acc = 0.600 (3.170 sec/step)
step 3370 loss = 2.788, train_acc = 0.400 (3.191 sec/step)
step 3380 loss = 2.725, train_acc = 0.100 (3.246 sec/step)
step 3390 loss = 2.651, train_acc = 0.200 (3.179 sec/step)
step 3400 loss = 2.306, train_acc = 0.400 (3.221 sec/step)
step 3410 loss = 2.791, train_acc = 0.300 (3.208 sec/step)
step 3420 loss = 2.220, train_acc = 0.200 (3.178 sec/step)
step 3430 loss = 1.590, train_acc = 0.400 (3.203 sec/step)
step 3440 loss = 2.221, train_acc = 0.200 (3.188 sec/step)
step 3450 loss = 1.973, train_acc = 0.400 (3.218 sec/step)
step 3460 loss = 2.333, train_acc = 0.400 (3.215 sec/step)
step 3470 loss = 2.188, train_acc = 0.200 (3.211 sec/step)
step 3480 loss = 1.534, train_acc = 0.500 (3.240 sec/step)
step 3490 loss = 1.504, train_acc = 0.500 (3.241 sec/step)
step 3500 loss = 3.449, train_acc = 0.100 (3.203 sec/step)
step 3510 loss = 2.062, train_acc = 0.500 (3.188 sec/step)
step 3520 loss = 1.684, train_acc = 0.700 (3.212 sec/step)
step 3530 loss = 3.619, train_acc = 0.000 (3.236 sec/step)
step 3540 loss = 2.815, train_acc = 0.200 (3.239 sec/step)
step 3550 loss = 2.395, train_acc = 0.300 (3.213 sec/step)
step 3560 loss = 2.460, train_acc = 0.100 (3.222 sec/step)
step 3570 loss = 2.239, train_acc = 0.300 (3.199 sec/step)
step 3580 loss = 2.331, train_acc = 0.300 (3.214 sec/step)
step 3590 loss = 2.458, train_acc = 0.200 (3.219 sec/step)
step 3600 loss = 1.577, train_acc = 0.400 (3.204 sec/step)
step 3610 loss = 2.288, train_acc = 0.600 (3.208 sec/step)
step 3620 loss = 1.694, train_acc = 0.500 (3.192 sec/step)
step 3630 loss = 3.106, train_acc = 0.300 (3.198 sec/step)
step 3640 loss = 2.565, train_acc = 0.200 (3.223 sec/step)
step 3650 loss = 1.991, train_acc = 0.400 (3.204 sec/step)
step 3660 loss = 1.920, train_acc = 0.400 (3.265 sec/step)
step 3670 loss = 0.797, train_acc = 0.800 (3.191 sec/step)
step 3680 loss = 1.892, train_acc = 0.300 (3.195 sec/step)
step 3690 loss = 1.720, train_acc = 0.400 (3.217 sec/step)
step 3700 loss = 2.836, train_acc = 0.300 (3.257 sec/step)
step 3710 loss = 2.374, train_acc = 0.100 (3.218 sec/step)
step 3720 loss = 2.047, train_acc = 0.400 (3.202 sec/step)
step 3730 loss = 2.315, train_acc = 0.200 (3.214 sec/step)
step 3740 loss = 2.862, train_acc = 0.100 (3.168 sec/step)
step 3750 loss = 1.629, train_acc = 0.400 (3.211 sec/step)
step 3760 loss = 1.771, train_acc = 0.400 (3.224 sec/step)
step 3770 loss = 1.423, train_acc = 0.400 (3.204 sec/step)
step 3780 loss = 1.558, train_acc = 0.800 (3.186 sec/step)
step 3790 loss = 2.888, train_acc = 0.200 (3.204 sec/step)
VALIDATION acc = 0.406 (3.618 sec)
New Best Accuracy 0.406 > Old Best 0.207. Saving...
The checkpoint has been created.
step 3800 loss = 2.605, train_acc = 0.400 (3.240 sec/step)
step 3810 loss = 2.130, train_acc = 0.400 (3.166 sec/step)
step 3820 loss = 1.334, train_acc = 0.600 (3.218 sec/step)
step 3830 loss = 1.938, train_acc = 0.400 (3.199 sec/step)
step 3840 loss = 1.080, train_acc = 0.600 (3.217 sec/step)
step 3850 loss = 2.527, train_acc = 0.200 (3.225 sec/step)
step 3860 loss = 1.294, train_acc = 0.600 (3.252 sec/step)
step 3870 loss = 1.460, train_acc = 0.600 (3.214 sec/step)
step 3880 loss = 2.730, train_acc = 0.300 (3.242 sec/step)
step 3890 loss = 1.646, train_acc = 0.700 (3.223 sec/step)
step 3900 loss = 1.886, train_acc = 0.600 (3.227 sec/step)
step 3910 loss = 1.966, train_acc = 0.300 (3.199 sec/step)
step 3920 loss = 2.000, train_acc = 0.400 (3.252 sec/step)
step 3930 loss = 1.020, train_acc = 0.800 (3.213 sec/step)
step 3940 loss = 2.158, train_acc = 0.400 (3.218 sec/step)
step 3950 loss = 1.411, train_acc = 0.700 (3.192 sec/step)
step 3960 loss = 1.787, train_acc = 0.400 (3.247 sec/step)
step 3970 loss = 1.753, train_acc = 0.500 (3.182 sec/step)
step 3980 loss = 1.707, train_acc = 0.400 (3.192 sec/step)
step 3990 loss = 2.017, train_acc = 0.300 (3.193 sec/step)
step 4000 loss = 1.997, train_acc = 0.400 (3.263 sec/step)
step 4010 loss = 1.716, train_acc = 0.400 (3.212 sec/step)
step 4020 loss = 2.587, train_acc = 0.300 (3.209 sec/step)
step 4030 loss = 1.536, train_acc = 0.500 (3.201 sec/step)
step 4040 loss = 2.020, train_acc = 0.400 (3.218 sec/step)
step 4050 loss = 3.048, train_acc = 0.200 (3.247 sec/step)
step 4060 loss = 2.652, train_acc = 0.300 (3.211 sec/step)
step 4070 loss = 2.176, train_acc = 0.400 (3.227 sec/step)
step 4080 loss = 2.042, train_acc = 0.400 (3.241 sec/step)
step 4090 loss = 1.687, train_acc = 0.400 (3.224 sec/step)
step 4100 loss = 2.654, train_acc = 0.300 (3.242 sec/step)
step 4110 loss = 2.571, train_acc = 0.300 (3.267 sec/step)
step 4120 loss = 2.354, train_acc = 0.300 (3.205 sec/step)
step 4130 loss = 2.024, train_acc = 0.400 (3.239 sec/step)
step 4140 loss = 1.846, train_acc = 0.500 (3.190 sec/step)
step 4150 loss = 1.290, train_acc = 0.700 (3.201 sec/step)
step 4160 loss = 2.070, train_acc = 0.400 (3.263 sec/step)
step 4170 loss = 1.493, train_acc = 0.600 (3.236 sec/step)
step 4180 loss = 1.883, train_acc = 0.500 (3.228 sec/step)
step 4190 loss = 1.203, train_acc = 0.600 (3.235 sec/step)
step 4200 loss = 2.191, train_acc = 0.300 (3.253 sec/step)
step 4210 loss = 2.367, train_acc = 0.200 (3.253 sec/step)
step 4220 loss = 1.809, train_acc = 0.300 (3.292 sec/step)
step 4230 loss = 1.129, train_acc = 0.600 (3.239 sec/step)
step 4240 loss = 1.848, train_acc = 0.400 (3.237 sec/step)
step 4250 loss = 2.629, train_acc = 0.500 (3.196 sec/step)
step 4260 loss = 1.902, train_acc = 0.400 (3.219 sec/step)
step 4270 loss = 1.222, train_acc = 0.400 (3.215 sec/step)
step 4280 loss = 1.749, train_acc = 0.300 (3.219 sec/step)
step 4290 loss = 1.891, train_acc = 0.300 (3.237 sec/step)
step 4300 loss = 2.286, train_acc = 0.500 (3.208 sec/step)
step 4310 loss = 2.202, train_acc = 0.300 (3.245 sec/step)
step 4320 loss = 1.768, train_acc = 0.500 (3.213 sec/step)
step 4330 loss = 2.288, train_acc = 0.200 (3.207 sec/step)
step 4340 loss = 1.224, train_acc = 0.500 (3.205 sec/step)
step 4350 loss = 1.101, train_acc = 0.800 (3.241 sec/step)
step 4360 loss = 2.430, train_acc = 0.500 (3.211 sec/step)
step 4370 loss = 1.434, train_acc = 0.600 (3.245 sec/step)
step 4380 loss = 2.465, train_acc = 0.300 (3.199 sec/step)
step 4390 loss = 1.971, train_acc = 0.400 (3.258 sec/step)
step 4400 loss = 2.391, train_acc = 0.400 (3.227 sec/step)
step 4410 loss = 1.571, train_acc = 0.400 (3.210 sec/step)
step 4420 loss = 1.539, train_acc = 0.600 (3.270 sec/step)
step 4430 loss = 2.449, train_acc = 0.400 (3.215 sec/step)
step 4440 loss = 1.073, train_acc = 0.600 (3.268 sec/step)
step 4450 loss = 2.754, train_acc = 0.100 (3.204 sec/step)
step 4460 loss = 1.655, train_acc = 0.600 (3.211 sec/step)
step 4470 loss = 2.962, train_acc = 0.200 (3.280 sec/step)
step 4480 loss = 1.028, train_acc = 0.700 (3.238 sec/step)
step 4490 loss = 1.862, train_acc = 0.500 (3.243 sec/step)
step 4500 loss = 3.380, train_acc = 0.100 (3.208 sec/step)
step 4510 loss = 1.718, train_acc = 0.700 (3.203 sec/step)
step 4520 loss = 1.190, train_acc = 0.600 (3.250 sec/step)
step 4530 loss = 2.558, train_acc = 0.300 (3.223 sec/step)
step 4540 loss = 1.348, train_acc = 0.600 (3.295 sec/step)
step 4550 loss = 2.086, train_acc = 0.400 (3.250 sec/step)
step 4560 loss = 2.171, train_acc = 0.300 (3.251 sec/step)
step 4570 loss = 1.395, train_acc = 0.700 (3.260 sec/step)
step 4580 loss = 1.615, train_acc = 0.400 (3.337 sec/step)
step 4590 loss = 1.414, train_acc = 0.600 (3.224 sec/step)
step 4600 loss = 1.246, train_acc = 0.700 (3.217 sec/step)
step 4610 loss = 2.221, train_acc = 0.300 (3.201 sec/step)
step 4620 loss = 2.394, train_acc = 0.500 (3.267 sec/step)
step 4630 loss = 1.888, train_acc = 0.600 (3.299 sec/step)
step 4640 loss = 2.419, train_acc = 0.400 (3.222 sec/step)
step 4650 loss = 1.969, train_acc = 0.400 (3.223 sec/step)
step 4660 loss = 1.287, train_acc = 0.500 (3.194 sec/step)
step 4670 loss = 2.552, train_acc = 0.300 (3.203 sec/step)
step 4680 loss = 2.197, train_acc = 0.500 (3.241 sec/step)
step 4690 loss = 1.794, train_acc = 0.500 (3.273 sec/step)
step 4700 loss = 2.761, train_acc = 0.100 (3.248 sec/step)
step 4710 loss = 1.986, train_acc = 0.500 (3.230 sec/step)
step 4720 loss = 1.555, train_acc = 0.600 (3.212 sec/step)
step 4730 loss = 1.517, train_acc = 0.500 (3.210 sec/step)
step 4740 loss = 1.862, train_acc = 0.500 (3.250 sec/step)
step 4750 loss = 2.088, train_acc = 0.300 (3.286 sec/step)
step 4760 loss = 1.318, train_acc = 0.500 (3.270 sec/step)
step 4770 loss = 1.689, train_acc = 0.500 (3.359 sec/step)
step 4780 loss = 1.411, train_acc = 0.600 (3.176 sec/step)
step 4790 loss = 2.466, train_acc = 0.200 (3.238 sec/step)
step 4800 loss = 1.209, train_acc = 0.700 (3.199 sec/step)
step 4810 loss = 2.004, train_acc = 0.300 (3.272 sec/step)
step 4820 loss = 1.969, train_acc = 0.400 (3.255 sec/step)
step 4830 loss = 1.755, train_acc = 0.400 (3.227 sec/step)
step 4840 loss = 1.914, train_acc = 0.500 (3.265 sec/step)
step 4850 loss = 1.794, train_acc = 0.500 (3.230 sec/step)
step 4860 loss = 1.420, train_acc = 0.500 (3.215 sec/step)
step 4870 loss = 2.049, train_acc = 0.400 (3.205 sec/step)
step 4880 loss = 1.673, train_acc = 0.400 (3.261 sec/step)
step 4890 loss = 2.420, train_acc = 0.200 (3.221 sec/step)
step 4900 loss = 2.248, train_acc = 0.300 (3.212 sec/step)
step 4910 loss = 1.472, train_acc = 0.700 (3.189 sec/step)
step 4920 loss = 1.324, train_acc = 0.600 (3.237 sec/step)
step 4930 loss = 1.937, train_acc = 0.500 (3.231 sec/step)
step 4940 loss = 2.696, train_acc = 0.300 (3.254 sec/step)
step 4950 loss = 0.536, train_acc = 0.900 (3.220 sec/step)
step 4960 loss = 1.228, train_acc = 0.500 (3.218 sec/step)
step 4970 loss = 2.100, train_acc = 0.200 (3.265 sec/step)
step 4980 loss = 1.601, train_acc = 0.500 (3.213 sec/step)
step 4990 loss = 2.586, train_acc = 0.600 (3.221 sec/step)
step 5000 loss = 1.807, train_acc = 0.400 (3.234 sec/step)
step 5010 loss = 2.679, train_acc = 0.300 (3.181 sec/step)
step 5020 loss = 1.577, train_acc = 0.500 (3.241 sec/step)
step 5030 loss = 2.116, train_acc = 0.500 (3.218 sec/step)
step 5040 loss = 1.733, train_acc = 0.500 (3.222 sec/step)
step 5050 loss = 1.128, train_acc = 0.600 (3.279 sec/step)
step 5060 loss = 1.454, train_acc = 0.600 (3.205 sec/step)
step 5070 loss = 1.993, train_acc = 0.500 (3.262 sec/step)
step 5080 loss = 1.451, train_acc = 0.400 (3.225 sec/step)
step 5090 loss = 2.611, train_acc = 0.100 (3.280 sec/step)
step 5100 loss = 1.350, train_acc = 0.600 (3.225 sec/step)
step 5110 loss = 2.258, train_acc = 0.400 (3.235 sec/step)
step 5120 loss = 1.724, train_acc = 0.300 (3.208 sec/step)
step 5130 loss = 1.342, train_acc = 0.500 (3.189 sec/step)
step 5140 loss = 1.118, train_acc = 0.600 (3.220 sec/step)
step 5150 loss = 2.263, train_acc = 0.300 (3.218 sec/step)
step 5160 loss = 1.905, train_acc = 0.400 (3.214 sec/step)
step 5170 loss = 1.572, train_acc = 0.500 (3.200 sec/step)
step 5180 loss = 2.094, train_acc = 0.200 (3.209 sec/step)
step 5190 loss = 1.948, train_acc = 0.300 (3.213 sec/step)
step 5200 loss = 1.571, train_acc = 0.600 (3.224 sec/step)
step 5210 loss = 2.094, train_acc = 0.500 (3.248 sec/step)
step 5220 loss = 1.742, train_acc = 0.600 (3.244 sec/step)
step 5230 loss = 1.954, train_acc = 0.500 (3.214 sec/step)
step 5240 loss = 1.854, train_acc = 0.600 (3.211 sec/step)
step 5250 loss = 2.475, train_acc = 0.400 (3.228 sec/step)
step 5260 loss = 1.200, train_acc = 0.700 (3.216 sec/step)
step 5270 loss = 1.778, train_acc = 0.500 (3.257 sec/step)
step 5280 loss = 2.650, train_acc = 0.100 (3.245 sec/step)
step 5290 loss = 2.137, train_acc = 0.300 (3.260 sec/step)
step 5300 loss = 1.932, train_acc = 0.500 (3.208 sec/step)
step 5310 loss = 2.287, train_acc = 0.400 (3.259 sec/step)
step 5320 loss = 2.056, train_acc = 0.400 (3.242 sec/step)
step 5330 loss = 1.272, train_acc = 0.700 (3.195 sec/step)
step 5340 loss = 2.052, train_acc = 0.300 (3.248 sec/step)
step 5350 loss = 1.428, train_acc = 0.600 (3.217 sec/step)
step 5360 loss = 1.643, train_acc = 0.400 (3.253 sec/step)
step 5370 loss = 1.944, train_acc = 0.500 (3.200 sec/step)
step 5380 loss = 1.184, train_acc = 0.600 (3.209 sec/step)
step 5390 loss = 1.287, train_acc = 0.700 (3.198 sec/step)
step 5400 loss = 2.349, train_acc = 0.300 (3.237 sec/step)
step 5410 loss = 1.850, train_acc = 0.500 (3.212 sec/step)
step 5420 loss = 0.862, train_acc = 0.800 (3.246 sec/step)
step 5430 loss = 2.381, train_acc = 0.400 (3.226 sec/step)
step 5440 loss = 2.737, train_acc = 0.200 (3.188 sec/step)
step 5450 loss = 2.161, train_acc = 0.400 (3.242 sec/step)
step 5460 loss = 2.038, train_acc = 0.300 (3.195 sec/step)
step 5470 loss = 2.596, train_acc = 0.500 (3.242 sec/step)
step 5480 loss = 2.135, train_acc = 0.400 (3.207 sec/step)
step 5490 loss = 2.287, train_acc = 0.500 (3.282 sec/step)
step 5500 loss = 0.921, train_acc = 0.600 (3.204 sec/step)
step 5510 loss = 1.543, train_acc = 0.600 (3.258 sec/step)
step 5520 loss = 1.045, train_acc = 0.700 (3.292 sec/step)
step 5530 loss = 2.839, train_acc = 0.400 (3.239 sec/step)
step 5540 loss = 1.433, train_acc = 0.500 (3.220 sec/step)
step 5550 loss = 1.193, train_acc = 0.700 (3.220 sec/step)
step 5560 loss = 1.567, train_acc = 0.500 (3.223 sec/step)
step 5570 loss = 0.315, train_acc = 0.900 (3.212 sec/step)
step 5580 loss = 1.401, train_acc = 0.400 (3.237 sec/step)
step 5590 loss = 1.721, train_acc = 0.400 (3.214 sec/step)
step 5600 loss = 2.412, train_acc = 0.500 (3.206 sec/step)
step 5610 loss = 1.934, train_acc = 0.400 (3.238 sec/step)
step 5620 loss = 1.532, train_acc = 0.500 (3.230 sec/step)
step 5630 loss = 1.493, train_acc = 0.400 (3.243 sec/step)
step 5640 loss = 2.371, train_acc = 0.200 (3.219 sec/step)
step 5650 loss = 0.796, train_acc = 0.600 (3.229 sec/step)
step 5660 loss = 1.651, train_acc = 0.500 (3.251 sec/step)
step 5670 loss = 1.119, train_acc = 0.600 (3.266 sec/step)
step 5680 loss = 1.135, train_acc = 0.800 (3.256 sec/step)
step 5690 loss = 2.843, train_acc = 0.400 (3.226 sec/step)
VALIDATION acc = 0.462 (3.620 sec)
New Best Accuracy 0.462 > Old Best 0.406. Saving...
The checkpoint has been created.
step 5700 loss = 1.983, train_acc = 0.400 (3.313 sec/step)
step 5710 loss = 1.554, train_acc = 0.500 (3.216 sec/step)
step 5720 loss = 1.098, train_acc = 0.500 (3.247 sec/step)
step 5730 loss = 1.804, train_acc = 0.200 (3.186 sec/step)
step 5740 loss = 0.679, train_acc = 0.900 (3.214 sec/step)
step 5750 loss = 2.100, train_acc = 0.300 (3.272 sec/step)
step 5760 loss = 0.800, train_acc = 0.900 (3.213 sec/step)
step 5770 loss = 1.449, train_acc = 0.700 (3.247 sec/step)
step 5780 loss = 2.281, train_acc = 0.300 (3.247 sec/step)
step 5790 loss = 1.336, train_acc = 0.600 (3.205 sec/step)
step 5800 loss = 1.590, train_acc = 0.400 (3.285 sec/step)
step 5810 loss = 1.236, train_acc = 0.700 (3.220 sec/step)
step 5820 loss = 1.629, train_acc = 0.700 (3.189 sec/step)
step 5830 loss = 0.872, train_acc = 0.900 (3.221 sec/step)
step 5840 loss = 2.171, train_acc = 0.600 (3.239 sec/step)
step 5850 loss = 1.005, train_acc = 0.800 (3.260 sec/step)
step 5860 loss = 1.561, train_acc = 0.500 (3.269 sec/step)
step 5870 loss = 1.648, train_acc = 0.500 (3.268 sec/step)
step 5880 loss = 1.178, train_acc = 0.600 (3.249 sec/step)
step 5890 loss = 2.242, train_acc = 0.300 (3.204 sec/step)
step 5900 loss = 1.518, train_acc = 0.300 (3.257 sec/step)
step 5910 loss = 1.631, train_acc = 0.400 (3.247 sec/step)
step 5920 loss = 2.933, train_acc = 0.400 (3.305 sec/step)
step 5930 loss = 0.928, train_acc = 0.700 (3.223 sec/step)
step 5940 loss = 1.426, train_acc = 0.400 (3.275 sec/step)
step 5950 loss = 2.059, train_acc = 0.400 (3.204 sec/step)
step 5960 loss = 1.857, train_acc = 0.300 (3.215 sec/step)
step 5970 loss = 1.696, train_acc = 0.400 (3.202 sec/step)
step 5980 loss = 1.759, train_acc = 0.500 (3.240 sec/step)
step 5990 loss = 1.325, train_acc = 0.400 (3.243 sec/step)
step 6000 loss = 2.202, train_acc = 0.400 (3.223 sec/step)
step 6010 loss = 2.096, train_acc = 0.500 (3.205 sec/step)
step 6020 loss = 2.132, train_acc = 0.300 (3.239 sec/step)
step 6030 loss = 1.567, train_acc = 0.700 (3.242 sec/step)
step 6040 loss = 1.682, train_acc = 0.600 (3.212 sec/step)
step 6050 loss = 1.193, train_acc = 0.600 (3.189 sec/step)
step 6060 loss = 1.625, train_acc = 0.500 (3.235 sec/step)
step 6070 loss = 1.383, train_acc = 0.600 (3.280 sec/step)
step 6080 loss = 1.281, train_acc = 0.800 (3.222 sec/step)
step 6090 loss = 0.602, train_acc = 0.900 (3.223 sec/step)
step 6100 loss = 2.200, train_acc = 0.400 (3.242 sec/step)
step 6110 loss = 1.429, train_acc = 0.600 (3.248 sec/step)
step 6120 loss = 1.252, train_acc = 0.600 (3.283 sec/step)
step 6130 loss = 0.920, train_acc = 0.700 (3.234 sec/step)
step 6140 loss = 1.375, train_acc = 0.400 (3.213 sec/step)
step 6150 loss = 3.090, train_acc = 0.300 (3.267 sec/step)
step 6160 loss = 1.572, train_acc = 0.300 (3.234 sec/step)
step 6170 loss = 0.958, train_acc = 0.600 (3.416 sec/step)
step 6180 loss = 1.050, train_acc = 0.600 (3.227 sec/step)
step 6190 loss = 2.053, train_acc = 0.400 (3.229 sec/step)
step 6200 loss = 1.775, train_acc = 0.500 (3.241 sec/step)
step 6210 loss = 1.584, train_acc = 0.400 (3.230 sec/step)
step 6220 loss = 1.085, train_acc = 0.800 (3.245 sec/step)
step 6230 loss = 2.581, train_acc = 0.200 (3.259 sec/step)
step 6240 loss = 1.499, train_acc = 0.600 (3.197 sec/step)
step 6250 loss = 0.876, train_acc = 0.600 (3.220 sec/step)
step 6260 loss = 1.274, train_acc = 0.700 (3.251 sec/step)
step 6270 loss = 0.557, train_acc = 0.900 (3.210 sec/step)
step 6280 loss = 1.346, train_acc = 0.500 (3.198 sec/step)
step 6290 loss = 1.598, train_acc = 0.500 (3.221 sec/step)
step 6300 loss = 2.636, train_acc = 0.300 (3.308 sec/step)
step 6310 loss = 1.203, train_acc = 0.700 (3.262 sec/step)
step 6320 loss = 1.146, train_acc = 0.700 (3.245 sec/step)
step 6330 loss = 2.411, train_acc = 0.200 (3.241 sec/step)
step 6340 loss = 0.842, train_acc = 0.800 (3.225 sec/step)
step 6350 loss = 1.943, train_acc = 0.400 (3.247 sec/step)
step 6360 loss = 2.238, train_acc = 0.500 (3.188 sec/step)
step 6370 loss = 1.692, train_acc = 0.300 (3.210 sec/step)
step 6380 loss = 0.859, train_acc = 0.700 (3.243 sec/step)
step 6390 loss = 1.192, train_acc = 0.700 (3.220 sec/step)
step 6400 loss = 2.654, train_acc = 0.200 (3.222 sec/step)
step 6410 loss = 1.219, train_acc = 0.700 (3.239 sec/step)
step 6420 loss = 0.844, train_acc = 0.600 (3.231 sec/step)
step 6430 loss = 1.523, train_acc = 0.500 (3.245 sec/step)
step 6440 loss = 0.753, train_acc = 0.700 (3.243 sec/step)
step 6450 loss = 1.278, train_acc = 0.600 (3.228 sec/step)
step 6460 loss = 2.000, train_acc = 0.400 (3.254 sec/step)
step 6470 loss = 0.958, train_acc = 0.700 (3.214 sec/step)
step 6480 loss = 1.644, train_acc = 0.500 (3.190 sec/step)
step 6490 loss = 0.756, train_acc = 0.700 (3.284 sec/step)
step 6500 loss = 0.889, train_acc = 0.700 (3.245 sec/step)
step 6510 loss = 1.516, train_acc = 0.400 (3.297 sec/step)
step 6520 loss = 1.919, train_acc = 0.300 (3.213 sec/step)
step 6530 loss = 1.083, train_acc = 0.600 (3.229 sec/step)
step 6540 loss = 1.723, train_acc = 0.600 (3.357 sec/step)
step 6550 loss = 1.577, train_acc = 0.600 (3.197 sec/step)
step 6560 loss = 0.979, train_acc = 0.700 (3.228 sec/step)
step 6570 loss = 1.796, train_acc = 0.500 (3.236 sec/step)
step 6580 loss = 1.774, train_acc = 0.500 (3.399 sec/step)
step 6590 loss = 1.236, train_acc = 0.600 (3.239 sec/step)
step 6600 loss = 1.773, train_acc = 0.500 (3.254 sec/step)
step 6610 loss = 1.816, train_acc = 0.400 (3.220 sec/step)
step 6620 loss = 1.116, train_acc = 0.500 (3.267 sec/step)
step 6630 loss = 1.026, train_acc = 0.600 (3.243 sec/step)
step 6640 loss = 1.847, train_acc = 0.500 (3.235 sec/step)
step 6650 loss = 2.745, train_acc = 0.300 (3.235 sec/step)
step 6660 loss = 1.084, train_acc = 0.800 (3.252 sec/step)
step 6670 loss = 3.211, train_acc = 0.600 (3.207 sec/step)
step 6680 loss = 0.758, train_acc = 0.800 (3.249 sec/step)
step 6690 loss = 1.594, train_acc = 0.600 (3.220 sec/step)
step 6700 loss = 0.762, train_acc = 0.800 (3.237 sec/step)
step 6710 loss = 2.008, train_acc = 0.300 (3.244 sec/step)
step 6720 loss = 1.503, train_acc = 0.600 (3.234 sec/step)
step 6730 loss = 1.603, train_acc = 0.400 (3.205 sec/step)
step 6740 loss = 1.909, train_acc = 0.400 (3.289 sec/step)
step 6750 loss = 1.905, train_acc = 0.500 (3.209 sec/step)
step 6760 loss = 1.595, train_acc = 0.600 (3.228 sec/step)
step 6770 loss = 1.949, train_acc = 0.600 (3.272 sec/step)
step 6780 loss = 1.377, train_acc = 0.500 (3.267 sec/step)
step 6790 loss = 1.817, train_acc = 0.300 (3.245 sec/step)
step 6800 loss = 1.905, train_acc = 0.600 (3.229 sec/step)
step 6810 loss = 1.703, train_acc = 0.700 (3.294 sec/step)
step 6820 loss = 0.834, train_acc = 0.800 (3.235 sec/step)
step 6830 loss = 1.458, train_acc = 0.500 (3.231 sec/step)
step 6840 loss = 2.219, train_acc = 0.200 (3.316 sec/step)
step 6850 loss = 0.863, train_acc = 0.700 (3.262 sec/step)
step 6860 loss = 0.807, train_acc = 0.700 (3.283 sec/step)
step 6870 loss = 1.604, train_acc = 0.400 (3.246 sec/step)
step 6880 loss = 1.202, train_acc = 0.600 (3.249 sec/step)
step 6890 loss = 1.396, train_acc = 0.500 (3.249 sec/step)
step 6900 loss = 1.464, train_acc = 0.400 (3.239 sec/step)
step 6910 loss = 1.527, train_acc = 0.500 (3.242 sec/step)
step 6920 loss = 1.233, train_acc = 0.600 (3.261 sec/step)
step 6930 loss = 1.151, train_acc = 0.600 (3.225 sec/step)
step 6940 loss = 1.188, train_acc = 0.500 (3.254 sec/step)
step 6950 loss = 0.454, train_acc = 0.900 (3.246 sec/step)
step 6960 loss = 1.684, train_acc = 0.400 (3.217 sec/step)
step 6970 loss = 1.173, train_acc = 0.600 (3.250 sec/step)
step 6980 loss = 1.398, train_acc = 0.500 (3.234 sec/step)
step 6990 loss = 1.533, train_acc = 0.600 (3.246 sec/step)
step 7000 loss = 0.395, train_acc = 1.000 (3.196 sec/step)
step 7010 loss = 2.568, train_acc = 0.200 (3.252 sec/step)
step 7020 loss = 1.380, train_acc = 0.400 (3.236 sec/step)
step 7030 loss = 1.212, train_acc = 0.700 (3.273 sec/step)
step 7040 loss = 1.434, train_acc = 0.600 (3.242 sec/step)
step 7050 loss = 2.027, train_acc = 0.400 (3.257 sec/step)
step 7060 loss = 1.692, train_acc = 0.500 (3.236 sec/step)
step 7070 loss = 1.052, train_acc = 0.700 (3.267 sec/step)
step 7080 loss = 1.772, train_acc = 0.300 (3.259 sec/step)
step 7090 loss = 1.709, train_acc = 0.600 (3.265 sec/step)
step 7100 loss = 0.869, train_acc = 0.900 (3.209 sec/step)
step 7110 loss = 1.869, train_acc = 0.500 (3.227 sec/step)
step 7120 loss = 1.360, train_acc = 0.700 (3.285 sec/step)
step 7130 loss = 1.173, train_acc = 0.700 (3.241 sec/step)
step 7140 loss = 1.184, train_acc = 0.600 (3.314 sec/step)
step 7150 loss = 1.415, train_acc = 0.700 (3.216 sec/step)
step 7160 loss = 1.076, train_acc = 0.700 (3.263 sec/step)
step 7170 loss = 1.228, train_acc = 0.600 (3.259 sec/step)
step 7180 loss = 2.154, train_acc = 0.300 (3.274 sec/step)
step 7190 loss = 1.984, train_acc = 0.500 (3.245 sec/step)
step 7200 loss = 1.542, train_acc = 0.500 (3.240 sec/step)
step 7210 loss = 1.555, train_acc = 0.400 (3.240 sec/step)
step 7220 loss = 1.264, train_acc = 0.600 (3.229 sec/step)
step 7230 loss = 1.308, train_acc = 0.600 (3.248 sec/step)
step 7240 loss = 2.795, train_acc = 0.500 (3.261 sec/step)
step 7250 loss = 0.900, train_acc = 0.800 (3.227 sec/step)
step 7260 loss = 2.035, train_acc = 0.400 (3.232 sec/step)
step 7270 loss = 1.485, train_acc = 0.500 (3.210 sec/step)
step 7280 loss = 0.891, train_acc = 0.500 (3.305 sec/step)
step 7290 loss = 0.815, train_acc = 0.700 (3.208 sec/step)
step 7300 loss = 3.105, train_acc = 0.300 (3.238 sec/step)
step 7310 loss = 1.549, train_acc = 0.600 (3.229 sec/step)
step 7320 loss = 0.717, train_acc = 0.700 (3.265 sec/step)
step 7330 loss = 1.818, train_acc = 0.500 (3.264 sec/step)
step 7340 loss = 2.229, train_acc = 0.300 (3.226 sec/step)
step 7350 loss = 1.615, train_acc = 0.400 (3.248 sec/step)
step 7360 loss = 1.666, train_acc = 0.600 (3.239 sec/step)
step 7370 loss = 2.039, train_acc = 0.400 (3.215 sec/step)
step 7380 loss = 1.123, train_acc = 0.700 (3.239 sec/step)
step 7390 loss = 2.036, train_acc = 0.400 (3.246 sec/step)
step 7400 loss = 0.322, train_acc = 0.900 (3.232 sec/step)
step 7410 loss = 1.884, train_acc = 0.500 (3.338 sec/step)
step 7420 loss = 1.084, train_acc = 0.600 (3.251 sec/step)
step 7430 loss = 3.653, train_acc = 0.200 (3.249 sec/step)
step 7440 loss = 1.533, train_acc = 0.400 (3.247 sec/step)
step 7450 loss = 1.689, train_acc = 0.600 (3.229 sec/step)
step 7460 loss = 1.124, train_acc = 0.700 (3.253 sec/step)
step 7470 loss = 0.388, train_acc = 0.900 (3.249 sec/step)
step 7480 loss = 1.282, train_acc = 0.600 (3.214 sec/step)
step 7490 loss = 1.101, train_acc = 0.500 (3.243 sec/step)
step 7500 loss = 2.141, train_acc = 0.400 (3.244 sec/step)
step 7510 loss = 1.412, train_acc = 0.600 (3.230 sec/step)
step 7520 loss = 1.333, train_acc = 0.500 (3.217 sec/step)
step 7530 loss = 2.108, train_acc = 0.200 (3.195 sec/step)
step 7540 loss = 1.903, train_acc = 0.500 (3.251 sec/step)
step 7550 loss = 1.328, train_acc = 0.700 (3.219 sec/step)
step 7560 loss = 1.900, train_acc = 0.500 (3.233 sec/step)
step 7570 loss = 0.738, train_acc = 0.800 (3.242 sec/step)
step 7580 loss = 1.389, train_acc = 0.700 (3.221 sec/step)
step 7590 loss = 2.181, train_acc = 0.300 (3.261 sec/step)
VALIDATION acc = 0.494 (3.630 sec)
New Best Accuracy 0.494 > Old Best 0.462. Saving...
The checkpoint has been created.
step 7600 loss = 1.037, train_acc = 0.800 (3.261 sec/step)
step 7610 loss = 1.518, train_acc = 0.500 (3.323 sec/step)
step 7620 loss = 1.674, train_acc = 0.400 (3.359 sec/step)
step 7630 loss = 0.965, train_acc = 0.600 (3.253 sec/step)
step 7640 loss = 0.711, train_acc = 0.800 (3.210 sec/step)
step 7650 loss = 2.485, train_acc = 0.300 (3.217 sec/step)
step 7660 loss = 0.361, train_acc = 0.900 (3.235 sec/step)
step 7670 loss = 1.169, train_acc = 0.700 (3.218 sec/step)
step 7680 loss = 1.418, train_acc = 0.700 (3.292 sec/step)
step 7690 loss = 1.286, train_acc = 0.500 (3.263 sec/step)
step 7700 loss = 1.029, train_acc = 0.800 (3.242 sec/step)
step 7710 loss = 1.324, train_acc = 0.600 (3.244 sec/step)
step 7720 loss = 1.404, train_acc = 0.500 (3.211 sec/step)
step 7730 loss = 0.537, train_acc = 0.800 (3.320 sec/step)
step 7740 loss = 1.094, train_acc = 0.700 (3.260 sec/step)
step 7750 loss = 2.006, train_acc = 0.300 (3.235 sec/step)
step 7760 loss = 0.756, train_acc = 0.800 (3.311 sec/step)
step 7770 loss = 0.852, train_acc = 0.900 (3.298 sec/step)
step 7780 loss = 0.471, train_acc = 0.900 (3.239 sec/step)
step 7790 loss = 1.450, train_acc = 0.600 (3.212 sec/step)
step 7800 loss = 1.050, train_acc = 0.700 (3.223 sec/step)
step 7810 loss = 1.320, train_acc = 0.500 (3.247 sec/step)
step 7820 loss = 2.256, train_acc = 0.400 (3.255 sec/step)
step 7830 loss = 0.880, train_acc = 0.800 (3.321 sec/step)
step 7840 loss = 1.330, train_acc = 0.400 (3.244 sec/step)
step 7850 loss = 1.467, train_acc = 0.500 (3.244 sec/step)
step 7860 loss = 1.406, train_acc = 0.700 (3.260 sec/step)
step 7870 loss = 1.619, train_acc = 0.700 (3.218 sec/step)
step 7880 loss = 1.017, train_acc = 0.700 (3.238 sec/step)
step 7890 loss = 1.030, train_acc = 0.700 (3.230 sec/step)
step 7900 loss = 2.020, train_acc = 0.400 (3.229 sec/step)
step 7910 loss = 1.668, train_acc = 0.600 (3.220 sec/step)
step 7920 loss = 1.469, train_acc = 0.400 (3.262 sec/step)
step 7930 loss = 1.608, train_acc = 0.600 (3.230 sec/step)
step 7940 loss = 1.229, train_acc = 0.700 (3.275 sec/step)
step 7950 loss = 0.903, train_acc = 0.600 (3.240 sec/step)
step 7960 loss = 1.971, train_acc = 0.500 (3.255 sec/step)
step 7970 loss = 1.356, train_acc = 0.600 (3.284 sec/step)
step 7980 loss = 0.522, train_acc = 0.800 (3.244 sec/step)
step 7990 loss = 0.994, train_acc = 0.600 (3.305 sec/step)
step 8000 loss = 3.372, train_acc = 0.200 (3.215 sec/step)
step 8010 loss = 1.631, train_acc = 0.400 (3.250 sec/step)
step 8020 loss = 1.178, train_acc = 0.500 (3.275 sec/step)
step 8030 loss = 0.883, train_acc = 0.800 (3.261 sec/step)
step 8040 loss = 1.495, train_acc = 0.500 (3.235 sec/step)
step 8050 loss = 1.549, train_acc = 0.400 (3.231 sec/step)
step 8060 loss = 1.147, train_acc = 0.600 (3.202 sec/step)
step 8070 loss = 0.850, train_acc = 0.700 (3.215 sec/step)
step 8080 loss = 0.887, train_acc = 0.800 (3.247 sec/step)
step 8090 loss = 1.403, train_acc = 0.500 (3.256 sec/step)
step 8100 loss = 1.361, train_acc = 0.600 (3.273 sec/step)
step 8110 loss = 1.530, train_acc = 0.400 (3.228 sec/step)
step 8120 loss = 1.312, train_acc = 0.700 (3.289 sec/step)
step 8130 loss = 1.773, train_acc = 0.500 (3.234 sec/step)
step 8140 loss = 1.113, train_acc = 0.700 (3.252 sec/step)
step 8150 loss = 1.037, train_acc = 0.600 (3.225 sec/step)
step 8160 loss = 0.760, train_acc = 0.700 (3.225 sec/step)
step 8170 loss = 0.433, train_acc = 0.900 (3.204 sec/step)
step 8180 loss = 2.304, train_acc = 0.300 (3.228 sec/step)
step 8190 loss = 1.281, train_acc = 0.500 (3.226 sec/step)
step 8200 loss = 1.708, train_acc = 0.500 (3.239 sec/step)
step 8210 loss = 1.244, train_acc = 0.500 (3.206 sec/step)
step 8220 loss = 0.586, train_acc = 0.900 (3.246 sec/step)
step 8230 loss = 3.386, train_acc = 0.400 (3.224 sec/step)
step 8240 loss = 1.524, train_acc = 0.500 (3.224 sec/step)
step 8250 loss = 2.117, train_acc = 0.400 (3.219 sec/step)
step 8260 loss = 1.253, train_acc = 0.800 (3.226 sec/step)
step 8270 loss = 0.876, train_acc = 0.800 (3.250 sec/step)
step 8280 loss = 0.323, train_acc = 0.900 (3.238 sec/step)
step 8290 loss = 1.444, train_acc = 0.400 (3.213 sec/step)
step 8300 loss = 1.718, train_acc = 0.500 (3.250 sec/step)
step 8310 loss = 1.237, train_acc = 0.800 (3.245 sec/step)
step 8320 loss = 0.616, train_acc = 0.800 (3.226 sec/step)
step 8330 loss = 1.700, train_acc = 0.500 (3.233 sec/step)
step 8340 loss = 0.648, train_acc = 0.800 (3.242 sec/step)
step 8350 loss = 2.036, train_acc = 0.500 (3.206 sec/step)
step 8360 loss = 1.338, train_acc = 0.400 (3.275 sec/step)
step 8370 loss = 0.761, train_acc = 0.800 (3.285 sec/step)
step 8380 loss = 0.915, train_acc = 0.900 (3.258 sec/step)
step 8390 loss = 0.913, train_acc = 0.600 (3.261 sec/step)
step 8400 loss = 0.797, train_acc = 0.700 (3.242 sec/step)
step 8410 loss = 1.912, train_acc = 0.400 (3.275 sec/step)
step 8420 loss = 1.123, train_acc = 0.600 (3.234 sec/step)
step 8430 loss = 1.102, train_acc = 0.600 (3.266 sec/step)
step 8440 loss = 2.022, train_acc = 0.400 (3.228 sec/step)
step 8450 loss = 1.831, train_acc = 0.400 (3.271 sec/step)
step 8460 loss = 0.802, train_acc = 0.800 (3.259 sec/step)
step 8470 loss = 1.185, train_acc = 0.700 (3.239 sec/step)
step 8480 loss = 1.353, train_acc = 0.600 (3.246 sec/step)
step 8490 loss = 0.940, train_acc = 0.600 (3.243 sec/step)
step 8500 loss = 1.946, train_acc = 0.500 (3.211 sec/step)
step 8510 loss = 1.442, train_acc = 0.500 (3.238 sec/step)
step 8520 loss = 0.510, train_acc = 0.900 (3.248 sec/step)
step 8530 loss = 1.526, train_acc = 0.500 (3.221 sec/step)
step 8540 loss = 1.824, train_acc = 0.500 (3.250 sec/step)
step 8550 loss = 0.988, train_acc = 0.700 (3.222 sec/step)
step 8560 loss = 0.739, train_acc = 0.700 (3.211 sec/step)
step 8570 loss = 0.948, train_acc = 0.800 (3.262 sec/step)
step 8580 loss = 0.440, train_acc = 0.900 (3.250 sec/step)
step 8590 loss = 1.507, train_acc = 0.600 (3.265 sec/step)
step 8600 loss = 0.797, train_acc = 0.700 (3.212 sec/step)
step 8610 loss = 2.023, train_acc = 0.500 (3.250 sec/step)
step 8620 loss = 0.688, train_acc = 0.700 (3.263 sec/step)
step 8630 loss = 0.861, train_acc = 0.800 (3.220 sec/step)
step 8640 loss = 1.064, train_acc = 0.600 (3.263 sec/step)
step 8650 loss = 1.420, train_acc = 0.500 (3.372 sec/step)
step 8660 loss = 1.276, train_acc = 0.500 (3.273 sec/step)
step 8670 loss = 0.988, train_acc = 0.700 (3.255 sec/step)
step 8680 loss = 1.352, train_acc = 0.600 (3.248 sec/step)
step 8690 loss = 1.015, train_acc = 0.600 (3.292 sec/step)
step 8700 loss = 1.333, train_acc = 0.700 (3.382 sec/step)
step 8710 loss = 1.203, train_acc = 0.600 (3.250 sec/step)
step 8720 loss = 0.442, train_acc = 0.900 (3.269 sec/step)
step 8730 loss = 2.272, train_acc = 0.400 (3.240 sec/step)
step 8740 loss = 1.686, train_acc = 0.400 (3.217 sec/step)
step 8750 loss = 0.401, train_acc = 0.900 (3.245 sec/step)
step 8760 loss = 0.964, train_acc = 0.700 (3.223 sec/step)
step 8770 loss = 1.438, train_acc = 0.400 (3.240 sec/step)
step 8780 loss = 0.816, train_acc = 0.900 (3.309 sec/step)
step 8790 loss = 1.090, train_acc = 0.500 (3.229 sec/step)
step 8800 loss = 1.281, train_acc = 0.400 (3.260 sec/step)
step 8810 loss = 1.273, train_acc = 0.600 (3.252 sec/step)
step 8820 loss = 0.634, train_acc = 0.800 (3.266 sec/step)
step 8830 loss = 0.686, train_acc = 0.800 (3.286 sec/step)
step 8840 loss = 0.540, train_acc = 0.700 (3.252 sec/step)
step 8850 loss = 0.500, train_acc = 0.800 (3.221 sec/step)
step 8860 loss = 0.979, train_acc = 0.800 (3.265 sec/step)
step 8870 loss = 0.780, train_acc = 0.900 (3.267 sec/step)
step 8880 loss = 1.286, train_acc = 0.600 (3.229 sec/step)
step 8890 loss = 0.728, train_acc = 0.700 (3.245 sec/step)
step 8900 loss = 1.206, train_acc = 0.600 (3.280 sec/step)
step 8910 loss = 1.383, train_acc = 0.500 (3.273 sec/step)
step 8920 loss = 1.997, train_acc = 0.400 (3.228 sec/step)
step 8930 loss = 1.247, train_acc = 0.600 (3.210 sec/step)
step 8940 loss = 0.981, train_acc = 0.700 (3.252 sec/step)
step 8950 loss = 1.551, train_acc = 0.300 (3.217 sec/step)
step 8960 loss = 1.257, train_acc = 0.800 (3.227 sec/step)
step 8970 loss = 1.159, train_acc = 0.800 (3.241 sec/step)
step 8980 loss = 1.110, train_acc = 0.600 (3.264 sec/step)
step 8990 loss = 0.846, train_acc = 0.800 (3.241 sec/step)
step 9000 loss = 0.592, train_acc = 1.000 (3.214 sec/step)
step 9010 loss = 1.089, train_acc = 0.700 (3.271 sec/step)
step 9020 loss = 1.278, train_acc = 0.700 (3.258 sec/step)
step 9030 loss = 0.816, train_acc = 0.800 (3.233 sec/step)
step 9040 loss = 0.673, train_acc = 0.800 (3.206 sec/step)
step 9050 loss = 1.177, train_acc = 0.700 (3.297 sec/step)
step 9060 loss = 0.498, train_acc = 0.800 (3.240 sec/step)
step 9070 loss = 0.898, train_acc = 0.700 (3.242 sec/step)
step 9080 loss = 0.948, train_acc = 0.600 (3.242 sec/step)
step 9090 loss = 0.998, train_acc = 0.600 (3.263 sec/step)
step 9100 loss = 0.699, train_acc = 0.800 (3.271 sec/step)
step 9110 loss = 1.035, train_acc = 0.500 (3.238 sec/step)
step 9120 loss = 0.896, train_acc = 0.700 (3.219 sec/step)
step 9130 loss = 0.791, train_acc = 0.900 (3.229 sec/step)
step 9140 loss = 1.285, train_acc = 0.800 (3.217 sec/step)
step 9150 loss = 0.572, train_acc = 0.900 (3.329 sec/step)
step 9160 loss = 1.108, train_acc = 0.600 (3.207 sec/step)
step 9170 loss = 0.891, train_acc = 0.800 (3.226 sec/step)
step 9180 loss = 1.058, train_acc = 0.600 (3.240 sec/step)
step 9190 loss = 0.988, train_acc = 0.800 (3.294 sec/step)
step 9200 loss = 2.191, train_acc = 0.500 (3.264 sec/step)
step 9210 loss = 1.002, train_acc = 0.800 (3.215 sec/step)
step 9220 loss = 1.324, train_acc = 0.500 (3.224 sec/step)
step 9230 loss = 1.470, train_acc = 0.400 (3.287 sec/step)
step 9240 loss = 2.431, train_acc = 0.300 (3.264 sec/step)
step 9250 loss = 1.109, train_acc = 0.600 (3.285 sec/step)
step 9260 loss = 0.890, train_acc = 0.800 (3.280 sec/step)
step 9270 loss = 1.439, train_acc = 0.700 (3.286 sec/step)
step 9280 loss = 1.206, train_acc = 0.700 (3.242 sec/step)
step 9290 loss = 1.310, train_acc = 0.600 (3.313 sec/step)
step 9300 loss = 0.568, train_acc = 0.900 (3.263 sec/step)
step 9310 loss = 0.661, train_acc = 0.900 (3.266 sec/step)
step 9320 loss = 1.768, train_acc = 0.500 (3.219 sec/step)
step 9330 loss = 2.137, train_acc = 0.400 (3.242 sec/step)
step 9340 loss = 0.913, train_acc = 0.600 (3.269 sec/step)
step 9350 loss = 0.823, train_acc = 0.900 (3.256 sec/step)
step 9360 loss = 0.842, train_acc = 0.800 (3.265 sec/step)
step 9370 loss = 0.120, train_acc = 1.000 (3.256 sec/step)
step 9380 loss = 0.872, train_acc = 0.700 (3.251 sec/step)
step 9390 loss = 0.674, train_acc = 0.900 (3.220 sec/step)
step 9400 loss = 1.268, train_acc = 0.700 (3.257 sec/step)
step 9410 loss = 0.897, train_acc = 0.700 (3.244 sec/step)
step 9420 loss = 0.597, train_acc = 0.900 (3.288 sec/step)
step 9430 loss = 1.185, train_acc = 0.600 (3.233 sec/step)
step 9440 loss = 1.309, train_acc = 0.600 (3.264 sec/step)
step 9450 loss = 0.375, train_acc = 0.900 (3.262 sec/step)
step 9460 loss = 0.564, train_acc = 0.800 (3.246 sec/step)
step 9470 loss = 0.470, train_acc = 0.900 (3.236 sec/step)
step 9480 loss = 0.863, train_acc = 0.800 (3.254 sec/step)
step 9490 loss = 1.786, train_acc = 0.600 (3.241 sec/step)
VALIDATION acc = 0.489 (3.620 sec)
step 9500 loss = 1.858, train_acc = 0.600 (3.199 sec/step)
step 9510 loss = 0.956, train_acc = 0.700 (3.266 sec/step)
step 9520 loss = 1.637, train_acc = 0.500 (3.284 sec/step)
step 9530 loss = 1.227, train_acc = 0.700 (3.256 sec/step)
step 9540 loss = 0.159, train_acc = 1.000 (3.214 sec/step)
step 9550 loss = 1.263, train_acc = 0.700 (3.276 sec/step)
step 9560 loss = 0.836, train_acc = 0.700 (3.275 sec/step)
step 9570 loss = 1.189, train_acc = 0.600 (3.278 sec/step)
step 9580 loss = 0.950, train_acc = 0.700 (3.339 sec/step)
step 9590 loss = 0.780, train_acc = 0.800 (3.231 sec/step)
step 9600 loss = 0.720, train_acc = 0.800 (3.222 sec/step)
step 9610 loss = 0.935, train_acc = 0.800 (3.293 sec/step)
step 9620 loss = 1.517, train_acc = 0.700 (3.219 sec/step)
step 9630 loss = 1.068, train_acc = 0.700 (3.335 sec/step)
step 9640 loss = 0.857, train_acc = 0.800 (3.214 sec/step)
step 9650 loss = 1.032, train_acc = 0.500 (3.272 sec/step)
step 9660 loss = 0.485, train_acc = 0.900 (3.247 sec/step)
step 9670 loss = 0.350, train_acc = 1.000 (3.237 sec/step)
step 9680 loss = 0.643, train_acc = 0.800 (3.251 sec/step)
step 9690 loss = 1.240, train_acc = 0.600 (3.264 sec/step)
step 9700 loss = 0.895, train_acc = 0.800 (3.280 sec/step)
step 9710 loss = 1.500, train_acc = 0.600 (3.231 sec/step)
step 9720 loss = 1.718, train_acc = 0.500 (3.265 sec/step)
step 9730 loss = 0.346, train_acc = 0.900 (3.266 sec/step)
step 9740 loss = 1.554, train_acc = 0.500 (3.216 sec/step)
step 9750 loss = 1.661, train_acc = 0.400 (3.235 sec/step)
step 9760 loss = 1.306, train_acc = 0.500 (3.267 sec/step)
step 9770 loss = 2.203, train_acc = 0.400 (3.289 sec/step)
step 9780 loss = 0.361, train_acc = 0.900 (3.254 sec/step)
step 9790 loss = 0.462, train_acc = 0.800 (3.268 sec/step)
step 9800 loss = 3.149, train_acc = 0.600 (3.244 sec/step)
step 9810 loss = 1.097, train_acc = 0.800 (3.279 sec/step)
step 9820 loss = 0.511, train_acc = 0.900 (3.382 sec/step)
step 9830 loss = 0.826, train_acc = 0.700 (3.281 sec/step)
step 9840 loss = 1.028, train_acc = 0.700 (3.282 sec/step)
step 9850 loss = 0.561, train_acc = 0.800 (3.273 sec/step)
step 9860 loss = 1.752, train_acc = 0.600 (3.270 sec/step)
step 9870 loss = 1.028, train_acc = 0.600 (3.237 sec/step)
step 9880 loss = 0.315, train_acc = 0.800 (3.216 sec/step)
step 9890 loss = 0.654, train_acc = 0.900 (3.265 sec/step)
step 9900 loss = 1.650, train_acc = 0.500 (3.283 sec/step)
step 9910 loss = 1.758, train_acc = 0.300 (3.245 sec/step)
step 9920 loss = 0.939, train_acc = 0.500 (3.241 sec/step)
step 9930 loss = 0.448, train_acc = 0.700 (3.225 sec/step)
step 9940 loss = 1.863, train_acc = 0.200 (3.262 sec/step)
step 9950 loss = 0.890, train_acc = 0.700 (3.221 sec/step)
step 9960 loss = 1.461, train_acc = 0.600 (3.271 sec/step)
step 9970 loss = 0.577, train_acc = 0.800 (3.217 sec/step)
step 9980 loss = 1.127, train_acc = 0.600 (3.215 sec/step)
step 9990 loss = 0.808, train_acc = 0.700 (3.303 sec/step)
step 10000 loss = 0.631, train_acc = 0.800 (3.254 sec/step)
step 10010 loss = 0.972, train_acc = 0.700 (3.234 sec/step)
step 10020 loss = 0.844, train_acc = 0.700 (3.260 sec/step)
step 10030 loss = 1.479, train_acc = 0.600 (3.282 sec/step)
step 10040 loss = 1.219, train_acc = 0.600 (3.266 sec/step)
step 10050 loss = 0.157, train_acc = 1.000 (3.271 sec/step)
step 10060 loss = 0.597, train_acc = 0.900 (3.238 sec/step)
step 10070 loss = 0.148, train_acc = 1.000 (3.277 sec/step)
step 10080 loss = 1.468, train_acc = 0.800 (3.259 sec/step)
step 10090 loss = 0.795, train_acc = 0.700 (3.283 sec/step)
step 10100 loss = 1.484, train_acc = 0.600 (3.228 sec/step)
step 10110 loss = 1.056, train_acc = 0.600 (3.269 sec/step)
step 10120 loss = 0.658, train_acc = 0.800 (3.308 sec/step)
step 10130 loss = 1.198, train_acc = 0.600 (3.263 sec/step)
step 10140 loss = 0.471, train_acc = 0.900 (3.269 sec/step)
step 10150 loss = 1.620, train_acc = 0.600 (3.217 sec/step)
step 10160 loss = 0.821, train_acc = 0.700 (3.240 sec/step)
step 10170 loss = 1.330, train_acc = 0.500 (3.283 sec/step)
step 10180 loss = 0.172, train_acc = 1.000 (3.221 sec/step)
step 10190 loss = 0.830, train_acc = 0.600 (3.288 sec/step)
step 10200 loss = 2.788, train_acc = 0.200 (3.230 sec/step)
step 10210 loss = 0.734, train_acc = 0.800 (3.280 sec/step)
step 10220 loss = 0.873, train_acc = 0.700 (3.290 sec/step)
step 10230 loss = 1.205, train_acc = 0.800 (3.339 sec/step)
step 10240 loss = 0.589, train_acc = 0.900 (3.226 sec/step)
step 10250 loss = 0.825, train_acc = 0.600 (3.279 sec/step)
step 10260 loss = 2.879, train_acc = 0.400 (3.233 sec/step)
step 10270 loss = 0.795, train_acc = 0.600 (3.226 sec/step)
step 10280 loss = 0.975, train_acc = 0.600 (3.279 sec/step)
step 10290 loss = 0.512, train_acc = 0.900 (3.229 sec/step)
step 10300 loss = 0.220, train_acc = 1.000 (3.258 sec/step)
step 10310 loss = 1.163, train_acc = 0.600 (3.230 sec/step)
step 10320 loss = 0.468, train_acc = 0.800 (3.255 sec/step)
step 10330 loss = 0.667, train_acc = 0.900 (3.255 sec/step)
step 10340 loss = 1.196, train_acc = 0.600 (3.232 sec/step)
step 10350 loss = 0.948, train_acc = 0.700 (3.301 sec/step)
step 10360 loss = 0.962, train_acc = 0.900 (3.241 sec/step)
step 10370 loss = 0.938, train_acc = 0.700 (3.230 sec/step)
step 10380 loss = 2.013, train_acc = 0.400 (3.215 sec/step)
step 10390 loss = 0.740, train_acc = 0.700 (3.268 sec/step)
step 10400 loss = 0.526, train_acc = 0.700 (3.238 sec/step)
step 10410 loss = 0.798, train_acc = 0.800 (3.209 sec/step)
step 10420 loss = 0.959, train_acc = 0.700 (3.242 sec/step)
step 10430 loss = 0.997, train_acc = 0.700 (3.246 sec/step)
step 10440 loss = 1.620, train_acc = 0.600 (3.277 sec/step)
step 10450 loss = 2.200, train_acc = 0.600 (3.286 sec/step)
step 10460 loss = 1.175, train_acc = 0.600 (3.239 sec/step)
step 10470 loss = 1.460, train_acc = 0.700 (3.254 sec/step)
step 10480 loss = 0.946, train_acc = 0.700 (3.218 sec/step)
step 10490 loss = 0.577, train_acc = 0.900 (3.235 sec/step)
step 10500 loss = 0.763, train_acc = 0.800 (3.253 sec/step)
step 10510 loss = 1.650, train_acc = 0.400 (3.288 sec/step)
step 10520 loss = 1.797, train_acc = 0.600 (3.238 sec/step)
step 10530 loss = 0.733, train_acc = 0.800 (3.265 sec/step)
step 10540 loss = 0.734, train_acc = 0.900 (3.235 sec/step)
step 10550 loss = 1.196, train_acc = 0.600 (3.222 sec/step)
step 10560 loss = 0.514, train_acc = 0.900 (3.282 sec/step)
step 10570 loss = 0.670, train_acc = 0.800 (3.224 sec/step)
step 10580 loss = 1.640, train_acc = 0.500 (3.265 sec/step)
step 10590 loss = 1.383, train_acc = 0.600 (3.283 sec/step)
step 10600 loss = 0.446, train_acc = 0.800 (3.254 sec/step)
step 10610 loss = 1.038, train_acc = 0.600 (3.256 sec/step)
step 10620 loss = 0.471, train_acc = 0.900 (3.274 sec/step)
step 10630 loss = 1.055, train_acc = 0.800 (3.297 sec/step)
step 10640 loss = 1.284, train_acc = 0.500 (3.236 sec/step)
step 10650 loss = 0.578, train_acc = 0.800 (3.284 sec/step)
step 10660 loss = 1.069, train_acc = 0.700 (3.262 sec/step)
step 10670 loss = 0.767, train_acc = 0.900 (3.267 sec/step)
step 10680 loss = 2.041, train_acc = 0.700 (3.270 sec/step)
step 10690 loss = 0.742, train_acc = 0.800 (3.256 sec/step)
step 10700 loss = 1.251, train_acc = 0.600 (3.242 sec/step)
step 10710 loss = 1.060, train_acc = 0.600 (3.265 sec/step)
step 10720 loss = 0.185, train_acc = 1.000 (3.243 sec/step)
step 10730 loss = 0.457, train_acc = 0.700 (3.341 sec/step)
step 10740 loss = 1.975, train_acc = 0.500 (3.260 sec/step)
step 10750 loss = 0.703, train_acc = 0.800 (3.241 sec/step)
step 10760 loss = 0.780, train_acc = 0.600 (3.271 sec/step)
step 10770 loss = 0.817, train_acc = 0.700 (3.219 sec/step)
step 10780 loss = 1.292, train_acc = 0.700 (3.229 sec/step)
step 10790 loss = 1.947, train_acc = 0.600 (3.254 sec/step)
step 10800 loss = 0.152, train_acc = 1.000 (3.251 sec/step)
step 10810 loss = 0.610, train_acc = 0.700 (3.247 sec/step)
step 10820 loss = 1.427, train_acc = 0.500 (3.253 sec/step)
step 10830 loss = 1.087, train_acc = 0.600 (3.244 sec/step)
step 10840 loss = 0.481, train_acc = 0.800 (3.253 sec/step)
step 10850 loss = 1.098, train_acc = 0.700 (3.220 sec/step)
step 10860 loss = 0.405, train_acc = 1.000 (3.255 sec/step)
step 10870 loss = 0.490, train_acc = 0.900 (3.210 sec/step)
step 10880 loss = 1.163, train_acc = 0.500 (3.241 sec/step)
step 10890 loss = 0.561, train_acc = 0.900 (3.262 sec/step)
step 10900 loss = 1.052, train_acc = 0.700 (3.267 sec/step)
step 10910 loss = 1.634, train_acc = 0.500 (3.265 sec/step)
step 10920 loss = 1.134, train_acc = 0.700 (3.261 sec/step)
step 10930 loss = 1.185, train_acc = 0.600 (3.206 sec/step)
step 10940 loss = 1.447, train_acc = 0.700 (3.277 sec/step)
step 10950 loss = 0.524, train_acc = 0.900 (3.233 sec/step)
step 10960 loss = 0.393, train_acc = 0.900 (3.214 sec/step)
step 10970 loss = 0.525, train_acc = 0.800 (3.214 sec/step)
step 10980 loss = 2.824, train_acc = 0.400 (3.244 sec/step)
step 10990 loss = 1.821, train_acc = 0.400 (3.261 sec/step)
step 11000 loss = 1.452, train_acc = 0.700 (3.214 sec/step)
step 11010 loss = 0.754, train_acc = 0.900 (3.274 sec/step)
step 11020 loss = 1.534, train_acc = 0.300 (3.242 sec/step)
step 11030 loss = 0.481, train_acc = 0.900 (3.248 sec/step)
step 11040 loss = 1.541, train_acc = 0.700 (3.265 sec/step)
step 11050 loss = 0.780, train_acc = 0.800 (3.274 sec/step)
step 11060 loss = 0.339, train_acc = 0.900 (3.237 sec/step)
step 11070 loss = 0.535, train_acc = 0.900 (3.221 sec/step)
step 11080 loss = 0.420, train_acc = 1.000 (3.228 sec/step)
step 11090 loss = 0.223, train_acc = 1.000 (3.278 sec/step)
step 11100 loss = 2.097, train_acc = 0.500 (3.296 sec/step)
step 11110 loss = 1.584, train_acc = 0.500 (3.357 sec/step)
step 11120 loss = 0.297, train_acc = 1.000 (3.239 sec/step)
step 11130 loss = 2.073, train_acc = 0.300 (3.266 sec/step)
step 11140 loss = 1.883, train_acc = 0.400 (3.222 sec/step)
step 11150 loss = 0.636, train_acc = 0.800 (3.251 sec/step)
step 11160 loss = 1.628, train_acc = 0.500 (3.245 sec/step)
step 11170 loss = 0.581, train_acc = 0.800 (3.237 sec/step)
step 11180 loss = 0.534, train_acc = 0.900 (3.317 sec/step)
step 11190 loss = 1.007, train_acc = 0.700 (3.242 sec/step)
step 11200 loss = 0.711, train_acc = 0.800 (3.233 sec/step)
step 11210 loss = 0.257, train_acc = 1.000 (3.303 sec/step)
step 11220 loss = 2.014, train_acc = 0.700 (3.251 sec/step)
step 11230 loss = 1.850, train_acc = 0.500 (3.271 sec/step)
step 11240 loss = 0.465, train_acc = 0.900 (3.261 sec/step)
step 11250 loss = 0.995, train_acc = 0.800 (3.209 sec/step)
step 11260 loss = 1.146, train_acc = 0.500 (3.277 sec/step)
step 11270 loss = 0.325, train_acc = 1.000 (3.288 sec/step)
step 11280 loss = 0.651, train_acc = 0.700 (3.253 sec/step)
step 11290 loss = 0.796, train_acc = 0.700 (3.243 sec/step)
step 11300 loss = 0.446, train_acc = 0.900 (3.271 sec/step)
step 11310 loss = 1.809, train_acc = 0.400 (3.235 sec/step)
step 11320 loss = 0.439, train_acc = 0.900 (3.264 sec/step)
step 11330 loss = 1.795, train_acc = 0.500 (3.236 sec/step)
step 11340 loss = 2.603, train_acc = 0.300 (3.218 sec/step)
step 11350 loss = 0.413, train_acc = 0.800 (3.238 sec/step)
step 11360 loss = 0.823, train_acc = 0.700 (3.266 sec/step)
step 11370 loss = 1.148, train_acc = 0.500 (3.260 sec/step)
step 11380 loss = 0.401, train_acc = 0.900 (3.259 sec/step)
step 11390 loss = 1.481, train_acc = 0.500 (3.218 sec/step)
VALIDATION acc = 0.524 (3.640 sec)
New Best Accuracy 0.524 > Old Best 0.494. Saving...
The checkpoint has been created.
step 11400 loss = 2.175, train_acc = 0.500 (3.288 sec/step)
step 11410 loss = 0.913, train_acc = 0.800 (3.256 sec/step)
step 11420 loss = 0.642, train_acc = 0.800 (3.262 sec/step)
step 11430 loss = 0.871, train_acc = 0.800 (3.248 sec/step)
step 11440 loss = 0.097, train_acc = 1.000 (3.230 sec/step)
step 11450 loss = 0.888, train_acc = 0.600 (3.264 sec/step)
step 11460 loss = 0.273, train_acc = 0.900 (3.246 sec/step)
step 11470 loss = 0.380, train_acc = 1.000 (3.268 sec/step)
step 11480 loss = 1.241, train_acc = 0.600 (3.285 sec/step)
step 11490 loss = 0.315, train_acc = 0.900 (3.222 sec/step)
step 11500 loss = 0.402, train_acc = 1.000 (3.252 sec/step)
step 11510 loss = 1.360, train_acc = 0.500 (3.240 sec/step)
step 11520 loss = 0.826, train_acc = 0.700 (3.252 sec/step)
step 11530 loss = 0.503, train_acc = 0.900 (3.212 sec/step)
step 11540 loss = 0.473, train_acc = 0.800 (3.247 sec/step)
step 11550 loss = 0.876, train_acc = 0.800 (3.263 sec/step)
step 11560 loss = 0.377, train_acc = 0.900 (3.323 sec/step)
step 11570 loss = 0.485, train_acc = 0.800 (3.259 sec/step)
step 11580 loss = 0.134, train_acc = 1.000 (3.247 sec/step)
step 11590 loss = 0.891, train_acc = 0.800 (3.289 sec/step)
step 11600 loss = 0.346, train_acc = 1.000 (3.241 sec/step)
step 11610 loss = 0.638, train_acc = 0.800 (3.246 sec/step)
step 11620 loss = 0.936, train_acc = 0.600 (3.251 sec/step)
step 11630 loss = 1.061, train_acc = 0.800 (3.221 sec/step)
step 11640 loss = 1.179, train_acc = 0.600 (3.271 sec/step)
step 11650 loss = 1.129, train_acc = 0.700 (3.268 sec/step)
step 11660 loss = 0.540, train_acc = 0.900 (3.268 sec/step)
step 11670 loss = 1.301, train_acc = 0.600 (3.332 sec/step)
step 11680 loss = 1.370, train_acc = 0.500 (3.220 sec/step)
step 11690 loss = 0.991, train_acc = 0.600 (3.232 sec/step)
step 11700 loss = 1.858, train_acc = 0.500 (3.227 sec/step)
step 11710 loss = 1.828, train_acc = 0.600 (3.276 sec/step)
step 11720 loss = 0.750, train_acc = 0.700 (3.245 sec/step)
step 11730 loss = 0.536, train_acc = 0.900 (3.249 sec/step)
step 11740 loss = 0.934, train_acc = 0.800 (3.371 sec/step)
step 11750 loss = 0.460, train_acc = 0.800 (3.240 sec/step)
step 11760 loss = 1.657, train_acc = 0.600 (3.241 sec/step)
step 11770 loss = 1.277, train_acc = 0.500 (3.236 sec/step)
step 11780 loss = 0.246, train_acc = 0.900 (3.336 sec/step)
step 11790 loss = 0.572, train_acc = 0.900 (3.311 sec/step)
step 11800 loss = 2.104, train_acc = 0.600 (3.251 sec/step)
step 11810 loss = 1.008, train_acc = 0.800 (3.316 sec/step)
step 11820 loss = 1.002, train_acc = 0.700 (3.264 sec/step)
step 11830 loss = 0.683, train_acc = 0.700 (3.295 sec/step)
step 11840 loss = 0.649, train_acc = 0.800 (3.243 sec/step)
step 11850 loss = 1.779, train_acc = 0.400 (3.292 sec/step)
step 11860 loss = 2.739, train_acc = 0.500 (3.283 sec/step)
step 11870 loss = 0.359, train_acc = 0.900 (3.275 sec/step)
step 11880 loss = 0.737, train_acc = 0.800 (3.222 sec/step)
step 11890 loss = 1.449, train_acc = 0.500 (3.262 sec/step)
step 11900 loss = 0.477, train_acc = 0.800 (3.255 sec/step)
step 11910 loss = 1.383, train_acc = 0.700 (3.373 sec/step)
step 11920 loss = 0.460, train_acc = 0.900 (3.254 sec/step)
step 11930 loss = 0.527, train_acc = 0.800 (3.253 sec/step)
step 11940 loss = 0.806, train_acc = 0.700 (3.274 sec/step)
step 11950 loss = 1.055, train_acc = 0.600 (3.283 sec/step)
step 11960 loss = 0.421, train_acc = 0.800 (3.227 sec/step)
step 11970 loss = 0.575, train_acc = 0.900 (3.231 sec/step)
step 11980 loss = 1.466, train_acc = 0.600 (3.236 sec/step)
step 11990 loss = 0.718, train_acc = 0.700 (3.213 sec/step)
step 12000 loss = 0.752, train_acc = 0.800 (3.225 sec/step)
step 12010 loss = 1.141, train_acc = 0.600 (3.291 sec/step)
step 12020 loss = 0.332, train_acc = 0.900 (3.248 sec/step)
step 12030 loss = 1.291, train_acc = 0.600 (3.266 sec/step)
step 12040 loss = 0.399, train_acc = 0.900 (3.228 sec/step)
step 12050 loss = 0.635, train_acc = 0.800 (3.228 sec/step)
step 12060 loss = 1.806, train_acc = 0.400 (3.277 sec/step)
step 12070 loss = 0.525, train_acc = 0.700 (3.268 sec/step)
step 12080 loss = 1.113, train_acc = 0.800 (3.237 sec/step)
step 12090 loss = 1.119, train_acc = 0.500 (3.245 sec/step)
step 12100 loss = 1.000, train_acc = 0.600 (3.220 sec/step)
step 12110 loss = 0.640, train_acc = 0.800 (3.278 sec/step)
step 12120 loss = 1.039, train_acc = 0.700 (3.273 sec/step)
step 12130 loss = 0.487, train_acc = 0.900 (3.272 sec/step)
step 12140 loss = 0.331, train_acc = 0.800 (3.289 sec/step)
step 12150 loss = 0.988, train_acc = 0.800 (3.295 sec/step)
step 12160 loss = 1.446, train_acc = 0.600 (3.254 sec/step)
step 12170 loss = 0.134, train_acc = 1.000 (3.296 sec/step)
step 12180 loss = 0.375, train_acc = 0.900 (3.244 sec/step)
step 12190 loss = 0.558, train_acc = 0.700 (3.245 sec/step)
step 12200 loss = 0.147, train_acc = 1.000 (3.335 sec/step)
step 12210 loss = 0.744, train_acc = 0.800 (3.306 sec/step)
step 12220 loss = 0.572, train_acc = 0.800 (3.253 sec/step)
step 12230 loss = 0.445, train_acc = 0.900 (3.288 sec/step)
step 12240 loss = 3.404, train_acc = 0.300 (3.250 sec/step)
step 12250 loss = 0.919, train_acc = 0.500 (3.268 sec/step)
step 12260 loss = 0.658, train_acc = 0.800 (3.272 sec/step)
step 12270 loss = 0.407, train_acc = 0.900 (3.288 sec/step)
step 12280 loss = 0.494, train_acc = 0.800 (3.265 sec/step)
step 12290 loss = 0.875, train_acc = 0.800 (3.226 sec/step)
step 12300 loss = 0.907, train_acc = 0.600 (3.294 sec/step)
step 12310 loss = 0.566, train_acc = 0.800 (3.252 sec/step)
step 12320 loss = 0.614, train_acc = 0.700 (3.301 sec/step)
step 12330 loss = 0.663, train_acc = 0.800 (3.297 sec/step)
step 12340 loss = 1.054, train_acc = 0.700 (3.301 sec/step)
step 12350 loss = 1.025, train_acc = 0.800 (3.269 sec/step)
step 12360 loss = 0.832, train_acc = 0.700 (3.280 sec/step)
step 12370 loss = 0.184, train_acc = 1.000 (3.257 sec/step)
step 12380 loss = 0.322, train_acc = 0.900 (3.235 sec/step)
step 12390 loss = 0.360, train_acc = 0.900 (3.239 sec/step)
step 12400 loss = 0.339, train_acc = 0.800 (3.283 sec/step)
step 12410 loss = 0.541, train_acc = 0.900 (3.225 sec/step)
step 12420 loss = 0.334, train_acc = 0.900 (3.263 sec/step)
step 12430 loss = 1.447, train_acc = 0.700 (3.368 sec/step)
step 12440 loss = 0.380, train_acc = 0.800 (3.238 sec/step)
step 12450 loss = 0.573, train_acc = 0.900 (3.281 sec/step)
step 12460 loss = 0.818, train_acc = 0.800 (3.244 sec/step)
step 12470 loss = 0.755, train_acc = 0.800 (3.261 sec/step)
step 12480 loss = 0.956, train_acc = 0.600 (3.269 sec/step)
step 12490 loss = 1.938, train_acc = 0.600 (3.224 sec/step)
step 12500 loss = 0.614, train_acc = 0.800 (3.275 sec/step)
step 12510 loss = 1.680, train_acc = 0.600 (3.223 sec/step)
step 12520 loss = 0.190, train_acc = 0.900 (3.257 sec/step)
step 12530 loss = 1.037, train_acc = 0.600 (3.233 sec/step)
step 12540 loss = 2.748, train_acc = 0.300 (3.260 sec/step)
step 12550 loss = 0.353, train_acc = 0.900 (3.240 sec/step)
step 12560 loss = 0.271, train_acc = 1.000 (3.286 sec/step)
step 12570 loss = 0.588, train_acc = 0.800 (3.242 sec/step)
step 12580 loss = 0.836, train_acc = 0.800 (3.219 sec/step)
step 12590 loss = 1.570, train_acc = 0.600 (3.241 sec/step)
step 12600 loss = 0.745, train_acc = 0.800 (3.217 sec/step)
step 12610 loss = 1.736, train_acc = 0.600 (3.351 sec/step)
step 12620 loss = 0.899, train_acc = 0.800 (3.246 sec/step)
step 12630 loss = 0.564, train_acc = 0.800 (3.257 sec/step)
step 12640 loss = 0.611, train_acc = 0.700 (3.272 sec/step)
step 12650 loss = 0.742, train_acc = 0.600 (3.280 sec/step)
step 12660 loss = 0.750, train_acc = 0.700 (3.294 sec/step)
step 12670 loss = 0.991, train_acc = 0.600 (3.250 sec/step)
step 12680 loss = 0.618, train_acc = 0.600 (3.349 sec/step)
step 12690 loss = 0.694, train_acc = 0.800 (3.287 sec/step)
step 12700 loss = 0.727, train_acc = 0.900 (3.443 sec/step)
step 12710 loss = 1.904, train_acc = 0.500 (3.249 sec/step)
step 12720 loss = 0.825, train_acc = 0.800 (3.266 sec/step)
step 12730 loss = 1.063, train_acc = 0.700 (3.294 sec/step)
step 12740 loss = 0.195, train_acc = 1.000 (3.297 sec/step)
step 12750 loss = 1.408, train_acc = 0.700 (3.295 sec/step)
step 12760 loss = 1.978, train_acc = 0.400 (3.360 sec/step)
step 12770 loss = 0.559, train_acc = 0.800 (3.319 sec/step)
step 12780 loss = 0.632, train_acc = 0.700 (3.250 sec/step)
step 12790 loss = 2.139, train_acc = 0.500 (3.235 sec/step)
step 12800 loss = 0.685, train_acc = 0.800 (3.233 sec/step)
step 12810 loss = 0.681, train_acc = 0.800 (3.259 sec/step)
step 12820 loss = 0.558, train_acc = 0.900 (3.243 sec/step)
step 12830 loss = 0.209, train_acc = 1.000 (3.302 sec/step)
step 12840 loss = 0.512, train_acc = 0.900 (3.305 sec/step)
step 12850 loss = 0.305, train_acc = 0.900 (3.265 sec/step)
step 12860 loss = 0.119, train_acc = 1.000 (3.371 sec/step)
step 12870 loss = 0.316, train_acc = 0.900 (3.234 sec/step)
step 12880 loss = 1.543, train_acc = 0.400 (3.231 sec/step)
step 12890 loss = 0.329, train_acc = 0.900 (3.279 sec/step)
step 12900 loss = 0.376, train_acc = 0.900 (3.232 sec/step)
step 12910 loss = 2.318, train_acc = 0.400 (3.244 sec/step)
step 12920 loss = 0.221, train_acc = 1.000 (3.245 sec/step)
step 12930 loss = 0.581, train_acc = 0.800 (3.280 sec/step)
step 12940 loss = 0.214, train_acc = 1.000 (3.229 sec/step)
step 12950 loss = 1.124, train_acc = 0.800 (3.277 sec/step)
step 12960 loss = 1.308, train_acc = 0.500 (3.260 sec/step)
step 12970 loss = 0.988, train_acc = 0.600 (3.231 sec/step)
step 12980 loss = 0.501, train_acc = 0.900 (3.247 sec/step)
step 12990 loss = 0.373, train_acc = 0.800 (3.259 sec/step)
step 13000 loss = 1.302, train_acc = 0.800 (3.252 sec/step)
step 13010 loss = 0.685, train_acc = 0.800 (3.239 sec/step)
step 13020 loss = 0.817, train_acc = 0.900 (3.322 sec/step)
step 13030 loss = 0.970, train_acc = 0.700 (3.251 sec/step)
step 13040 loss = 1.579, train_acc = 0.500 (3.265 sec/step)
step 13050 loss = 0.201, train_acc = 0.900 (3.366 sec/step)
step 13060 loss = 0.722, train_acc = 0.800 (3.257 sec/step)
step 13070 loss = 0.781, train_acc = 0.800 (3.259 sec/step)
step 13080 loss = 0.466, train_acc = 0.800 (3.256 sec/step)
step 13090 loss = 0.426, train_acc = 0.900 (3.286 sec/step)
step 13100 loss = 0.030, train_acc = 1.000 (3.293 sec/step)
step 13110 loss = 0.069, train_acc = 1.000 (3.249 sec/step)
step 13120 loss = 1.239, train_acc = 0.600 (3.324 sec/step)
step 13130 loss = 2.283, train_acc = 0.400 (3.294 sec/step)
step 13140 loss = 2.056, train_acc = 0.500 (3.245 sec/step)
step 13150 loss = 0.567, train_acc = 0.800 (3.209 sec/step)
step 13160 loss = 0.701, train_acc = 0.800 (3.287 sec/step)
step 13170 loss = 0.119, train_acc = 1.000 (3.314 sec/step)
step 13180 loss = 0.211, train_acc = 1.000 (3.271 sec/step)
step 13190 loss = 0.609, train_acc = 0.900 (3.333 sec/step)
step 13200 loss = 3.007, train_acc = 0.700 (3.253 sec/step)
step 13210 loss = 0.410, train_acc = 1.000 (3.297 sec/step)
step 13220 loss = 0.354, train_acc = 1.000 (3.243 sec/step)
step 13230 loss = 1.466, train_acc = 0.300 (3.292 sec/step)
step 13240 loss = 1.267, train_acc = 0.600 (3.251 sec/step)
step 13250 loss = 0.539, train_acc = 0.900 (3.279 sec/step)
step 13260 loss = 0.341, train_acc = 0.900 (3.257 sec/step)
step 13270 loss = 0.492, train_acc = 0.800 (3.246 sec/step)
step 13280 loss = 1.149, train_acc = 0.800 (3.264 sec/step)
step 13290 loss = 2.541, train_acc = 0.200 (3.261 sec/step)
VALIDATION acc = 0.512 (3.636 sec)
step 13300 loss = 0.848, train_acc = 0.700 (3.282 sec/step)
step 13310 loss = 0.890, train_acc = 0.700 (3.291 sec/step)
step 13320 loss = 0.313, train_acc = 0.900 (3.247 sec/step)
step 13330 loss = 0.598, train_acc = 0.700 (3.245 sec/step)
step 13340 loss = 0.325, train_acc = 0.900 (3.219 sec/step)
step 13350 loss = 1.737, train_acc = 0.600 (3.232 sec/step)
step 13360 loss = 0.227, train_acc = 0.800 (3.295 sec/step)
step 13370 loss = 0.128, train_acc = 1.000 (3.233 sec/step)
step 13380 loss = 0.235, train_acc = 1.000 (3.281 sec/step)
step 13390 loss = 1.056, train_acc = 0.700 (3.247 sec/step)
step 13400 loss = 0.489, train_acc = 0.800 (3.270 sec/step)
step 13410 loss = 0.558, train_acc = 0.800 (3.249 sec/step)
step 13420 loss = 0.933, train_acc = 0.800 (3.216 sec/step)
step 13430 loss = 0.360, train_acc = 0.900 (3.243 sec/step)
step 13440 loss = 0.795, train_acc = 0.800 (3.254 sec/step)
step 13450 loss = 0.422, train_acc = 0.900 (3.266 sec/step)
step 13460 loss = 1.486, train_acc = 0.600 (3.240 sec/step)
step 13470 loss = 0.286, train_acc = 1.000 (3.262 sec/step)
step 13480 loss = 0.126, train_acc = 1.000 (3.309 sec/step)
step 13490 loss = 0.406, train_acc = 0.900 (3.254 sec/step)
step 13500 loss = 1.858, train_acc = 0.500 (3.259 sec/step)
step 13510 loss = 0.330, train_acc = 0.900 (3.283 sec/step)
step 13520 loss = 0.450, train_acc = 0.900 (3.252 sec/step)
step 13530 loss = 0.834, train_acc = 0.800 (3.237 sec/step)
step 13540 loss = 0.655, train_acc = 0.800 (3.254 sec/step)
step 13550 loss = 0.895, train_acc = 0.700 (3.239 sec/step)
step 13560 loss = 0.871, train_acc = 0.700 (3.260 sec/step)
step 13570 loss = 2.332, train_acc = 0.400 (3.247 sec/step)
step 13580 loss = 0.373, train_acc = 0.900 (3.274 sec/step)
step 13590 loss = 0.437, train_acc = 0.800 (3.254 sec/step)
step 13600 loss = 1.101, train_acc = 0.800 (3.260 sec/step)
step 13610 loss = 1.409, train_acc = 0.600 (3.229 sec/step)
step 13620 loss = 0.195, train_acc = 0.900 (3.262 sec/step)
step 13630 loss = 0.861, train_acc = 0.800 (3.228 sec/step)
step 13640 loss = 0.178, train_acc = 0.900 (3.266 sec/step)
step 13650 loss = 0.909, train_acc = 0.600 (3.226 sec/step)
step 13660 loss = 0.733, train_acc = 0.800 (3.278 sec/step)
step 13670 loss = 0.290, train_acc = 0.900 (3.248 sec/step)
step 13680 loss = 0.044, train_acc = 1.000 (3.221 sec/step)
step 13690 loss = 0.189, train_acc = 0.900 (3.285 sec/step)
step 13700 loss = 1.462, train_acc = 0.600 (3.301 sec/step)
step 13710 loss = 0.553, train_acc = 0.800 (3.343 sec/step)
step 13720 loss = 0.452, train_acc = 0.700 (3.229 sec/step)
step 13730 loss = 0.250, train_acc = 0.900 (3.237 sec/step)
step 13740 loss = 0.972, train_acc = 0.600 (3.286 sec/step)
step 13750 loss = 0.233, train_acc = 1.000 (3.252 sec/step)
step 13760 loss = 0.402, train_acc = 0.900 (3.247 sec/step)
step 13770 loss = 0.190, train_acc = 1.000 (3.257 sec/step)
step 13780 loss = 0.492, train_acc = 0.800 (3.257 sec/step)
step 13790 loss = 0.524, train_acc = 0.800 (3.304 sec/step)
step 13800 loss = 1.206, train_acc = 0.700 (3.248 sec/step)
step 13810 loss = 0.619, train_acc = 0.800 (3.248 sec/step)
step 13820 loss = 0.460, train_acc = 0.900 (3.251 sec/step)
step 13830 loss = 1.506, train_acc = 0.600 (3.286 sec/step)
step 13840 loss = 2.037, train_acc = 0.500 (3.302 sec/step)
step 13850 loss = 0.475, train_acc = 0.800 (3.311 sec/step)
step 13860 loss = 0.835, train_acc = 0.800 (3.287 sec/step)
step 13870 loss = 0.888, train_acc = 0.800 (3.234 sec/step)
step 13880 loss = 0.495, train_acc = 0.800 (3.240 sec/step)
step 13890 loss = 0.941, train_acc = 0.600 (3.236 sec/step)
step 13900 loss = 2.234, train_acc = 0.600 (3.275 sec/step)
step 13910 loss = 1.062, train_acc = 0.600 (3.283 sec/step)
step 13920 loss = 0.379, train_acc = 0.800 (3.305 sec/step)
step 13930 loss = 0.479, train_acc = 0.800 (3.253 sec/step)
step 13940 loss = 0.401, train_acc = 0.800 (3.280 sec/step)
step 13950 loss = 0.261, train_acc = 1.000 (3.249 sec/step)
step 13960 loss = 0.662, train_acc = 0.900 (3.256 sec/step)
step 13970 loss = 0.150, train_acc = 1.000 (3.251 sec/step)
step 13980 loss = 0.099, train_acc = 0.900 (3.295 sec/step)
step 13990 loss = 0.282, train_acc = 1.000 (3.263 sec/step)
step 14000 loss = 0.837, train_acc = 0.800 (3.282 sec/step)
step 14010 loss = 0.403, train_acc = 0.900 (3.300 sec/step)
step 14020 loss = 0.524, train_acc = 0.800 (3.270 sec/step)
step 14030 loss = 2.644, train_acc = 0.400 (3.268 sec/step)
step 14040 loss = 0.142, train_acc = 1.000 (3.257 sec/step)
step 14050 loss = 1.247, train_acc = 0.600 (3.254 sec/step)
step 14060 loss = 1.151, train_acc = 0.600 (3.362 sec/step)
step 14070 loss = 0.320, train_acc = 0.800 (3.293 sec/step)
step 14080 loss = 0.726, train_acc = 0.700 (3.283 sec/step)
step 14090 loss = 0.426, train_acc = 0.900 (3.273 sec/step)
step 14100 loss = 0.293, train_acc = 0.900 (3.252 sec/step)
step 14110 loss = 1.020, train_acc = 0.700 (3.264 sec/step)
step 14120 loss = 0.278, train_acc = 0.900 (3.265 sec/step)
step 14130 loss = 0.655, train_acc = 0.800 (3.257 sec/step)
step 14140 loss = 1.173, train_acc = 0.700 (3.272 sec/step)
step 14150 loss = 0.725, train_acc = 0.900 (3.297 sec/step)
step 14160 loss = 0.320, train_acc = 0.900 (3.225 sec/step)
step 14170 loss = 0.366, train_acc = 0.900 (3.312 sec/step)
step 14180 loss = 0.779, train_acc = 0.600 (3.335 sec/step)
step 14190 loss = 0.377, train_acc = 0.800 (3.297 sec/step)
step 14200 loss = 0.493, train_acc = 0.800 (3.277 sec/step)
step 14210 loss = 0.360, train_acc = 0.800 (3.348 sec/step)
step 14220 loss = 0.248, train_acc = 0.900 (3.254 sec/step)
step 14230 loss = 0.590, train_acc = 0.700 (3.263 sec/step)
step 14240 loss = 0.661, train_acc = 0.700 (3.229 sec/step)
step 14250 loss = 0.867, train_acc = 0.800 (3.294 sec/step)
step 14260 loss = 0.597, train_acc = 0.800 (3.306 sec/step)
step 14270 loss = 2.506, train_acc = 0.500 (3.241 sec/step)
step 14280 loss = 0.332, train_acc = 0.800 (3.228 sec/step)
step 14290 loss = 3.546, train_acc = 0.300 (3.223 sec/step)
step 14300 loss = 0.301, train_acc = 0.900 (3.258 sec/step)
step 14310 loss = 1.066, train_acc = 0.700 (3.251 sec/step)
step 14320 loss = 0.334, train_acc = 0.900 (3.245 sec/step)
step 14330 loss = 0.620, train_acc = 0.700 (3.275 sec/step)
step 14340 loss = 1.377, train_acc = 0.600 (3.295 sec/step)
step 14350 loss = 0.804, train_acc = 0.600 (3.249 sec/step)
step 14360 loss = 0.744, train_acc = 0.700 (3.223 sec/step)
step 14370 loss = 0.201, train_acc = 0.900 (3.236 sec/step)
step 14380 loss = 0.417, train_acc = 0.900 (3.306 sec/step)
step 14390 loss = 1.119, train_acc = 0.600 (3.261 sec/step)
step 14400 loss = 0.209, train_acc = 1.000 (3.270 sec/step)
step 14410 loss = 0.582, train_acc = 0.800 (3.301 sec/step)
step 14420 loss = 0.127, train_acc = 0.900 (3.254 sec/step)
step 14430 loss = 0.491, train_acc = 0.800 (3.248 sec/step)
step 14440 loss = 1.480, train_acc = 0.700 (3.317 sec/step)
step 14450 loss = 0.222, train_acc = 0.900 (3.267 sec/step)
step 14460 loss = 0.455, train_acc = 0.800 (3.273 sec/step)
step 14470 loss = 0.665, train_acc = 0.700 (3.296 sec/step)
step 14480 loss = 0.840, train_acc = 0.700 (3.223 sec/step)
step 14490 loss = 0.599, train_acc = 0.800 (3.272 sec/step)
step 14500 loss = 1.263, train_acc = 0.500 (3.291 sec/step)
step 14510 loss = 0.517, train_acc = 0.800 (3.314 sec/step)
step 14520 loss = 0.873, train_acc = 0.800 (3.261 sec/step)
step 14530 loss = 0.240, train_acc = 0.900 (3.256 sec/step)
step 14540 loss = 0.957, train_acc = 0.800 (3.308 sec/step)
step 14550 loss = 0.256, train_acc = 1.000 (3.258 sec/step)
step 14560 loss = 0.987, train_acc = 0.500 (3.269 sec/step)
step 14570 loss = 2.063, train_acc = 0.800 (3.286 sec/step)
step 14580 loss = 0.065, train_acc = 1.000 (3.279 sec/step)
step 14590 loss = 0.412, train_acc = 0.900 (3.255 sec/step)
step 14600 loss = 0.915, train_acc = 0.700 (3.249 sec/step)
step 14610 loss = 0.704, train_acc = 0.800 (3.252 sec/step)
step 14620 loss = 1.050, train_acc = 0.700 (3.240 sec/step)
step 14630 loss = 0.790, train_acc = 0.700 (3.333 sec/step)
step 14640 loss = 0.207, train_acc = 0.900 (3.302 sec/step)
step 14650 loss = 1.475, train_acc = 0.500 (3.281 sec/step)
step 14660 loss = 0.777, train_acc = 0.800 (3.390 sec/step)
step 14670 loss = 0.366, train_acc = 0.900 (3.258 sec/step)
step 14680 loss = 0.309, train_acc = 0.900 (3.345 sec/step)
step 14690 loss = 0.977, train_acc = 0.600 (3.250 sec/step)
step 14700 loss = 0.417, train_acc = 0.900 (3.307 sec/step)
step 14710 loss = 0.898, train_acc = 0.800 (3.271 sec/step)
step 14720 loss = 0.044, train_acc = 1.000 (3.262 sec/step)
step 14730 loss = 0.463, train_acc = 0.800 (3.259 sec/step)
step 14740 loss = 0.330, train_acc = 0.900 (3.273 sec/step)
step 14750 loss = 2.266, train_acc = 0.500 (3.217 sec/step)
step 14760 loss = 0.269, train_acc = 0.800 (3.264 sec/step)
step 14770 loss = 1.135, train_acc = 0.500 (3.422 sec/step)
step 14780 loss = 1.145, train_acc = 0.700 (3.327 sec/step)
step 14790 loss = 0.710, train_acc = 0.900 (3.225 sec/step)
step 14800 loss = 0.255, train_acc = 0.800 (3.220 sec/step)
step 14810 loss = 0.633, train_acc = 0.700 (3.265 sec/step)
step 14820 loss = 0.366, train_acc = 0.900 (3.373 sec/step)
step 14830 loss = 0.742, train_acc = 0.800 (3.315 sec/step)
step 14840 loss = 0.371, train_acc = 1.000 (3.266 sec/step)
step 14850 loss = 0.449, train_acc = 0.700 (3.250 sec/step)
step 14860 loss = 0.457, train_acc = 0.800 (3.293 sec/step)
step 14870 loss = 0.386, train_acc = 0.900 (3.232 sec/step)
step 14880 loss = 0.410, train_acc = 0.800 (3.237 sec/step)
step 14890 loss = 0.027, train_acc = 1.000 (3.242 sec/step)
step 14900 loss = 1.110, train_acc = 0.700 (3.301 sec/step)
step 14910 loss = 0.382, train_acc = 0.800 (3.269 sec/step)
step 14920 loss = 0.076, train_acc = 1.000 (3.295 sec/step)
step 14930 loss = 0.731, train_acc = 0.700 (3.256 sec/step)
step 14940 loss = 1.422, train_acc = 0.600 (3.283 sec/step)
step 14950 loss = 3.158, train_acc = 0.400 (3.236 sec/step)
step 14960 loss = 0.299, train_acc = 0.900 (3.272 sec/step)
step 14970 loss = 0.414, train_acc = 0.900 (3.277 sec/step)
step 14980 loss = 0.243, train_acc = 1.000 (3.278 sec/step)
step 14990 loss = 0.076, train_acc = 1.000 (3.270 sec/step)
step 15000 loss = 1.471, train_acc = 0.800 (3.250 sec/step)
step 15010 loss = 2.235, train_acc = 0.600 (3.349 sec/step)
step 15020 loss = 1.749, train_acc = 0.600 (3.291 sec/step)
step 15030 loss = 1.253, train_acc = 0.500 (3.265 sec/step)
step 15040 loss = 0.362, train_acc = 0.900 (3.298 sec/step)
step 15050 loss = 0.217, train_acc = 0.900 (3.256 sec/step)
step 15060 loss = 0.620, train_acc = 0.800 (3.288 sec/step)
step 15070 loss = 0.248, train_acc = 0.900 (3.260 sec/step)
step 15080 loss = 0.962, train_acc = 0.700 (3.247 sec/step)
step 15090 loss = 0.531, train_acc = 0.800 (3.297 sec/step)
step 15100 loss = 0.491, train_acc = 0.700 (3.245 sec/step)
step 15110 loss = 0.242, train_acc = 0.900 (3.267 sec/step)
step 15120 loss = 0.356, train_acc = 1.000 (3.227 sec/step)
step 15130 loss = 1.392, train_acc = 0.500 (3.338 sec/step)
step 15140 loss = 2.412, train_acc = 0.400 (3.294 sec/step)
step 15150 loss = 0.316, train_acc = 0.800 (3.261 sec/step)
step 15160 loss = 0.534, train_acc = 0.800 (3.303 sec/step)
step 15170 loss = 0.425, train_acc = 0.900 (3.279 sec/step)
step 15180 loss = 0.368, train_acc = 0.900 (3.254 sec/step)
step 15190 loss = 0.901, train_acc = 0.700 (3.307 sec/step)
VALIDATION acc = 0.524 (3.637 sec)
New Best Accuracy 0.524 > Old Best 0.524. Saving...
The checkpoint has been created.
step 15200 loss = 0.633, train_acc = 0.700 (3.251 sec/step)
step 15210 loss = 1.485, train_acc = 0.900 (3.327 sec/step)
step 15220 loss = 1.407, train_acc = 0.500 (3.270 sec/step)
step 15230 loss = 0.224, train_acc = 1.000 (3.286 sec/step)
step 15240 loss = 0.055, train_acc = 1.000 (3.254 sec/step)
step 15250 loss = 0.582, train_acc = 0.800 (3.292 sec/step)
step 15260 loss = 0.327, train_acc = 0.800 (3.244 sec/step)
step 15270 loss = 0.191, train_acc = 1.000 (3.305 sec/step)
step 15280 loss = 0.716, train_acc = 0.700 (3.272 sec/step)
step 15290 loss = 0.443, train_acc = 1.000 (3.277 sec/step)
step 15300 loss = 1.310, train_acc = 0.700 (3.279 sec/step)
step 15310 loss = 0.332, train_acc = 0.800 (3.249 sec/step)
step 15320 loss = 0.565, train_acc = 0.800 (3.292 sec/step)
step 15330 loss = 0.282, train_acc = 0.900 (3.251 sec/step)
step 15340 loss = 0.291, train_acc = 0.900 (3.274 sec/step)
step 15350 loss = 0.216, train_acc = 1.000 (3.330 sec/step)
step 15360 loss = 0.584, train_acc = 0.900 (3.318 sec/step)
step 15370 loss = 0.386, train_acc = 0.900 (3.296 sec/step)
step 15380 loss = 0.155, train_acc = 0.900 (3.243 sec/step)
step 15390 loss = 1.329, train_acc = 0.600 (3.250 sec/step)
step 15400 loss = 0.903, train_acc = 0.700 (3.290 sec/step)
step 15410 loss = 0.327, train_acc = 0.900 (3.237 sec/step)
step 15420 loss = 2.093, train_acc = 0.500 (3.253 sec/step)
step 15430 loss = 0.353, train_acc = 0.900 (3.254 sec/step)
step 15440 loss = 0.535, train_acc = 0.800 (3.296 sec/step)
step 15450 loss = 0.648, train_acc = 0.800 (3.281 sec/step)
step 15460 loss = 1.886, train_acc = 0.600 (3.233 sec/step)
step 15470 loss = 1.256, train_acc = 0.700 (3.301 sec/step)
step 15480 loss = 0.159, train_acc = 1.000 (3.261 sec/step)
step 15490 loss = 0.027, train_acc = 1.000 (3.231 sec/step)
step 15500 loss = 0.646, train_acc = 0.900 (3.223 sec/step)
step 15510 loss = 1.491, train_acc = 0.500 (3.279 sec/step)
step 15520 loss = 0.692, train_acc = 0.800 (3.242 sec/step)
step 15530 loss = 1.520, train_acc = 0.600 (3.293 sec/step)
step 15540 loss = 0.138, train_acc = 1.000 (3.279 sec/step)
step 15550 loss = 0.136, train_acc = 1.000 (3.258 sec/step)
step 15560 loss = 0.296, train_acc = 0.900 (3.256 sec/step)
step 15570 loss = 0.415, train_acc = 0.800 (3.259 sec/step)
step 15580 loss = 0.026, train_acc = 1.000 (3.258 sec/step)
step 15590 loss = 0.219, train_acc = 0.900 (3.289 sec/step)
step 15600 loss = 0.933, train_acc = 0.600 (3.243 sec/step)
step 15610 loss = 0.515, train_acc = 0.900 (3.263 sec/step)
step 15620 loss = 0.455, train_acc = 0.900 (3.302 sec/step)
step 15630 loss = 0.031, train_acc = 1.000 (3.257 sec/step)
step 15640 loss = 0.185, train_acc = 0.900 (3.283 sec/step)
step 15650 loss = 0.308, train_acc = 0.900 (3.280 sec/step)
step 15660 loss = 0.185, train_acc = 1.000 (3.290 sec/step)
step 15670 loss = 0.029, train_acc = 1.000 (3.264 sec/step)
step 15680 loss = 0.658, train_acc = 0.900 (3.288 sec/step)
step 15690 loss = 0.720, train_acc = 0.800 (3.247 sec/step)
step 15700 loss = 0.622, train_acc = 0.800 (3.276 sec/step)
step 15710 loss = 0.154, train_acc = 1.000 (3.262 sec/step)
step 15720 loss = 0.651, train_acc = 0.800 (3.240 sec/step)
step 15730 loss = 0.555, train_acc = 0.700 (3.271 sec/step)
step 15740 loss = 1.628, train_acc = 0.600 (3.255 sec/step)
step 15750 loss = 0.017, train_acc = 1.000 (3.413 sec/step)
step 15760 loss = 0.912, train_acc = 0.700 (3.273 sec/step)
step 15770 loss = 0.235, train_acc = 0.900 (3.265 sec/step)
step 15780 loss = 0.396, train_acc = 0.800 (3.293 sec/step)
step 15790 loss = 0.434, train_acc = 0.900 (3.280 sec/step)
step 15800 loss = 1.056, train_acc = 0.600 (3.247 sec/step)
step 15810 loss = 0.735, train_acc = 0.700 (3.273 sec/step)
step 15820 loss = 1.111, train_acc = 0.600 (3.233 sec/step)
step 15830 loss = 1.526, train_acc = 0.700 (3.259 sec/step)
step 15840 loss = 0.311, train_acc = 0.900 (3.298 sec/step)
step 15850 loss = 1.755, train_acc = 0.300 (3.258 sec/step)
step 15860 loss = 0.645, train_acc = 0.700 (3.259 sec/step)
step 15870 loss = 0.225, train_acc = 0.900 (3.281 sec/step)
step 15880 loss = 0.050, train_acc = 1.000 (3.283 sec/step)
step 15890 loss = 0.932, train_acc = 0.700 (3.291 sec/step)
step 15900 loss = 2.275, train_acc = 0.400 (3.304 sec/step)
step 15910 loss = 0.809, train_acc = 0.900 (3.294 sec/step)
step 15920 loss = 0.313, train_acc = 0.900 (3.267 sec/step)
step 15930 loss = 1.544, train_acc = 0.600 (3.242 sec/step)
step 15940 loss = 0.056, train_acc = 1.000 (3.317 sec/step)
step 15950 loss = 0.213, train_acc = 1.000 (3.318 sec/step)
step 15960 loss = 0.274, train_acc = 0.900 (3.285 sec/step)
step 15970 loss = 0.106, train_acc = 1.000 (3.278 sec/step)
step 15980 loss = 1.050, train_acc = 0.600 (3.284 sec/step)
step 15990 loss = 0.315, train_acc = 1.000 (3.276 sec/step)
step 16000 loss = 1.098, train_acc = 0.700 (3.287 sec/step)
step 16010 loss = 0.461, train_acc = 0.900 (3.284 sec/step)
step 16020 loss = 0.528, train_acc = 0.900 (3.313 sec/step)
step 16030 loss = 0.056, train_acc = 1.000 (3.252 sec/step)
step 16040 loss = 0.501, train_acc = 0.800 (3.290 sec/step)
step 16050 loss = 0.454, train_acc = 0.800 (3.278 sec/step)
step 16060 loss = 0.897, train_acc = 0.800 (3.313 sec/step)
step 16070 loss = 0.618, train_acc = 0.800 (3.313 sec/step)
step 16080 loss = 0.374, train_acc = 0.900 (3.228 sec/step)
step 16090 loss = 0.116, train_acc = 1.000 (3.264 sec/step)
step 16100 loss = 0.574, train_acc = 0.800 (3.404 sec/step)
step 16110 loss = 0.764, train_acc = 0.800 (3.290 sec/step)
step 16120 loss = 0.229, train_acc = 0.900 (3.255 sec/step)
step 16130 loss = 0.373, train_acc = 0.800 (3.256 sec/step)
step 16140 loss = 0.251, train_acc = 0.900 (3.306 sec/step)
step 16150 loss = 1.208, train_acc = 0.800 (3.270 sec/step)
step 16160 loss = 0.626, train_acc = 0.800 (3.337 sec/step)
step 16170 loss = 0.061, train_acc = 1.000 (3.256 sec/step)
step 16180 loss = 0.912, train_acc = 0.800 (3.250 sec/step)
step 16190 loss = 0.987, train_acc = 0.700 (3.250 sec/step)
step 16200 loss = 0.373, train_acc = 0.800 (3.268 sec/step)
step 16210 loss = 0.849, train_acc = 0.700 (3.265 sec/step)
step 16220 loss = 0.389, train_acc = 0.900 (3.334 sec/step)
step 16230 loss = 0.405, train_acc = 0.900 (3.270 sec/step)
step 16240 loss = 0.110, train_acc = 1.000 (3.264 sec/step)
step 16250 loss = 0.188, train_acc = 1.000 (3.251 sec/step)
step 16260 loss = 0.256, train_acc = 0.900 (3.275 sec/step)
step 16270 loss = 0.673, train_acc = 0.600 (3.237 sec/step)
step 16280 loss = 0.859, train_acc = 0.700 (3.297 sec/step)
step 16290 loss = 0.232, train_acc = 0.900 (3.287 sec/step)
step 16300 loss = 1.237, train_acc = 0.700 (3.285 sec/step)
step 16310 loss = 0.506, train_acc = 0.800 (3.282 sec/step)
step 16320 loss = 0.460, train_acc = 0.900 (3.246 sec/step)
step 16330 loss = 1.996, train_acc = 0.600 (3.268 sec/step)
step 16340 loss = 0.336, train_acc = 0.900 (3.349 sec/step)
step 16350 loss = 0.109, train_acc = 1.000 (3.319 sec/step)
step 16360 loss = 0.061, train_acc = 1.000 (3.258 sec/step)
step 16370 loss = 0.703, train_acc = 0.700 (3.226 sec/step)
step 16380 loss = 0.299, train_acc = 0.900 (3.289 sec/step)
step 16390 loss = 0.961, train_acc = 0.800 (3.272 sec/step)
step 16400 loss = 0.769, train_acc = 0.900 (3.300 sec/step)
step 16410 loss = 0.396, train_acc = 0.800 (3.291 sec/step)
step 16420 loss = 0.350, train_acc = 0.800 (3.315 sec/step)
step 16430 loss = 0.104, train_acc = 1.000 (3.293 sec/step)
step 16440 loss = 1.303, train_acc = 0.700 (3.266 sec/step)
step 16450 loss = 0.486, train_acc = 0.800 (3.282 sec/step)
step 16460 loss = 0.043, train_acc = 1.000 (3.391 sec/step)
step 16470 loss = 0.483, train_acc = 0.800 (3.292 sec/step)
step 16480 loss = 0.553, train_acc = 0.800 (3.246 sec/step)
step 16490 loss = 0.128, train_acc = 1.000 (3.244 sec/step)
step 16500 loss = 0.210, train_acc = 0.900 (3.244 sec/step)
step 16510 loss = 0.499, train_acc = 0.800 (3.250 sec/step)
step 16520 loss = 0.321, train_acc = 0.900 (3.260 sec/step)
step 16530 loss = 0.912, train_acc = 0.700 (3.276 sec/step)
step 16540 loss = 1.156, train_acc = 0.600 (3.287 sec/step)
step 16550 loss = 1.247, train_acc = 0.700 (3.231 sec/step)
step 16560 loss = 1.309, train_acc = 0.500 (3.262 sec/step)
step 16570 loss = 0.728, train_acc = 0.800 (3.259 sec/step)
step 16580 loss = 0.669, train_acc = 0.800 (3.334 sec/step)
step 16590 loss = 0.153, train_acc = 1.000 (3.228 sec/step)
step 16600 loss = 0.530, train_acc = 0.900 (3.298 sec/step)
step 16610 loss = 0.196, train_acc = 1.000 (3.279 sec/step)
step 16620 loss = 0.461, train_acc = 0.800 (3.258 sec/step)
step 16630 loss = 0.091, train_acc = 1.000 (3.280 sec/step)
step 16640 loss = 0.825, train_acc = 0.700 (3.301 sec/step)
step 16650 loss = 1.151, train_acc = 0.600 (3.245 sec/step)
step 16660 loss = 0.175, train_acc = 0.900 (3.384 sec/step)
step 16670 loss = 0.136, train_acc = 1.000 (3.315 sec/step)
step 16680 loss = 0.766, train_acc = 0.600 (3.308 sec/step)
step 16690 loss = 0.413, train_acc = 0.900 (3.297 sec/step)
step 16700 loss = 0.841, train_acc = 0.700 (3.333 sec/step)
step 16710 loss = 0.843, train_acc = 0.700 (3.250 sec/step)
step 16720 loss = 0.036, train_acc = 1.000 (3.315 sec/step)
step 16730 loss = 0.720, train_acc = 0.800 (3.272 sec/step)
step 16740 loss = 0.194, train_acc = 0.900 (3.248 sec/step)
step 16750 loss = 0.169, train_acc = 1.000 (3.297 sec/step)
step 16760 loss = 0.246, train_acc = 0.900 (3.307 sec/step)
step 16770 loss = 0.257, train_acc = 0.900 (3.280 sec/step)
step 16780 loss = 0.056, train_acc = 1.000 (3.287 sec/step)
step 16790 loss = 0.140, train_acc = 1.000 (3.262 sec/step)
step 16800 loss = 0.886, train_acc = 0.800 (3.288 sec/step)
step 16810 loss = 0.506, train_acc = 0.900 (3.332 sec/step)
step 16820 loss = 0.149, train_acc = 0.900 (3.271 sec/step)
step 16830 loss = 1.281, train_acc = 0.600 (3.348 sec/step)
step 16840 loss = 0.721, train_acc = 0.800 (3.306 sec/step)
step 16850 loss = 0.880, train_acc = 0.900 (3.237 sec/step)
step 16860 loss = 0.390, train_acc = 0.900 (3.287 sec/step)
step 16870 loss = 1.786, train_acc = 0.600 (3.260 sec/step)
step 16880 loss = 0.104, train_acc = 1.000 (3.284 sec/step)
step 16890 loss = 1.794, train_acc = 0.500 (3.232 sec/step)
step 16900 loss = 0.143, train_acc = 0.900 (3.359 sec/step)
step 16910 loss = 0.883, train_acc = 0.700 (3.261 sec/step)
step 16920 loss = 0.475, train_acc = 0.800 (3.257 sec/step)
step 16930 loss = 0.554, train_acc = 0.800 (3.260 sec/step)
step 16940 loss = 1.419, train_acc = 0.800 (3.265 sec/step)
step 16950 loss = 0.181, train_acc = 1.000 (3.283 sec/step)
step 16960 loss = 0.510, train_acc = 0.900 (3.269 sec/step)
step 16970 loss = 0.493, train_acc = 0.900 (3.308 sec/step)
step 16980 loss = 0.244, train_acc = 0.900 (3.280 sec/step)
step 16990 loss = 0.641, train_acc = 0.800 (3.249 sec/step)
step 17000 loss = 0.168, train_acc = 0.900 (3.253 sec/step)
step 17010 loss = 0.867, train_acc = 0.500 (3.321 sec/step)
step 17020 loss = 0.386, train_acc = 0.900 (3.282 sec/step)
step 17030 loss = 0.487, train_acc = 0.800 (3.256 sec/step)
step 17040 loss = 1.495, train_acc = 0.600 (3.254 sec/step)
step 17050 loss = 0.123, train_acc = 0.900 (3.273 sec/step)
step 17060 loss = 0.039, train_acc = 1.000 (3.267 sec/step)
step 17070 loss = 0.227, train_acc = 0.900 (3.285 sec/step)
step 17080 loss = 1.052, train_acc = 0.700 (3.329 sec/step)
step 17090 loss = 0.502, train_acc = 0.900 (3.280 sec/step)
VALIDATION acc = 0.512 (3.695 sec)
step 17100 loss = 0.891, train_acc = 0.700 (3.251 sec/step)
step 17110 loss = 0.578, train_acc = 0.900 (3.260 sec/step)
step 17120 loss = 0.677, train_acc = 0.800 (3.315 sec/step)
step 17130 loss = 0.146, train_acc = 1.000 (3.251 sec/step)
step 17140 loss = 0.059, train_acc = 1.000 (3.372 sec/step)
step 17150 loss = 0.532, train_acc = 0.900 (3.335 sec/step)
step 17160 loss = 0.361, train_acc = 0.800 (3.295 sec/step)
step 17170 loss = 0.083, train_acc = 1.000 (3.279 sec/step)
step 17180 loss = 0.107, train_acc = 1.000 (3.283 sec/step)
step 17190 loss = 0.021, train_acc = 1.000 (3.266 sec/step)
step 17200 loss = 0.225, train_acc = 0.900 (3.283 sec/step)
step 17210 loss = 0.500, train_acc = 0.800 (3.286 sec/step)
step 17220 loss = 0.662, train_acc = 0.600 (3.335 sec/step)
step 17230 loss = 0.580, train_acc = 0.800 (3.269 sec/step)
step 17240 loss = 0.065, train_acc = 1.000 (3.259 sec/step)
step 17250 loss = 1.896, train_acc = 0.500 (3.321 sec/step)
step 17260 loss = 0.348, train_acc = 0.900 (3.267 sec/step)
step 17270 loss = 0.168, train_acc = 1.000 (3.259 sec/step)
step 17280 loss = 0.286, train_acc = 0.900 (3.288 sec/step)
step 17290 loss = 0.293, train_acc = 0.900 (3.309 sec/step)
step 17300 loss = 0.745, train_acc = 0.800 (3.245 sec/step)
step 17310 loss = 0.488, train_acc = 0.900 (3.303 sec/step)
step 17320 loss = 0.153, train_acc = 1.000 (3.422 sec/step)
step 17330 loss = 0.086, train_acc = 1.000 (3.398 sec/step)
step 17340 loss = 0.429, train_acc = 0.900 (3.266 sec/step)
step 17350 loss = 0.304, train_acc = 0.900 (3.382 sec/step)
step 17360 loss = 0.183, train_acc = 0.900 (3.279 sec/step)
step 17370 loss = 0.733, train_acc = 0.800 (3.286 sec/step)
step 17380 loss = 0.909, train_acc = 0.500 (3.245 sec/step)
step 17390 loss = 1.185, train_acc = 0.500 (3.334 sec/step)
step 17400 loss = 0.807, train_acc = 0.800 (3.313 sec/step)
step 17410 loss = 2.164, train_acc = 0.700 (3.253 sec/step)
step 17420 loss = 1.831, train_acc = 0.700 (3.324 sec/step)
step 17430 loss = 0.258, train_acc = 1.000 (3.283 sec/step)
step 17440 loss = 1.824, train_acc = 0.500 (3.273 sec/step)
step 17450 loss = 0.756, train_acc = 0.600 (3.279 sec/step)
step 17460 loss = 0.473, train_acc = 0.800 (3.262 sec/step)
step 17470 loss = 0.138, train_acc = 1.000 (3.251 sec/step)
step 17480 loss = 1.072, train_acc = 0.800 (3.317 sec/step)
step 17490 loss = 0.470, train_acc = 0.800 (3.280 sec/step)
step 17500 loss = 1.534, train_acc = 0.800 (3.290 sec/step)
step 17510 loss = 0.356, train_acc = 0.900 (3.317 sec/step)
step 17520 loss = 0.224, train_acc = 0.800 (3.299 sec/step)
step 17530 loss = 0.706, train_acc = 0.600 (3.235 sec/step)
step 17540 loss = 1.085, train_acc = 0.600 (3.321 sec/step)
step 17550 loss = 0.126, train_acc = 1.000 (3.267 sec/step)
step 17560 loss = 0.120, train_acc = 1.000 (3.276 sec/step)
step 17570 loss = 0.134, train_acc = 1.000 (3.295 sec/step)
step 17580 loss = 0.082, train_acc = 1.000 (3.270 sec/step)
step 17590 loss = 0.691, train_acc = 0.800 (3.318 sec/step)
step 17600 loss = 0.167, train_acc = 0.900 (3.285 sec/step)
step 17610 loss = 0.752, train_acc = 0.900 (3.242 sec/step)
step 17620 loss = 0.179, train_acc = 0.900 (3.252 sec/step)
step 17630 loss = 1.184, train_acc = 0.600 (3.264 sec/step)
step 17640 loss = 0.586, train_acc = 0.900 (3.307 sec/step)
step 17650 loss = 0.233, train_acc = 0.800 (3.266 sec/step)
step 17660 loss = 0.068, train_acc = 1.000 (3.280 sec/step)
step 17670 loss = 0.425, train_acc = 0.800 (3.231 sec/step)
step 17680 loss = 0.138, train_acc = 1.000 (3.258 sec/step)
step 17690 loss = 0.794, train_acc = 0.700 (3.308 sec/step)
step 17700 loss = 0.927, train_acc = 0.800 (3.316 sec/step)
step 17710 loss = 0.224, train_acc = 0.900 (3.322 sec/step)
step 17720 loss = 0.246, train_acc = 1.000 (3.274 sec/step)
step 17730 loss = 0.259, train_acc = 0.900 (3.289 sec/step)
step 17740 loss = 0.284, train_acc = 0.900 (3.328 sec/step)
step 17750 loss = 0.105, train_acc = 1.000 (3.312 sec/step)
step 17760 loss = 0.084, train_acc = 1.000 (3.268 sec/step)
step 17770 loss = 0.009, train_acc = 1.000 (3.270 sec/step)
step 17780 loss = 0.314, train_acc = 0.900 (3.303 sec/step)
step 17790 loss = 0.238, train_acc = 0.900 (3.323 sec/step)
step 17800 loss = 0.477, train_acc = 0.900 (3.333 sec/step)
step 17810 loss = 0.281, train_acc = 0.900 (3.274 sec/step)
step 17820 loss = 0.481, train_acc = 0.800 (3.336 sec/step)
step 17830 loss = 0.827, train_acc = 0.600 (3.281 sec/step)
step 17840 loss = 0.034, train_acc = 1.000 (3.266 sec/step)
step 17850 loss = 0.091, train_acc = 1.000 (3.244 sec/step)
step 17860 loss = 0.723, train_acc = 0.700 (3.296 sec/step)
step 17870 loss = 0.661, train_acc = 0.900 (3.303 sec/step)
step 17880 loss = 0.263, train_acc = 0.900 (3.346 sec/step)
step 17890 loss = 0.075, train_acc = 1.000 (3.303 sec/step)
step 17900 loss = 0.138, train_acc = 0.900 (3.286 sec/step)
step 17910 loss = 0.681, train_acc = 0.600 (3.328 sec/step)
step 17920 loss = 0.171, train_acc = 1.000 (3.294 sec/step)
step 17930 loss = 0.067, train_acc = 1.000 (3.330 sec/step)
step 17940 loss = 0.376, train_acc = 0.900 (3.240 sec/step)
step 17950 loss = 0.240, train_acc = 0.900 (3.280 sec/step)
step 17960 loss = 0.551, train_acc = 0.700 (3.307 sec/step)
step 17970 loss = 0.217, train_acc = 0.900 (3.269 sec/step)
step 17980 loss = 0.634, train_acc = 0.800 (3.307 sec/step)
step 17990 loss = 0.853, train_acc = 0.700 (3.260 sec/step)
step 18000 loss = 0.552, train_acc = 0.900 (3.322 sec/step)
step 18010 loss = 2.188, train_acc = 0.500 (3.418 sec/step)
step 18020 loss = 0.069, train_acc = 1.000 (3.274 sec/step)
step 18030 loss = 0.598, train_acc = 0.800 (3.267 sec/step)
step 18040 loss = 0.714, train_acc = 0.800 (3.286 sec/step)
step 18050 loss = 1.253, train_acc = 0.800 (3.232 sec/step)
step 18060 loss = 0.599, train_acc = 0.900 (3.228 sec/step)
step 18070 loss = 0.091, train_acc = 1.000 (3.268 sec/step)
step 18080 loss = 0.089, train_acc = 1.000 (3.232 sec/step)
step 18090 loss = 0.499, train_acc = 0.900 (3.302 sec/step)
step 18100 loss = 0.326, train_acc = 0.800 (3.323 sec/step)
step 18110 loss = 0.254, train_acc = 0.900 (3.297 sec/step)
step 18120 loss = 0.026, train_acc = 1.000 (3.289 sec/step)
step 18130 loss = 0.336, train_acc = 0.900 (3.276 sec/step)
step 18140 loss = 0.374, train_acc = 0.900 (3.393 sec/step)
step 18150 loss = 0.492, train_acc = 0.800 (3.264 sec/step)
step 18160 loss = 0.571, train_acc = 0.900 (3.234 sec/step)
step 18170 loss = 0.298, train_acc = 0.900 (3.239 sec/step)
step 18180 loss = 0.157, train_acc = 1.000 (3.254 sec/step)
step 18190 loss = 0.226, train_acc = 0.900 (3.329 sec/step)
step 18200 loss = 0.366, train_acc = 0.900 (3.259 sec/step)
step 18210 loss = 0.060, train_acc = 1.000 (3.296 sec/step)
step 18220 loss = 0.014, train_acc = 1.000 (3.294 sec/step)
step 18230 loss = 0.496, train_acc = 0.900 (3.305 sec/step)
step 18240 loss = 2.164, train_acc = 0.400 (3.290 sec/step)
step 18250 loss = 0.194, train_acc = 0.900 (3.273 sec/step)
step 18260 loss = 0.185, train_acc = 0.900 (3.279 sec/step)
step 18270 loss = 0.629, train_acc = 0.800 (3.294 sec/step)
step 18280 loss = 0.758, train_acc = 0.800 (3.325 sec/step)
step 18290 loss = 0.425, train_acc = 0.800 (3.317 sec/step)
step 18300 loss = 0.664, train_acc = 0.800 (3.301 sec/step)
step 18310 loss = 0.491, train_acc = 0.800 (3.319 sec/step)
step 18320 loss = 0.152, train_acc = 1.000 (3.224 sec/step)
step 18330 loss = 0.437, train_acc = 0.900 (3.261 sec/step)
step 18340 loss = 0.134, train_acc = 1.000 (3.284 sec/step)
step 18350 loss = 0.068, train_acc = 1.000 (3.322 sec/step)
step 18360 loss = 0.531, train_acc = 0.800 (3.289 sec/step)
step 18370 loss = 0.216, train_acc = 0.900 (3.378 sec/step)
step 18380 loss = 0.318, train_acc = 0.900 (3.420 sec/step)
step 18390 loss = 0.145, train_acc = 0.900 (3.259 sec/step)
step 18400 loss = 0.382, train_acc = 0.900 (3.312 sec/step)
step 18410 loss = 0.134, train_acc = 1.000 (3.269 sec/step)
step 18420 loss = 0.334, train_acc = 0.900 (3.242 sec/step)
step 18430 loss = 0.308, train_acc = 0.800 (3.284 sec/step)
step 18440 loss = 0.008, train_acc = 1.000 (3.296 sec/step)
step 18450 loss = 0.426, train_acc = 0.900 (3.280 sec/step)
step 18460 loss = 0.306, train_acc = 0.900 (3.289 sec/step)
step 18470 loss = 0.159, train_acc = 0.900 (3.328 sec/step)
step 18480 loss = 0.852, train_acc = 0.700 (3.284 sec/step)
step 18490 loss = 0.538, train_acc = 0.900 (3.308 sec/step)
step 18500 loss = 0.357, train_acc = 0.900 (3.266 sec/step)
step 18510 loss = 2.099, train_acc = 0.700 (3.271 sec/step)
step 18520 loss = 0.095, train_acc = 1.000 (3.257 sec/step)
step 18530 loss = 0.210, train_acc = 0.900 (3.324 sec/step)
step 18540 loss = 0.210, train_acc = 1.000 (3.335 sec/step)
step 18550 loss = 0.247, train_acc = 0.900 (3.281 sec/step)
step 18560 loss = 0.062, train_acc = 1.000 (3.266 sec/step)
step 18570 loss = 0.078, train_acc = 1.000 (3.356 sec/step)
step 18580 loss = 0.403, train_acc = 0.900 (3.368 sec/step)
step 18590 loss = 0.606, train_acc = 0.900 (3.391 sec/step)
step 18600 loss = 0.113, train_acc = 1.000 (3.230 sec/step)
step 18610 loss = 0.532, train_acc = 0.900 (3.313 sec/step)
step 18620 loss = 0.077, train_acc = 1.000 (3.246 sec/step)
step 18630 loss = 0.377, train_acc = 0.900 (3.262 sec/step)
step 18640 loss = 1.340, train_acc = 0.700 (3.290 sec/step)
step 18650 loss = 0.106, train_acc = 1.000 (3.331 sec/step)
step 18660 loss = 0.399, train_acc = 0.800 (3.255 sec/step)
step 18670 loss = 0.537, train_acc = 0.800 (3.278 sec/step)
step 18680 loss = 0.402, train_acc = 0.900 (3.261 sec/step)
step 18690 loss = 0.046, train_acc = 1.000 (3.267 sec/step)
step 18700 loss = 0.535, train_acc = 0.900 (3.303 sec/step)
step 18710 loss = 0.186, train_acc = 0.900 (3.277 sec/step)
step 18720 loss = 0.262, train_acc = 0.800 (3.268 sec/step)
step 18730 loss = 0.250, train_acc = 0.900 (3.290 sec/step)
step 18740 loss = 0.996, train_acc = 0.600 (3.263 sec/step)
step 18750 loss = 0.193, train_acc = 0.900 (3.295 sec/step)
step 18760 loss = 0.440, train_acc = 0.800 (3.258 sec/step)
step 18770 loss = 0.460, train_acc = 0.900 (3.281 sec/step)
step 18780 loss = 0.084, train_acc = 1.000 (3.417 sec/step)
step 18790 loss = 0.040, train_acc = 1.000 (3.276 sec/step)
step 18800 loss = 0.053, train_acc = 1.000 (3.376 sec/step)
step 18810 loss = 0.422, train_acc = 0.900 (3.265 sec/step)
step 18820 loss = 0.376, train_acc = 0.800 (3.268 sec/step)
step 18830 loss = 0.770, train_acc = 0.800 (3.258 sec/step)
step 18840 loss = 0.449, train_acc = 0.800 (3.298 sec/step)
step 18850 loss = 0.285, train_acc = 0.900 (3.242 sec/step)
step 18860 loss = 0.380, train_acc = 0.900 (3.259 sec/step)
step 18870 loss = 0.068, train_acc = 1.000 (3.269 sec/step)
step 18880 loss = 0.115, train_acc = 1.000 (3.286 sec/step)
step 18890 loss = 0.130, train_acc = 1.000 (3.292 sec/step)
step 18900 loss = 0.210, train_acc = 0.900 (3.261 sec/step)
step 18910 loss = 0.074, train_acc = 1.000 (3.293 sec/step)
step 18920 loss = 0.671, train_acc = 0.800 (3.254 sec/step)
step 18930 loss = 0.321, train_acc = 0.900 (3.295 sec/step)
step 18940 loss = 1.336, train_acc = 0.700 (3.302 sec/step)
step 18950 loss = 0.052, train_acc = 1.000 (3.338 sec/step)
step 18960 loss = 0.015, train_acc = 1.000 (3.332 sec/step)
step 18970 loss = 0.121, train_acc = 0.900 (3.242 sec/step)
step 18980 loss = 0.257, train_acc = 1.000 (3.279 sec/step)
step 18990 loss = 2.174, train_acc = 0.700 (3.248 sec/step)
VALIDATION acc = 0.518 (3.659 sec)
step 19000 loss = 0.420, train_acc = 0.900 (3.319 sec/step)
step 19010 loss = 0.276, train_acc = 0.900 (3.249 sec/step)
step 19020 loss = 0.774, train_acc = 0.700 (3.242 sec/step)
step 19030 loss = 0.020, train_acc = 1.000 (3.311 sec/step)
step 19040 loss = 0.039, train_acc = 1.000 (3.226 sec/step)
step 19050 loss = 0.355, train_acc = 0.900 (3.258 sec/step)
step 19060 loss = 0.149, train_acc = 0.900 (3.274 sec/step)
step 19070 loss = 0.356, train_acc = 0.900 (3.342 sec/step)
step 19080 loss = 0.025, train_acc = 1.000 (3.296 sec/step)
step 19090 loss = 0.578, train_acc = 0.800 (3.290 sec/step)
step 19100 loss = 1.641, train_acc = 0.800 (3.233 sec/step)
step 19110 loss = 0.041, train_acc = 1.000 (3.239 sec/step)
step 19120 loss = 1.040, train_acc = 0.600 (3.296 sec/step)
step 19130 loss = 0.750, train_acc = 0.700 (3.312 sec/step)
step 19140 loss = 0.634, train_acc = 0.800 (3.273 sec/step)
step 19150 loss = 0.111, train_acc = 1.000 (3.241 sec/step)
step 19160 loss = 1.772, train_acc = 0.800 (3.297 sec/step)
step 19170 loss = 0.178, train_acc = 0.900 (3.324 sec/step)
step 19180 loss = 0.016, train_acc = 1.000 (3.244 sec/step)
step 19190 loss = 0.412, train_acc = 0.800 (3.291 sec/step)
step 19200 loss = 0.716, train_acc = 0.800 (3.288 sec/step)
step 19210 loss = 0.429, train_acc = 0.900 (3.280 sec/step)
step 19220 loss = 0.899, train_acc = 0.700 (3.235 sec/step)
step 19230 loss = 0.409, train_acc = 0.900 (3.245 sec/step)
step 19240 loss = 0.397, train_acc = 0.900 (3.266 sec/step)
step 19250 loss = 0.173, train_acc = 1.000 (3.292 sec/step)
step 19260 loss = 0.115, train_acc = 1.000 (3.261 sec/step)
step 19270 loss = 0.869, train_acc = 0.600 (3.244 sec/step)
step 19280 loss = 0.077, train_acc = 1.000 (3.272 sec/step)
step 19290 loss = 0.074, train_acc = 1.000 (3.295 sec/step)
step 19300 loss = 0.814, train_acc = 0.800 (3.270 sec/step)
step 19310 loss = 0.907, train_acc = 0.700 (3.299 sec/step)
step 19320 loss = 0.074, train_acc = 1.000 (3.313 sec/step)
step 19330 loss = 0.179, train_acc = 1.000 (3.299 sec/step)
step 19340 loss = 0.052, train_acc = 1.000 (3.306 sec/step)
step 19350 loss = 0.110, train_acc = 1.000 (3.366 sec/step)
step 19360 loss = 0.198, train_acc = 0.900 (3.297 sec/step)
step 19370 loss = 0.187, train_acc = 1.000 (3.234 sec/step)
step 19380 loss = 0.490, train_acc = 0.800 (3.278 sec/step)
step 19390 loss = 0.115, train_acc = 0.900 (3.294 sec/step)
step 19400 loss = 1.096, train_acc = 0.600 (3.304 sec/step)
step 19410 loss = 0.174, train_acc = 0.900 (3.287 sec/step)
step 19420 loss = 0.126, train_acc = 1.000 (3.289 sec/step)
step 19430 loss = 0.752, train_acc = 0.800 (3.265 sec/step)
step 19440 loss = 0.710, train_acc = 0.900 (3.280 sec/step)
step 19450 loss = 0.815, train_acc = 0.800 (3.312 sec/step)
step 19460 loss = 0.185, train_acc = 0.900 (3.302 sec/step)
step 19470 loss = 0.171, train_acc = 0.900 (3.262 sec/step)
step 19480 loss = 0.205, train_acc = 1.000 (3.332 sec/step)
step 19490 loss = 0.140, train_acc = 1.000 (3.318 sec/step)
step 19500 loss = 0.082, train_acc = 1.000 (3.264 sec/step)
step 19510 loss = 0.766, train_acc = 0.900 (3.252 sec/step)
step 19520 loss = 0.585, train_acc = 0.900 (3.325 sec/step)
step 19530 loss = 0.191, train_acc = 0.900 (3.287 sec/step)
step 19540 loss = 0.234, train_acc = 0.800 (3.312 sec/step)
step 19550 loss = 0.101, train_acc = 1.000 (3.313 sec/step)
step 19560 loss = 0.887, train_acc = 0.800 (3.261 sec/step)
step 19570 loss = 0.092, train_acc = 1.000 (3.351 sec/step)
step 19580 loss = 0.719, train_acc = 0.600 (3.282 sec/step)
step 19590 loss = 1.303, train_acc = 0.700 (3.309 sec/step)
step 19600 loss = 2.097, train_acc = 0.500 (3.264 sec/step)
step 19610 loss = 0.083, train_acc = 1.000 (3.273 sec/step)
step 19620 loss = 0.128, train_acc = 1.000 (3.258 sec/step)
step 19630 loss = 0.545, train_acc = 0.800 (3.254 sec/step)
step 19640 loss = 1.940, train_acc = 0.600 (3.286 sec/step)
step 19650 loss = 0.196, train_acc = 1.000 (3.292 sec/step)
step 19660 loss = 0.281, train_acc = 1.000 (3.340 sec/step)
step 19670 loss = 0.002, train_acc = 1.000 (3.363 sec/step)
step 19680 loss = 0.887, train_acc = 0.800 (3.307 sec/step)
step 19690 loss = 0.013, train_acc = 1.000 (3.295 sec/step)
step 19700 loss = 0.755, train_acc = 0.700 (3.274 sec/step)
step 19710 loss = 0.208, train_acc = 0.900 (3.255 sec/step)
step 19720 loss = 0.152, train_acc = 0.900 (3.280 sec/step)
step 19730 loss = 0.244, train_acc = 1.000 (3.289 sec/step)
step 19740 loss = 0.242, train_acc = 0.900 (3.275 sec/step)
step 19750 loss = 1.128, train_acc = 0.600 (3.322 sec/step)
step 19760 loss = 0.052, train_acc = 1.000 (3.316 sec/step)
step 19770 loss = 0.375, train_acc = 0.800 (3.269 sec/step)
step 19780 loss = 0.380, train_acc = 0.800 (3.323 sec/step)
step 19790 loss = 0.446, train_acc = 0.900 (3.321 sec/step)
step 19800 loss = 0.083, train_acc = 1.000 (3.292 sec/step)
step 19810 loss = 0.706, train_acc = 0.900 (3.288 sec/step)
step 19820 loss = 0.228, train_acc = 0.900 (3.253 sec/step)
step 19830 loss = 0.223, train_acc = 0.900 (3.299 sec/step)
step 19840 loss = 0.009, train_acc = 1.000 (3.299 sec/step)
step 19850 loss = 0.265, train_acc = 0.900 (3.297 sec/step)
step 19860 loss = 0.724, train_acc = 0.800 (3.326 sec/step)
step 19870 loss = 2.135, train_acc = 0.700 (3.295 sec/step)
step 19880 loss = 0.277, train_acc = 0.900 (3.228 sec/step)
step 19890 loss = 0.629, train_acc = 0.800 (3.313 sec/step)
step 19900 loss = 0.887, train_acc = 0.900 (3.317 sec/step)
step 19910 loss = 0.683, train_acc = 0.700 (3.237 sec/step)
step 19920 loss = 0.388, train_acc = 0.800 (3.322 sec/step)
step 19930 loss = 0.138, train_acc = 0.900 (3.286 sec/step)
step 19940 loss = 1.090, train_acc = 0.500 (3.314 sec/step)
step 19950 loss = 0.395, train_acc = 0.800 (3.311 sec/step)
step 19960 loss = 0.342, train_acc = 0.800 (3.286 sec/step)
step 19970 loss = 0.370, train_acc = 0.900 (3.321 sec/step)
step 19980 loss = 0.472, train_acc = 0.900 (3.285 sec/step)
step 19990 loss = 0.637, train_acc = 0.800 (3.391 sec/step)
step 20000 loss = 0.379, train_acc = 0.900 (3.296 sec/step)
step 20010 loss = 0.178, train_acc = 1.000 (3.273 sec/step)
step 20020 loss = 0.798, train_acc = 0.800 (3.296 sec/step)
step 20030 loss = 0.047, train_acc = 1.000 (3.420 sec/step)
step 20040 loss = 1.108, train_acc = 0.700 (3.307 sec/step)
step 20050 loss = 0.274, train_acc = 0.900 (3.236 sec/step)
step 20060 loss = 0.185, train_acc = 0.900 (3.279 sec/step)
step 20070 loss = 0.427, train_acc = 0.800 (3.268 sec/step)
step 20080 loss = 0.634, train_acc = 0.800 (3.305 sec/step)
step 20090 loss = 0.401, train_acc = 0.700 (3.241 sec/step)
step 20100 loss = 0.437, train_acc = 0.800 (3.272 sec/step)
step 20110 loss = 0.360, train_acc = 0.900 (3.241 sec/step)
step 20120 loss = 0.287, train_acc = 0.900 (3.252 sec/step)
step 20130 loss = 0.118, train_acc = 1.000 (3.297 sec/step)
step 20140 loss = 0.606, train_acc = 0.800 (3.268 sec/step)
step 20150 loss = 0.608, train_acc = 0.800 (3.452 sec/step)
step 20160 loss = 0.223, train_acc = 1.000 (3.231 sec/step)
step 20170 loss = 0.168, train_acc = 0.900 (3.286 sec/step)
step 20180 loss = 0.591, train_acc = 0.800 (3.326 sec/step)
step 20190 loss = 0.284, train_acc = 0.800 (3.296 sec/step)
step 20200 loss = 0.982, train_acc = 0.600 (3.427 sec/step)
step 20210 loss = 0.761, train_acc = 0.800 (3.285 sec/step)
step 20220 loss = 0.146, train_acc = 1.000 (3.278 sec/step)
step 20230 loss = 0.619, train_acc = 0.800 (3.267 sec/step)
step 20240 loss = 0.182, train_acc = 1.000 (3.242 sec/step)
step 20250 loss = 0.578, train_acc = 0.800 (3.283 sec/step)
step 20260 loss = 0.124, train_acc = 1.000 (3.259 sec/step)
step 20270 loss = 0.109, train_acc = 1.000 (3.309 sec/step)
step 20280 loss = 0.224, train_acc = 0.900 (3.325 sec/step)
step 20290 loss = 0.128, train_acc = 0.900 (3.249 sec/step)
step 20300 loss = 0.065, train_acc = 1.000 (3.239 sec/step)
step 20310 loss = 0.707, train_acc = 0.800 (3.319 sec/step)
step 20320 loss = 0.092, train_acc = 1.000 (3.347 sec/step)
step 20330 loss = 0.303, train_acc = 0.900 (3.319 sec/step)
step 20340 loss = 0.537, train_acc = 0.700 (3.324 sec/step)
step 20350 loss = 0.259, train_acc = 0.900 (3.240 sec/step)
step 20360 loss = 0.452, train_acc = 0.900 (3.339 sec/step)
step 20370 loss = 0.108, train_acc = 1.000 (3.260 sec/step)
step 20380 loss = 0.056, train_acc = 1.000 (3.331 sec/step)
step 20390 loss = 1.561, train_acc = 0.700 (3.265 sec/step)
step 20400 loss = 0.034, train_acc = 1.000 (3.305 sec/step)
step 20410 loss = 1.056, train_acc = 0.700 (3.312 sec/step)
step 20420 loss = 0.656, train_acc = 0.900 (3.316 sec/step)
step 20430 loss = 0.551, train_acc = 0.900 (3.278 sec/step)
step 20440 loss = 0.688, train_acc = 0.700 (3.251 sec/step)
step 20450 loss = 0.718, train_acc = 0.900 (3.304 sec/step)
step 20460 loss = 0.370, train_acc = 0.700 (3.252 sec/step)
step 20470 loss = 1.112, train_acc = 0.600 (3.302 sec/step)
step 20480 loss = 1.426, train_acc = 0.800 (3.301 sec/step)
step 20490 loss = 0.091, train_acc = 1.000 (3.293 sec/step)
step 20500 loss = 0.244, train_acc = 0.900 (3.262 sec/step)
step 20510 loss = 0.408, train_acc = 0.800 (3.305 sec/step)
step 20520 loss = 1.624, train_acc = 0.700 (3.329 sec/step)
step 20530 loss = 0.223, train_acc = 1.000 (3.261 sec/step)
step 20540 loss = 0.019, train_acc = 1.000 (3.323 sec/step)
step 20550 loss = 0.009, train_acc = 1.000 (3.264 sec/step)
step 20560 loss = 0.242, train_acc = 0.800 (3.269 sec/step)
step 20570 loss = 0.036, train_acc = 1.000 (3.237 sec/step)
step 20580 loss = 0.316, train_acc = 0.900 (3.278 sec/step)
step 20590 loss = 0.037, train_acc = 1.000 (3.255 sec/step)
step 20600 loss = 0.285, train_acc = 0.800 (3.271 sec/step)
step 20610 loss = 1.884, train_acc = 0.600 (3.289 sec/step)
step 20620 loss = 0.272, train_acc = 0.900 (3.256 sec/step)
step 20630 loss = 1.141, train_acc = 0.600 (3.249 sec/step)
step 20640 loss = 1.288, train_acc = 0.600 (3.272 sec/step)
step 20650 loss = 0.061, train_acc = 1.000 (3.256 sec/step)
step 20660 loss = 0.467, train_acc = 0.800 (3.254 sec/step)
step 20670 loss = 0.164, train_acc = 0.900 (3.286 sec/step)
step 20680 loss = 0.124, train_acc = 1.000 (3.320 sec/step)
step 20690 loss = 0.378, train_acc = 0.900 (3.295 sec/step)
step 20700 loss = 0.579, train_acc = 0.700 (3.309 sec/step)
step 20710 loss = 0.031, train_acc = 1.000 (3.306 sec/step)
step 20720 loss = 0.829, train_acc = 0.800 (3.252 sec/step)
step 20730 loss = 0.747, train_acc = 0.700 (3.242 sec/step)
step 20740 loss = 0.134, train_acc = 1.000 (3.283 sec/step)
step 20750 loss = 0.025, train_acc = 1.000 (3.279 sec/step)
step 20760 loss = 0.053, train_acc = 1.000 (3.302 sec/step)
step 20770 loss = 0.070, train_acc = 1.000 (3.276 sec/step)
step 20780 loss = 0.418, train_acc = 0.800 (3.287 sec/step)
step 20790 loss = 0.090, train_acc = 1.000 (3.328 sec/step)
step 20800 loss = 2.417, train_acc = 0.700 (3.352 sec/step)
step 20810 loss = 0.217, train_acc = 1.000 (3.259 sec/step)
step 20820 loss = 0.016, train_acc = 1.000 (3.284 sec/step)
step 20830 loss = 0.528, train_acc = 0.800 (3.308 sec/step)
step 20840 loss = 0.506, train_acc = 0.900 (3.280 sec/step)
step 20850 loss = 0.380, train_acc = 0.800 (3.321 sec/step)
step 20860 loss = 0.322, train_acc = 0.900 (3.258 sec/step)
step 20870 loss = 0.470, train_acc = 0.800 (3.272 sec/step)
step 20880 loss = 0.016, train_acc = 1.000 (3.278 sec/step)
step 20890 loss = 0.474, train_acc = 0.900 (3.240 sec/step)
VALIDATION acc = 0.526 (3.617 sec)
New Best Accuracy 0.526 > Old Best 0.524. Saving...
The checkpoint has been created.
step 20900 loss = 0.128, train_acc = 0.900 (3.441 sec/step)
step 20910 loss = 0.123, train_acc = 1.000 (3.303 sec/step)
step 20920 loss = 0.165, train_acc = 1.000 (3.323 sec/step)
step 20930 loss = 1.508, train_acc = 0.400 (3.304 sec/step)
step 20940 loss = 0.135, train_acc = 1.000 (3.261 sec/step)
step 20950 loss = 0.341, train_acc = 0.900 (3.329 sec/step)
step 20960 loss = 0.005, train_acc = 1.000 (3.299 sec/step)
step 20970 loss = 0.561, train_acc = 0.800 (3.296 sec/step)
step 20980 loss = 0.282, train_acc = 0.900 (3.300 sec/step)
step 20990 loss = 0.106, train_acc = 1.000 (3.329 sec/step)
step 21000 loss = 0.216, train_acc = 0.800 (3.250 sec/step)
step 21010 loss = 0.165, train_acc = 0.900 (3.279 sec/step)
step 21020 loss = 0.012, train_acc = 1.000 (3.280 sec/step)
step 21030 loss = 0.669, train_acc = 0.800 (3.277 sec/step)
step 21040 loss = 0.219, train_acc = 0.900 (3.317 sec/step)
step 21050 loss = 0.089, train_acc = 1.000 (3.300 sec/step)
step 21060 loss = 0.085, train_acc = 1.000 (3.301 sec/step)
step 21070 loss = 0.077, train_acc = 0.900 (3.316 sec/step)
step 21080 loss = 0.060, train_acc = 1.000 (3.276 sec/step)
step 21090 loss = 0.768, train_acc = 0.700 (3.274 sec/step)
step 21100 loss = 0.701, train_acc = 0.700 (3.268 sec/step)
step 21110 loss = 0.242, train_acc = 0.900 (3.258 sec/step)
step 21120 loss = 0.685, train_acc = 0.800 (3.335 sec/step)
step 21130 loss = 0.177, train_acc = 1.000 (3.268 sec/step)
step 21140 loss = 0.050, train_acc = 1.000 (3.247 sec/step)
step 21150 loss = 0.197, train_acc = 0.900 (3.269 sec/step)
step 21160 loss = 0.190, train_acc = 1.000 (3.316 sec/step)
step 21170 loss = 0.244, train_acc = 0.900 (3.264 sec/step)
step 21180 loss = 0.565, train_acc = 0.800 (3.336 sec/step)
step 21190 loss = 0.025, train_acc = 1.000 (3.282 sec/step)
step 21200 loss = 0.399, train_acc = 0.900 (3.245 sec/step)
step 21210 loss = 0.494, train_acc = 0.800 (3.275 sec/step)
step 21220 loss = 0.881, train_acc = 0.800 (3.280 sec/step)
step 21230 loss = 0.342, train_acc = 0.900 (3.319 sec/step)
step 21240 loss = 0.384, train_acc = 0.900 (3.248 sec/step)
step 21250 loss = 0.127, train_acc = 1.000 (3.321 sec/step)
step 21260 loss = 1.222, train_acc = 0.800 (3.279 sec/step)
step 21270 loss = 0.107, train_acc = 1.000 (3.317 sec/step)
step 21280 loss = 0.036, train_acc = 1.000 (3.299 sec/step)
step 21290 loss = 0.282, train_acc = 0.900 (3.301 sec/step)
step 21300 loss = 0.347, train_acc = 0.900 (3.308 sec/step)
step 21310 loss = 1.100, train_acc = 0.700 (3.285 sec/step)
step 21320 loss = 1.345, train_acc = 0.600 (3.269 sec/step)
step 21330 loss = 0.490, train_acc = 0.900 (3.281 sec/step)
step 21340 loss = 0.715, train_acc = 0.700 (3.279 sec/step)
step 21350 loss = 0.096, train_acc = 1.000 (3.260 sec/step)
step 21360 loss = 0.258, train_acc = 0.900 (3.330 sec/step)
step 21370 loss = 0.091, train_acc = 0.900 (3.242 sec/step)
step 21380 loss = 0.168, train_acc = 1.000 (3.244 sec/step)
step 21390 loss = 0.102, train_acc = 1.000 (3.303 sec/step)
step 21400 loss = 0.258, train_acc = 0.900 (3.288 sec/step)
step 21410 loss = 0.154, train_acc = 1.000 (3.277 sec/step)
step 21420 loss = 0.313, train_acc = 0.900 (3.312 sec/step)
step 21430 loss = 0.310, train_acc = 0.900 (3.302 sec/step)
step 21440 loss = 0.112, train_acc = 0.900 (3.313 sec/step)
step 21450 loss = 0.516, train_acc = 0.800 (3.267 sec/step)
step 21460 loss = 0.221, train_acc = 0.900 (3.349 sec/step)
step 21470 loss = 0.040, train_acc = 1.000 (3.267 sec/step)
step 21480 loss = 1.362, train_acc = 0.500 (3.335 sec/step)
step 21490 loss = 0.595, train_acc = 0.800 (3.280 sec/step)
step 21500 loss = 0.496, train_acc = 0.700 (3.269 sec/step)
step 21510 loss = 0.532, train_acc = 0.800 (3.362 sec/step)
step 21520 loss = 0.409, train_acc = 0.800 (3.276 sec/step)
step 21530 loss = 1.445, train_acc = 0.400 (3.294 sec/step)
step 21540 loss = 0.015, train_acc = 1.000 (3.332 sec/step)
step 21550 loss = 0.907, train_acc = 0.700 (3.327 sec/step)
step 21560 loss = 0.185, train_acc = 1.000 (3.282 sec/step)
step 21570 loss = 2.420, train_acc = 0.500 (3.306 sec/step)
step 21580 loss = 0.413, train_acc = 0.900 (3.290 sec/step)
step 21590 loss = 0.004, train_acc = 1.000 (3.279 sec/step)
step 21600 loss = 0.269, train_acc = 0.900 (3.295 sec/step)
step 21610 loss = 0.899, train_acc = 0.700 (3.303 sec/step)
step 21620 loss = 0.324, train_acc = 0.900 (3.295 sec/step)
step 21630 loss = 0.038, train_acc = 1.000 (3.306 sec/step)
step 21640 loss = 0.120, train_acc = 0.900 (3.296 sec/step)
step 21650 loss = 0.254, train_acc = 0.900 (3.329 sec/step)
step 21660 loss = 0.201, train_acc = 0.900 (3.296 sec/step)
step 21670 loss = 0.310, train_acc = 0.800 (3.249 sec/step)
step 21680 loss = 0.218, train_acc = 0.900 (3.283 sec/step)
step 21690 loss = 0.226, train_acc = 1.000 (3.274 sec/step)
step 21700 loss = 0.600, train_acc = 0.700 (3.301 sec/step)
step 21710 loss = 0.260, train_acc = 0.900 (3.436 sec/step)
step 21720 loss = 0.439, train_acc = 0.900 (3.267 sec/step)
step 21730 loss = 0.318, train_acc = 1.000 (3.319 sec/step)
step 21740 loss = 1.017, train_acc = 0.500 (3.245 sec/step)
step 21750 loss = 0.155, train_acc = 0.900 (3.268 sec/step)
step 21760 loss = 0.136, train_acc = 0.900 (3.273 sec/step)
step 21770 loss = 0.003, train_acc = 1.000 (3.298 sec/step)
step 21780 loss = 0.138, train_acc = 1.000 (3.235 sec/step)
step 21790 loss = 0.543, train_acc = 0.900 (3.352 sec/step)
step 21800 loss = 0.018, train_acc = 1.000 (3.250 sec/step)
step 21810 loss = 0.126, train_acc = 1.000 (3.293 sec/step)
step 21820 loss = 0.038, train_acc = 1.000 (3.343 sec/step)
step 21830 loss = 0.368, train_acc = 0.900 (3.293 sec/step)
step 21840 loss = 0.210, train_acc = 0.900 (3.327 sec/step)
step 21850 loss = 0.131, train_acc = 1.000 (3.328 sec/step)
step 21860 loss = 0.686, train_acc = 0.800 (3.267 sec/step)
step 21870 loss = 0.007, train_acc = 1.000 (3.291 sec/step)
step 21880 loss = 0.242, train_acc = 0.900 (3.385 sec/step)
step 21890 loss = 0.101, train_acc = 1.000 (3.381 sec/step)
step 21900 loss = 0.024, train_acc = 1.000 (3.307 sec/step)
step 21910 loss = 1.108, train_acc = 0.700 (3.253 sec/step)
step 21920 loss = 0.384, train_acc = 0.900 (3.285 sec/step)
step 21930 loss = 2.201, train_acc = 0.500 (3.277 sec/step)
step 21940 loss = 0.343, train_acc = 0.900 (3.274 sec/step)
step 21950 loss = 0.058, train_acc = 1.000 (3.296 sec/step)
step 21960 loss = 0.170, train_acc = 0.900 (3.284 sec/step)
step 21970 loss = 0.224, train_acc = 0.900 (3.295 sec/step)
step 21980 loss = 0.109, train_acc = 1.000 (3.311 sec/step)
step 21990 loss = 0.704, train_acc = 0.900 (3.246 sec/step)
step 22000 loss = 0.184, train_acc = 1.000 (3.336 sec/step)
step 22010 loss = 0.872, train_acc = 0.700 (3.295 sec/step)
step 22020 loss = 0.160, train_acc = 0.900 (3.330 sec/step)
step 22030 loss = 1.197, train_acc = 0.700 (3.243 sec/step)
step 22040 loss = 0.429, train_acc = 0.700 (3.262 sec/step)
step 22050 loss = 0.091, train_acc = 1.000 (3.251 sec/step)
step 22060 loss = 0.477, train_acc = 0.900 (3.270 sec/step)
step 22070 loss = 0.103, train_acc = 1.000 (3.269 sec/step)
step 22080 loss = 0.580, train_acc = 0.900 (3.251 sec/step)
step 22090 loss = 1.692, train_acc = 0.600 (3.294 sec/step)
step 22100 loss = 0.223, train_acc = 0.900 (3.303 sec/step)
step 22110 loss = 0.432, train_acc = 0.900 (3.268 sec/step)
step 22120 loss = 0.028, train_acc = 1.000 (3.276 sec/step)
step 22130 loss = 0.266, train_acc = 0.900 (3.305 sec/step)
step 22140 loss = 0.330, train_acc = 0.900 (3.246 sec/step)
step 22150 loss = 0.188, train_acc = 1.000 (3.321 sec/step)
step 22160 loss = 0.492, train_acc = 0.800 (3.278 sec/step)
step 22170 loss = 0.709, train_acc = 0.900 (3.300 sec/step)
step 22180 loss = 0.659, train_acc = 0.900 (3.309 sec/step)
step 22190 loss = 1.432, train_acc = 0.800 (3.302 sec/step)
step 22200 loss = 0.553, train_acc = 0.900 (3.247 sec/step)
step 22210 loss = 0.385, train_acc = 0.900 (3.229 sec/step)
step 22220 loss = 0.097, train_acc = 0.900 (3.319 sec/step)
step 22230 loss = 0.020, train_acc = 1.000 (3.394 sec/step)
step 22240 loss = 0.148, train_acc = 1.000 (3.282 sec/step)
step 22250 loss = 0.287, train_acc = 0.800 (3.340 sec/step)
step 22260 loss = 0.145, train_acc = 0.900 (3.271 sec/step)
step 22270 loss = 0.826, train_acc = 0.700 (3.326 sec/step)
step 22280 loss = 0.541, train_acc = 0.900 (3.281 sec/step)
step 22290 loss = 0.835, train_acc = 0.600 (3.262 sec/step)
step 22300 loss = 0.338, train_acc = 0.900 (3.347 sec/step)
step 22310 loss = 0.916, train_acc = 0.700 (3.315 sec/step)
step 22320 loss = 2.127, train_acc = 0.700 (3.335 sec/step)
step 22330 loss = 0.027, train_acc = 1.000 (3.305 sec/step)
step 22340 loss = 0.227, train_acc = 0.900 (3.327 sec/step)
step 22350 loss = 0.081, train_acc = 1.000 (3.258 sec/step)
step 22360 loss = 0.017, train_acc = 1.000 (3.254 sec/step)
step 22370 loss = 0.029, train_acc = 1.000 (3.368 sec/step)
step 22380 loss = 0.412, train_acc = 0.800 (3.336 sec/step)
step 22390 loss = 0.039, train_acc = 1.000 (3.358 sec/step)
step 22400 loss = 0.112, train_acc = 1.000 (3.306 sec/step)
step 22410 loss = 0.133, train_acc = 0.900 (3.248 sec/step)
step 22420 loss = 0.080, train_acc = 1.000 (3.285 sec/step)
step 22430 loss = 0.072, train_acc = 1.000 (3.289 sec/step)
step 22440 loss = 1.053, train_acc = 0.700 (3.255 sec/step)
step 22450 loss = 0.267, train_acc = 0.900 (3.230 sec/step)
step 22460 loss = 0.105, train_acc = 1.000 (3.267 sec/step)
step 22470 loss = 0.111, train_acc = 1.000 (3.284 sec/step)
step 22480 loss = 0.020, train_acc = 1.000 (3.302 sec/step)
step 22490 loss = 0.288, train_acc = 0.800 (3.326 sec/step)
step 22500 loss = 0.467, train_acc = 0.900 (3.268 sec/step)
step 22510 loss = 1.050, train_acc = 0.700 (3.354 sec/step)
step 22520 loss = 0.034, train_acc = 1.000 (3.300 sec/step)
step 22530 loss = 0.307, train_acc = 0.900 (3.267 sec/step)
step 22540 loss = 0.305, train_acc = 0.900 (3.262 sec/step)
step 22550 loss = 0.419, train_acc = 0.800 (3.272 sec/step)
step 22560 loss = 0.454, train_acc = 0.800 (3.244 sec/step)
step 22570 loss = 1.469, train_acc = 0.700 (3.284 sec/step)
step 22580 loss = 0.832, train_acc = 0.900 (3.290 sec/step)
step 22590 loss = 1.046, train_acc = 0.500 (3.297 sec/step)
step 22600 loss = 0.097, train_acc = 1.000 (3.290 sec/step)
step 22610 loss = 1.549, train_acc = 0.700 (3.269 sec/step)
step 22620 loss = 0.109, train_acc = 1.000 (3.269 sec/step)
step 22630 loss = 0.228, train_acc = 0.900 (3.251 sec/step)
step 22640 loss = 1.138, train_acc = 0.800 (3.289 sec/step)
step 22650 loss = 1.006, train_acc = 0.800 (3.360 sec/step)
step 22660 loss = 0.043, train_acc = 1.000 (3.383 sec/step)
step 22670 loss = 0.137, train_acc = 0.900 (3.269 sec/step)
step 22680 loss = 0.184, train_acc = 0.900 (3.334 sec/step)
step 22690 loss = 0.056, train_acc = 1.000 (3.257 sec/step)
step 22700 loss = 0.426, train_acc = 0.800 (3.258 sec/step)
step 22710 loss = 0.336, train_acc = 0.900 (3.270 sec/step)
step 22720 loss = 1.028, train_acc = 0.600 (3.338 sec/step)
step 22730 loss = 0.599, train_acc = 0.800 (3.293 sec/step)
step 22740 loss = 0.647, train_acc = 0.700 (3.316 sec/step)
step 22750 loss = 0.072, train_acc = 1.000 (3.298 sec/step)
step 22760 loss = 2.704, train_acc = 0.300 (3.348 sec/step)
step 22770 loss = 0.233, train_acc = 0.900 (3.286 sec/step)
step 22780 loss = 0.103, train_acc = 0.900 (3.252 sec/step)
step 22790 loss = 0.146, train_acc = 0.900 (3.295 sec/step)
VALIDATION acc = 0.540 (3.647 sec)
New Best Accuracy 0.540 > Old Best 0.526. Saving...
The checkpoint has been created.
step 22800 loss = 0.251, train_acc = 0.900 (3.321 sec/step)
step 22810 loss = 0.733, train_acc = 0.800 (3.229 sec/step)
step 22820 loss = 0.486, train_acc = 0.800 (3.336 sec/step)
step 22830 loss = 0.435, train_acc = 0.900 (3.301 sec/step)
step 22840 loss = 1.008, train_acc = 0.700 (3.318 sec/step)
step 22850 loss = 0.425, train_acc = 0.900 (3.277 sec/step)
step 22860 loss = 0.028, train_acc = 1.000 (3.303 sec/step)
step 22870 loss = 0.017, train_acc = 1.000 (3.251 sec/step)
step 22880 loss = 0.564, train_acc = 0.900 (3.347 sec/step)
step 22890 loss = 1.571, train_acc = 0.600 (3.304 sec/step)
step 22900 loss = 0.395, train_acc = 0.900 (3.315 sec/step)
step 22910 loss = 0.222, train_acc = 0.900 (3.320 sec/step)
step 22920 loss = 0.325, train_acc = 0.900 (3.279 sec/step)
step 22930 loss = 0.254, train_acc = 0.900 (3.283 sec/step)
step 22940 loss = 0.839, train_acc = 0.700 (3.287 sec/step)
step 22950 loss = 2.116, train_acc = 0.600 (3.328 sec/step)
step 22960 loss = 0.028, train_acc = 1.000 (3.372 sec/step)
step 22970 loss = 1.310, train_acc = 0.900 (3.285 sec/step)
step 22980 loss = 0.030, train_acc = 1.000 (3.275 sec/step)
step 22990 loss = 0.209, train_acc = 0.900 (3.322 sec/step)
step 23000 loss = 0.258, train_acc = 0.900 (3.312 sec/step)
step 23010 loss = 0.047, train_acc = 1.000 (3.311 sec/step)
step 23020 loss = 1.297, train_acc = 0.600 (3.322 sec/step)
step 23030 loss = 0.206, train_acc = 0.900 (3.300 sec/step)
step 23040 loss = 0.470, train_acc = 0.700 (3.289 sec/step)
step 23050 loss = 0.708, train_acc = 0.700 (3.282 sec/step)
step 23060 loss = 0.138, train_acc = 1.000 (3.277 sec/step)
step 23070 loss = 0.805, train_acc = 0.700 (3.307 sec/step)
step 23080 loss = 0.292, train_acc = 0.900 (3.377 sec/step)
step 23090 loss = 0.901, train_acc = 0.600 (3.346 sec/step)
step 23100 loss = 0.206, train_acc = 0.900 (3.315 sec/step)
step 23110 loss = 0.314, train_acc = 0.900 (3.290 sec/step)
step 23120 loss = 0.139, train_acc = 1.000 (3.272 sec/step)
step 23130 loss = 0.031, train_acc = 1.000 (3.317 sec/step)
step 23140 loss = 0.166, train_acc = 0.900 (3.326 sec/step)
step 23150 loss = 0.056, train_acc = 1.000 (3.279 sec/step)
step 23160 loss = 0.082, train_acc = 1.000 (3.269 sec/step)
step 23170 loss = 0.614, train_acc = 0.900 (3.274 sec/step)
step 23180 loss = 0.741, train_acc = 0.900 (3.285 sec/step)
step 23190 loss = 0.034, train_acc = 1.000 (3.290 sec/step)
step 23200 loss = 0.834, train_acc = 0.800 (3.325 sec/step)
step 23210 loss = 0.441, train_acc = 0.900 (3.302 sec/step)
step 23220 loss = 0.469, train_acc = 0.900 (3.299 sec/step)
step 23230 loss = 0.210, train_acc = 0.900 (3.275 sec/step)
step 23240 loss = 0.330, train_acc = 0.900 (3.325 sec/step)
step 23250 loss = 0.777, train_acc = 0.700 (3.315 sec/step)
step 23260 loss = 0.085, train_acc = 1.000 (3.329 sec/step)
step 23270 loss = 0.010, train_acc = 1.000 (3.285 sec/step)
step 23280 loss = 0.574, train_acc = 0.700 (3.289 sec/step)
step 23290 loss = 0.764, train_acc = 0.800 (3.256 sec/step)
step 23300 loss = 1.369, train_acc = 0.700 (3.311 sec/step)
step 23310 loss = 0.570, train_acc = 0.700 (3.278 sec/step)
step 23320 loss = 0.245, train_acc = 0.800 (3.272 sec/step)
step 23330 loss = 0.419, train_acc = 0.800 (3.320 sec/step)
step 23340 loss = 0.004, train_acc = 1.000 (3.322 sec/step)
step 23350 loss = 0.082, train_acc = 1.000 (3.313 sec/step)
step 23360 loss = 0.034, train_acc = 1.000 (3.329 sec/step)
step 23370 loss = 0.287, train_acc = 0.900 (3.330 sec/step)
step 23380 loss = 0.622, train_acc = 0.800 (3.320 sec/step)
step 23390 loss = 0.938, train_acc = 0.700 (3.295 sec/step)
step 23400 loss = 0.234, train_acc = 0.900 (3.311 sec/step)
step 23410 loss = 0.302, train_acc = 0.900 (3.266 sec/step)
step 23420 loss = 0.027, train_acc = 1.000 (3.272 sec/step)
step 23430 loss = 0.024, train_acc = 1.000 (3.309 sec/step)
step 23440 loss = 0.026, train_acc = 1.000 (3.301 sec/step)
step 23450 loss = 0.025, train_acc = 1.000 (3.285 sec/step)
step 23460 loss = 0.058, train_acc = 1.000 (3.320 sec/step)
step 23470 loss = 0.052, train_acc = 1.000 (3.264 sec/step)
step 23480 loss = 0.503, train_acc = 0.900 (3.339 sec/step)
step 23490 loss = 0.404, train_acc = 0.900 (3.237 sec/step)
step 23500 loss = 0.604, train_acc = 0.900 (3.389 sec/step)
step 23510 loss = 0.049, train_acc = 1.000 (3.284 sec/step)
step 23520 loss = 0.121, train_acc = 1.000 (3.331 sec/step)
step 23530 loss = 1.392, train_acc = 0.600 (3.295 sec/step)
step 23540 loss = 0.228, train_acc = 0.900 (3.313 sec/step)
step 23550 loss = 0.669, train_acc = 0.900 (3.295 sec/step)
step 23560 loss = 0.457, train_acc = 0.900 (3.287 sec/step)
step 23570 loss = 0.199, train_acc = 1.000 (3.295 sec/step)
step 23580 loss = 0.166, train_acc = 0.900 (3.296 sec/step)
step 23590 loss = 0.229, train_acc = 1.000 (3.266 sec/step)
step 23600 loss = 0.191, train_acc = 0.900 (3.282 sec/step)
step 23610 loss = 0.081, train_acc = 1.000 (3.294 sec/step)
step 23620 loss = 0.067, train_acc = 1.000 (3.320 sec/step)
step 23630 loss = 0.456, train_acc = 0.800 (3.288 sec/step)
step 23640 loss = 0.578, train_acc = 0.900 (3.286 sec/step)
step 23650 loss = 0.231, train_acc = 0.900 (3.310 sec/step)
step 23660 loss = 0.520, train_acc = 0.600 (3.267 sec/step)
step 23670 loss = 0.281, train_acc = 0.900 (3.343 sec/step)
step 23680 loss = 0.133, train_acc = 0.900 (3.293 sec/step)
step 23690 loss = 0.116, train_acc = 0.900 (3.349 sec/step)
step 23700 loss = 0.094, train_acc = 1.000 (3.263 sec/step)
step 23710 loss = 0.678, train_acc = 0.800 (3.289 sec/step)
step 23720 loss = 0.869, train_acc = 0.900 (3.301 sec/step)
step 23730 loss = 0.060, train_acc = 1.000 (3.256 sec/step)
step 23740 loss = 0.052, train_acc = 1.000 (3.290 sec/step)
step 23750 loss = 0.147, train_acc = 1.000 (3.304 sec/step)
step 23760 loss = 0.291, train_acc = 0.900 (3.277 sec/step)
step 23770 loss = 0.179, train_acc = 0.900 (3.297 sec/step)
step 23780 loss = 0.047, train_acc = 1.000 (3.297 sec/step)
step 23790 loss = 0.453, train_acc = 0.900 (3.271 sec/step)
step 23800 loss = 0.137, train_acc = 1.000 (3.289 sec/step)
step 23810 loss = 0.204, train_acc = 0.900 (3.312 sec/step)
step 23820 loss = 0.100, train_acc = 1.000 (3.297 sec/step)
step 23830 loss = 0.624, train_acc = 0.800 (3.286 sec/step)
step 23840 loss = 0.345, train_acc = 0.900 (3.290 sec/step)
step 23850 loss = 0.121, train_acc = 0.900 (3.291 sec/step)
step 23860 loss = 0.043, train_acc = 1.000 (3.318 sec/step)
step 23870 loss = 1.102, train_acc = 0.800 (3.332 sec/step)
step 23880 loss = 0.438, train_acc = 0.800 (3.300 sec/step)
step 23890 loss = 0.901, train_acc = 0.700 (3.275 sec/step)
step 23900 loss = 0.563, train_acc = 0.800 (3.272 sec/step)
step 23910 loss = 1.015, train_acc = 0.800 (3.295 sec/step)
step 23920 loss = 0.006, train_acc = 1.000 (3.318 sec/step)
step 23930 loss = 0.256, train_acc = 0.900 (3.306 sec/step)
step 23940 loss = 0.147, train_acc = 1.000 (3.306 sec/step)
step 23950 loss = 0.055, train_acc = 1.000 (3.350 sec/step)
step 23960 loss = 0.010, train_acc = 1.000 (3.280 sec/step)
step 23970 loss = 0.137, train_acc = 1.000 (3.401 sec/step)
step 23980 loss = 0.097, train_acc = 1.000 (3.252 sec/step)
step 23990 loss = 1.054, train_acc = 0.700 (3.328 sec/step)
step 24000 loss = 0.159, train_acc = 1.000 (3.297 sec/step)
step 24010 loss = 0.028, train_acc = 1.000 (3.310 sec/step)
step 24020 loss = 0.005, train_acc = 1.000 (3.289 sec/step)
step 24030 loss = 0.220, train_acc = 0.900 (3.281 sec/step)
step 24040 loss = 0.171, train_acc = 0.900 (3.310 sec/step)
step 24050 loss = 0.182, train_acc = 0.900 (3.350 sec/step)
step 24060 loss = 0.084, train_acc = 1.000 (3.273 sec/step)
step 24070 loss = 1.210, train_acc = 0.600 (3.339 sec/step)
step 24080 loss = 0.000, train_acc = 1.000 (3.325 sec/step)
step 24090 loss = 0.672, train_acc = 0.800 (3.298 sec/step)
step 24100 loss = 0.047, train_acc = 1.000 (3.291 sec/step)
step 24110 loss = 0.318, train_acc = 0.900 (3.344 sec/step)
step 24120 loss = 0.051, train_acc = 1.000 (3.263 sec/step)
step 24130 loss = 0.261, train_acc = 0.900 (3.284 sec/step)
step 24140 loss = 0.371, train_acc = 0.900 (3.304 sec/step)
step 24150 loss = 0.749, train_acc = 0.900 (3.276 sec/step)
step 24160 loss = 0.055, train_acc = 1.000 (3.279 sec/step)
step 24170 loss = 0.047, train_acc = 1.000 (3.285 sec/step)
step 24180 loss = 0.904, train_acc = 0.800 (3.270 sec/step)
step 24190 loss = 1.280, train_acc = 0.600 (3.289 sec/step)
step 24200 loss = 0.048, train_acc = 1.000 (3.273 sec/step)
step 24210 loss = 0.686, train_acc = 0.900 (3.296 sec/step)
step 24220 loss = 0.460, train_acc = 0.800 (3.280 sec/step)
step 24230 loss = 0.021, train_acc = 1.000 (3.291 sec/step)
step 24240 loss = 0.006, train_acc = 1.000 (3.393 sec/step)
step 24250 loss = 0.665, train_acc = 0.700 (3.316 sec/step)
step 24260 loss = 0.059, train_acc = 1.000 (3.310 sec/step)
step 24270 loss = 0.275, train_acc = 0.800 (3.252 sec/step)
step 24280 loss = 1.406, train_acc = 0.500 (3.319 sec/step)
step 24290 loss = 0.230, train_acc = 0.900 (3.310 sec/step)
step 24300 loss = 0.187, train_acc = 0.900 (3.296 sec/step)
step 24310 loss = 0.125, train_acc = 1.000 (3.295 sec/step)
step 24320 loss = 0.114, train_acc = 1.000 (3.307 sec/step)
step 24330 loss = 1.545, train_acc = 0.600 (3.344 sec/step)
step 24340 loss = 0.356, train_acc = 0.900 (3.305 sec/step)
step 24350 loss = 0.258, train_acc = 0.900 (3.332 sec/step)
step 24360 loss = 0.563, train_acc = 0.800 (3.310 sec/step)
step 24370 loss = 0.028, train_acc = 1.000 (3.298 sec/step)
step 24380 loss = 0.274, train_acc = 0.900 (3.307 sec/step)
step 24390 loss = 0.073, train_acc = 1.000 (3.316 sec/step)
step 24400 loss = 0.217, train_acc = 1.000 (3.310 sec/step)
step 24410 loss = 0.628, train_acc = 0.800 (3.303 sec/step)
step 24420 loss = 0.088, train_acc = 1.000 (3.351 sec/step)
step 24430 loss = 0.074, train_acc = 1.000 (3.299 sec/step)
step 24440 loss = 0.099, train_acc = 1.000 (3.304 sec/step)
step 24450 loss = 0.117, train_acc = 1.000 (3.297 sec/step)
step 24460 loss = 0.776, train_acc = 0.700 (3.326 sec/step)
step 24470 loss = 0.233, train_acc = 0.900 (3.277 sec/step)
step 24480 loss = 0.016, train_acc = 1.000 (3.298 sec/step)
step 24490 loss = 0.231, train_acc = 0.900 (3.269 sec/step)
step 24500 loss = 0.020, train_acc = 1.000 (3.266 sec/step)
step 24510 loss = 0.014, train_acc = 1.000 (3.284 sec/step)
step 24520 loss = 0.407, train_acc = 0.800 (3.276 sec/step)
step 24530 loss = 0.591, train_acc = 0.800 (3.297 sec/step)
step 24540 loss = 0.012, train_acc = 1.000 (3.315 sec/step)
step 24550 loss = 0.464, train_acc = 0.800 (3.312 sec/step)
step 24560 loss = 0.635, train_acc = 0.900 (3.288 sec/step)
step 24570 loss = 0.000, train_acc = 1.000 (3.332 sec/step)
step 24580 loss = 0.267, train_acc = 0.800 (3.284 sec/step)
step 24590 loss = 0.675, train_acc = 0.800 (3.251 sec/step)
step 24600 loss = 0.030, train_acc = 1.000 (3.270 sec/step)
step 24610 loss = 0.271, train_acc = 0.800 (3.318 sec/step)
step 24620 loss = 0.012, train_acc = 1.000 (3.289 sec/step)
step 24630 loss = 0.074, train_acc = 1.000 (3.269 sec/step)
step 24640 loss = 0.503, train_acc = 0.900 (3.308 sec/step)
step 24650 loss = 0.031, train_acc = 1.000 (3.318 sec/step)
step 24660 loss = 1.496, train_acc = 0.700 (3.293 sec/step)
step 24670 loss = 0.231, train_acc = 0.900 (3.309 sec/step)
step 24680 loss = 0.018, train_acc = 1.000 (3.320 sec/step)
step 24690 loss = 0.050, train_acc = 1.000 (3.279 sec/step)
VALIDATION acc = 0.561 (3.652 sec)
New Best Accuracy 0.561 > Old Best 0.540. Saving...
The checkpoint has been created.
step 24700 loss = 0.408, train_acc = 0.900 (3.290 sec/step)
step 24710 loss = 0.298, train_acc = 0.800 (3.269 sec/step)
step 24720 loss = 0.994, train_acc = 0.800 (3.296 sec/step)
step 24730 loss = 0.826, train_acc = 0.700 (3.357 sec/step)
step 24740 loss = 0.626, train_acc = 0.800 (3.331 sec/step)
step 24750 loss = 4.854, train_acc = 0.300 (3.319 sec/step)
step 24760 loss = 0.070, train_acc = 1.000 (3.268 sec/step)
step 24770 loss = 0.263, train_acc = 1.000 (3.262 sec/step)
step 24780 loss = 0.022, train_acc = 1.000 (3.313 sec/step)
step 24790 loss = 0.206, train_acc = 1.000 (3.319 sec/step)
step 24800 loss = 0.395, train_acc = 0.900 (3.249 sec/step)
step 24810 loss = 0.055, train_acc = 1.000 (3.284 sec/step)
step 24820 loss = 0.427, train_acc = 0.800 (3.262 sec/step)
step 24830 loss = 0.052, train_acc = 1.000 (3.329 sec/step)
step 24840 loss = 0.076, train_acc = 1.000 (3.393 sec/step)
step 24850 loss = 0.137, train_acc = 1.000 (3.349 sec/step)
step 24860 loss = 0.406, train_acc = 0.900 (3.338 sec/step)
step 24870 loss = 0.037, train_acc = 1.000 (3.290 sec/step)
step 24880 loss = 1.634, train_acc = 0.700 (3.332 sec/step)
step 24890 loss = 0.227, train_acc = 0.900 (3.381 sec/step)
step 24900 loss = 0.358, train_acc = 0.900 (3.310 sec/step)
step 24910 loss = 0.034, train_acc = 1.000 (3.273 sec/step)
step 24920 loss = 0.377, train_acc = 0.800 (3.317 sec/step)
step 24930 loss = 0.512, train_acc = 0.900 (3.278 sec/step)
step 24940 loss = 0.008, train_acc = 1.000 (3.309 sec/step)
step 24950 loss = 0.068, train_acc = 1.000 (3.327 sec/step)
step 24960 loss = 0.175, train_acc = 0.900 (3.249 sec/step)
step 24970 loss = 1.015, train_acc = 0.800 (3.273 sec/step)
step 24980 loss = 0.017, train_acc = 1.000 (3.347 sec/step)
step 24990 loss = 0.107, train_acc = 1.000 (3.252 sec/step)
step 25000 loss = 0.441, train_acc = 0.900 (3.323 sec/step)
step 25010 loss = 0.835, train_acc = 0.800 (3.322 sec/step)
step 25020 loss = 0.182, train_acc = 0.900 (3.288 sec/step)
step 25030 loss = 0.053, train_acc = 1.000 (3.275 sec/step)
step 25040 loss = 0.074, train_acc = 1.000 (3.350 sec/step)
step 25050 loss = 0.394, train_acc = 0.900 (3.283 sec/step)
step 25060 loss = 0.225, train_acc = 0.800 (3.310 sec/step)
step 25070 loss = 0.532, train_acc = 0.900 (3.265 sec/step)
step 25080 loss = 0.001, train_acc = 1.000 (3.310 sec/step)
step 25090 loss = 2.732, train_acc = 0.900 (3.280 sec/step)
step 25100 loss = 0.803, train_acc = 0.800 (3.315 sec/step)
step 25110 loss = 0.824, train_acc = 0.800 (3.285 sec/step)
step 25120 loss = 0.668, train_acc = 0.800 (3.325 sec/step)
step 25130 loss = 0.129, train_acc = 0.900 (3.252 sec/step)
step 25140 loss = 0.363, train_acc = 0.900 (3.285 sec/step)
step 25150 loss = 0.558, train_acc = 0.900 (3.278 sec/step)
step 25160 loss = 0.017, train_acc = 1.000 (3.265 sec/step)
step 25170 loss = 0.523, train_acc = 0.900 (3.380 sec/step)
step 25180 loss = 0.499, train_acc = 0.900 (3.304 sec/step)
step 25190 loss = 0.432, train_acc = 0.800 (3.289 sec/step)
step 25200 loss = 0.009, train_acc = 1.000 (3.272 sec/step)
step 25210 loss = 0.006, train_acc = 1.000 (3.267 sec/step)
step 25220 loss = 0.060, train_acc = 1.000 (3.348 sec/step)
step 25230 loss = 0.216, train_acc = 0.900 (3.283 sec/step)
step 25240 loss = 0.721, train_acc = 0.800 (3.283 sec/step)
step 25250 loss = 0.276, train_acc = 0.900 (3.309 sec/step)
step 25260 loss = 0.290, train_acc = 0.800 (3.265 sec/step)
step 25270 loss = 0.183, train_acc = 1.000 (3.256 sec/step)
step 25280 loss = 0.075, train_acc = 1.000 (3.310 sec/step)
step 25290 loss = 0.077, train_acc = 1.000 (3.297 sec/step)
step 25300 loss = 0.076, train_acc = 1.000 (3.290 sec/step)
step 25310 loss = 0.150, train_acc = 0.900 (3.300 sec/step)
step 25320 loss = 0.847, train_acc = 0.700 (3.294 sec/step)
step 25330 loss = 0.448, train_acc = 0.800 (3.356 sec/step)
step 25340 loss = 0.152, train_acc = 0.900 (3.294 sec/step)
step 25350 loss = 0.227, train_acc = 0.900 (3.268 sec/step)
step 25360 loss = 0.701, train_acc = 0.700 (3.306 sec/step)
step 25370 loss = 0.134, train_acc = 1.000 (3.275 sec/step)
step 25380 loss = 0.001, train_acc = 1.000 (3.328 sec/step)
step 25390 loss = 0.003, train_acc = 1.000 (3.246 sec/step)
step 25400 loss = 0.777, train_acc = 0.800 (3.274 sec/step)
step 25410 loss = 0.294, train_acc = 0.900 (3.295 sec/step)
step 25420 loss = 0.240, train_acc = 0.900 (3.258 sec/step)
step 25430 loss = 0.350, train_acc = 0.900 (3.311 sec/step)
step 25440 loss = 0.335, train_acc = 0.800 (3.257 sec/step)
step 25450 loss = 0.058, train_acc = 1.000 (3.327 sec/step)
step 25460 loss = 0.191, train_acc = 0.900 (3.243 sec/step)
step 25470 loss = 0.014, train_acc = 1.000 (3.305 sec/step)
step 25480 loss = 0.147, train_acc = 0.900 (3.310 sec/step)
step 25490 loss = 0.038, train_acc = 1.000 (3.363 sec/step)
step 25500 loss = 0.147, train_acc = 0.900 (3.319 sec/step)
step 25510 loss = 0.113, train_acc = 0.900 (3.273 sec/step)
step 25520 loss = 0.070, train_acc = 1.000 (3.303 sec/step)
step 25530 loss = 0.003, train_acc = 1.000 (3.257 sec/step)
step 25540 loss = 0.297, train_acc = 0.800 (3.258 sec/step)
step 25550 loss = 0.836, train_acc = 0.700 (3.301 sec/step)
step 25560 loss = 0.061, train_acc = 1.000 (3.258 sec/step)
step 25570 loss = 0.090, train_acc = 1.000 (3.319 sec/step)
step 25580 loss = 0.009, train_acc = 1.000 (3.286 sec/step)
step 25590 loss = 0.022, train_acc = 1.000 (3.334 sec/step)
step 25600 loss = 0.631, train_acc = 0.800 (3.332 sec/step)
step 25610 loss = 0.150, train_acc = 0.900 (3.315 sec/step)
step 25620 loss = 0.005, train_acc = 1.000 (3.290 sec/step)
step 25630 loss = 0.068, train_acc = 1.000 (3.305 sec/step)
step 25640 loss = 0.838, train_acc = 0.800 (3.322 sec/step)
step 25650 loss = 0.010, train_acc = 1.000 (3.289 sec/step)
step 25660 loss = 0.410, train_acc = 0.900 (3.270 sec/step)
step 25670 loss = 3.790, train_acc = 0.700 (3.372 sec/step)
step 25680 loss = 0.010, train_acc = 1.000 (3.286 sec/step)
step 25690 loss = 0.669, train_acc = 0.800 (3.358 sec/step)
step 25700 loss = 0.155, train_acc = 1.000 (3.266 sec/step)
step 25710 loss = 0.542, train_acc = 0.800 (3.366 sec/step)
step 25720 loss = 0.103, train_acc = 1.000 (3.314 sec/step)
step 25730 loss = 0.191, train_acc = 0.900 (3.337 sec/step)
step 25740 loss = 1.357, train_acc = 0.600 (3.286 sec/step)
step 25750 loss = 0.577, train_acc = 0.800 (3.302 sec/step)
step 25760 loss = 0.616, train_acc = 0.800 (3.286 sec/step)
step 25770 loss = 0.115, train_acc = 0.900 (3.262 sec/step)
step 25780 loss = 0.490, train_acc = 0.800 (3.280 sec/step)
step 25790 loss = 0.194, train_acc = 0.800 (3.291 sec/step)
step 25800 loss = 1.110, train_acc = 0.800 (3.267 sec/step)
step 25810 loss = 0.530, train_acc = 0.900 (3.325 sec/step)
step 25820 loss = 0.479, train_acc = 0.900 (3.266 sec/step)
step 25830 loss = 1.104, train_acc = 0.700 (3.289 sec/step)
step 25840 loss = 0.920, train_acc = 0.800 (3.280 sec/step)
step 25850 loss = 0.268, train_acc = 0.900 (3.301 sec/step)
step 25860 loss = 0.131, train_acc = 0.900 (3.338 sec/step)
step 25870 loss = 0.532, train_acc = 0.800 (3.318 sec/step)
step 25880 loss = 0.188, train_acc = 0.900 (3.317 sec/step)
step 25890 loss = 0.338, train_acc = 0.900 (3.273 sec/step)
step 25900 loss = 0.216, train_acc = 0.900 (3.315 sec/step)
step 25910 loss = 0.366, train_acc = 0.800 (3.284 sec/step)
step 25920 loss = 0.265, train_acc = 0.800 (3.303 sec/step)
step 25930 loss = 0.502, train_acc = 0.900 (3.291 sec/step)
step 25940 loss = 0.748, train_acc = 0.900 (3.349 sec/step)
step 25950 loss = 0.130, train_acc = 1.000 (3.321 sec/step)
step 25960 loss = 0.306, train_acc = 0.900 (3.277 sec/step)
step 25970 loss = 0.079, train_acc = 1.000 (3.302 sec/step)
step 25980 loss = 0.185, train_acc = 0.900 (3.269 sec/step)
step 25990 loss = 0.001, train_acc = 1.000 (3.304 sec/step)
step 26000 loss = 0.000, train_acc = 1.000 (3.294 sec/step)
step 26010 loss = 0.052, train_acc = 1.000 (3.314 sec/step)
step 26020 loss = 0.036, train_acc = 1.000 (3.271 sec/step)
step 26030 loss = 0.123, train_acc = 1.000 (3.334 sec/step)
step 26040 loss = 0.393, train_acc = 0.800 (3.397 sec/step)
step 26050 loss = 0.083, train_acc = 1.000 (3.346 sec/step)
step 26060 loss = 1.075, train_acc = 0.600 (3.310 sec/step)
step 26070 loss = 0.015, train_acc = 1.000 (3.325 sec/step)
step 26080 loss = 0.314, train_acc = 0.900 (3.337 sec/step)
step 26090 loss = 0.459, train_acc = 0.900 (3.264 sec/step)
step 26100 loss = 0.051, train_acc = 1.000 (3.302 sec/step)
step 26110 loss = 0.053, train_acc = 1.000 (3.392 sec/step)
step 26120 loss = 0.046, train_acc = 1.000 (3.317 sec/step)
step 26130 loss = 0.000, train_acc = 1.000 (3.372 sec/step)
step 26140 loss = 0.619, train_acc = 0.700 (3.339 sec/step)
step 26150 loss = 0.253, train_acc = 0.900 (3.318 sec/step)
step 26160 loss = 0.201, train_acc = 0.900 (3.256 sec/step)
step 26170 loss = 1.123, train_acc = 0.700 (3.298 sec/step)
step 26180 loss = 0.796, train_acc = 0.900 (3.322 sec/step)
step 26190 loss = 0.023, train_acc = 1.000 (3.286 sec/step)
step 26200 loss = 0.038, train_acc = 1.000 (3.267 sec/step)
step 26210 loss = 0.109, train_acc = 1.000 (3.281 sec/step)
step 26220 loss = 0.011, train_acc = 1.000 (3.369 sec/step)
step 26230 loss = 0.007, train_acc = 1.000 (3.333 sec/step)
step 26240 loss = 0.274, train_acc = 0.900 (3.278 sec/step)
step 26250 loss = 0.111, train_acc = 0.900 (3.357 sec/step)
step 26260 loss = 0.050, train_acc = 1.000 (3.302 sec/step)
step 26270 loss = 0.886, train_acc = 0.600 (3.306 sec/step)
step 26280 loss = 0.009, train_acc = 1.000 (3.287 sec/step)
step 26290 loss = 0.021, train_acc = 1.000 (3.314 sec/step)
step 26300 loss = 0.536, train_acc = 0.900 (3.272 sec/step)
step 26310 loss = 0.213, train_acc = 1.000 (3.312 sec/step)
step 26320 loss = 0.217, train_acc = 0.900 (3.272 sec/step)
step 26330 loss = 0.281, train_acc = 0.900 (3.288 sec/step)
step 26340 loss = 0.610, train_acc = 0.900 (3.315 sec/step)
step 26350 loss = 0.512, train_acc = 0.900 (3.277 sec/step)
step 26360 loss = 0.069, train_acc = 1.000 (3.369 sec/step)
step 26370 loss = 0.189, train_acc = 0.900 (3.316 sec/step)
step 26380 loss = 0.234, train_acc = 0.900 (3.252 sec/step)
step 26390 loss = 0.270, train_acc = 0.900 (3.297 sec/step)
step 26400 loss = 0.084, train_acc = 1.000 (3.361 sec/step)
step 26410 loss = 0.535, train_acc = 0.900 (3.313 sec/step)
step 26420 loss = 0.303, train_acc = 0.900 (3.307 sec/step)
step 26430 loss = 0.025, train_acc = 1.000 (3.279 sec/step)
step 26440 loss = 0.019, train_acc = 1.000 (3.333 sec/step)
step 26450 loss = 0.685, train_acc = 0.800 (3.356 sec/step)
step 26460 loss = 0.200, train_acc = 0.800 (3.300 sec/step)
step 26470 loss = 0.050, train_acc = 1.000 (3.277 sec/step)
step 26480 loss = 0.282, train_acc = 0.900 (3.296 sec/step)
step 26490 loss = 0.079, train_acc = 1.000 (3.278 sec/step)
step 26500 loss = 0.005, train_acc = 1.000 (3.319 sec/step)
step 26510 loss = 0.137, train_acc = 1.000 (3.283 sec/step)
step 26520 loss = 0.169, train_acc = 0.900 (3.354 sec/step)
step 26530 loss = 0.406, train_acc = 0.900 (3.261 sec/step)
step 26540 loss = 1.469, train_acc = 0.600 (3.319 sec/step)
step 26550 loss = 0.111, train_acc = 1.000 (3.349 sec/step)
step 26560 loss = 0.845, train_acc = 0.800 (3.296 sec/step)
step 26570 loss = 0.115, train_acc = 1.000 (3.317 sec/step)
step 26580 loss = 0.174, train_acc = 1.000 (3.312 sec/step)
step 26590 loss = 0.034, train_acc = 1.000 (3.292 sec/step)
VALIDATION acc = 0.534 (3.638 sec)
step 26600 loss = 0.040, train_acc = 1.000 (3.245 sec/step)
step 26610 loss = 0.282, train_acc = 0.900 (3.273 sec/step)
step 26620 loss = 0.033, train_acc = 1.000 (3.291 sec/step)
step 26630 loss = 0.116, train_acc = 0.900 (3.278 sec/step)
step 26640 loss = 0.108, train_acc = 0.900 (3.314 sec/step)
step 26650 loss = 0.034, train_acc = 1.000 (3.387 sec/step)
step 26660 loss = 0.027, train_acc = 1.000 (3.311 sec/step)
step 26670 loss = 0.002, train_acc = 1.000 (3.276 sec/step)
step 26680 loss = 0.851, train_acc = 0.700 (3.343 sec/step)
step 26690 loss = 0.077, train_acc = 1.000 (3.271 sec/step)
step 26700 loss = 0.311, train_acc = 0.900 (3.302 sec/step)
step 26710 loss = 0.064, train_acc = 1.000 (3.317 sec/step)
step 26720 loss = 0.684, train_acc = 0.700 (3.282 sec/step)
step 26730 loss = 0.770, train_acc = 0.900 (3.421 sec/step)
step 26740 loss = 0.012, train_acc = 1.000 (3.274 sec/step)
step 26750 loss = 0.018, train_acc = 1.000 (3.277 sec/step)
step 26760 loss = 1.500, train_acc = 0.800 (3.266 sec/step)
step 26770 loss = 0.220, train_acc = 0.900 (3.270 sec/step)
step 26780 loss = 0.228, train_acc = 0.900 (3.282 sec/step)
step 26790 loss = 0.634, train_acc = 0.800 (3.341 sec/step)
step 26800 loss = 0.364, train_acc = 0.800 (3.305 sec/step)
step 26810 loss = 0.062, train_acc = 1.000 (3.312 sec/step)
step 26820 loss = 0.207, train_acc = 0.900 (3.357 sec/step)
step 26830 loss = 0.103, train_acc = 1.000 (3.263 sec/step)
step 26840 loss = 1.127, train_acc = 0.700 (3.313 sec/step)
step 26850 loss = 0.081, train_acc = 1.000 (3.267 sec/step)
step 26860 loss = 0.054, train_acc = 1.000 (3.321 sec/step)
step 26870 loss = 0.005, train_acc = 1.000 (3.343 sec/step)
step 26880 loss = 0.014, train_acc = 1.000 (3.251 sec/step)
step 26890 loss = 0.006, train_acc = 1.000 (3.293 sec/step)
step 26900 loss = 0.150, train_acc = 0.900 (3.264 sec/step)
step 26910 loss = 0.162, train_acc = 0.900 (3.294 sec/step)
step 26920 loss = 0.852, train_acc = 0.800 (3.283 sec/step)
step 26930 loss = 0.107, train_acc = 1.000 (3.298 sec/step)
step 26940 loss = 0.759, train_acc = 0.800 (3.294 sec/step)
step 26950 loss = 0.043, train_acc = 1.000 (3.307 sec/step)
step 26960 loss = 1.671, train_acc = 0.600 (3.336 sec/step)
step 26970 loss = 0.168, train_acc = 0.900 (3.343 sec/step)
step 26980 loss = 0.053, train_acc = 1.000 (3.403 sec/step)
step 26990 loss = 0.066, train_acc = 1.000 (3.298 sec/step)
step 27000 loss = 0.586, train_acc = 0.800 (3.290 sec/step)
step 27010 loss = 0.054, train_acc = 1.000 (3.245 sec/step)
step 27020 loss = 0.003, train_acc = 1.000 (3.275 sec/step)
step 27030 loss = 0.270, train_acc = 0.900 (3.285 sec/step)
step 27040 loss = 0.142, train_acc = 0.900 (3.268 sec/step)
step 27050 loss = 1.173, train_acc = 0.700 (3.299 sec/step)
step 27060 loss = 0.992, train_acc = 0.700 (3.304 sec/step)
step 27070 loss = 0.035, train_acc = 1.000 (3.275 sec/step)
step 27080 loss = 0.212, train_acc = 0.900 (3.319 sec/step)
step 27090 loss = 0.438, train_acc = 0.800 (3.343 sec/step)
step 27100 loss = 0.484, train_acc = 0.900 (3.318 sec/step)
step 27110 loss = 0.211, train_acc = 1.000 (3.321 sec/step)
step 27120 loss = 0.605, train_acc = 0.800 (3.299 sec/step)
step 27130 loss = 0.500, train_acc = 0.800 (3.354 sec/step)
step 27140 loss = 0.839, train_acc = 0.800 (3.280 sec/step)
step 27150 loss = 0.002, train_acc = 1.000 (3.287 sec/step)
step 27160 loss = 0.018, train_acc = 1.000 (3.253 sec/step)
step 27170 loss = 0.002, train_acc = 1.000 (3.305 sec/step)
step 27180 loss = 0.697, train_acc = 0.700 (3.283 sec/step)
step 27190 loss = 0.289, train_acc = 0.800 (3.268 sec/step)
step 27200 loss = 0.089, train_acc = 1.000 (3.330 sec/step)
step 27210 loss = 0.312, train_acc = 0.900 (3.341 sec/step)
step 27220 loss = 0.012, train_acc = 1.000 (3.241 sec/step)
step 27230 loss = 0.157, train_acc = 1.000 (3.256 sec/step)
step 27240 loss = 0.302, train_acc = 0.900 (3.307 sec/step)
step 27250 loss = 0.133, train_acc = 0.900 (3.298 sec/step)
step 27260 loss = 0.135, train_acc = 1.000 (3.291 sec/step)
step 27270 loss = 0.094, train_acc = 1.000 (3.313 sec/step)
step 27280 loss = 0.009, train_acc = 1.000 (3.288 sec/step)
step 27290 loss = 0.086, train_acc = 1.000 (3.308 sec/step)
step 27300 loss = 0.362, train_acc = 0.800 (3.275 sec/step)
step 27310 loss = 0.143, train_acc = 1.000 (3.285 sec/step)
step 27320 loss = 0.009, train_acc = 1.000 (3.281 sec/step)
step 27330 loss = 1.141, train_acc = 0.800 (3.294 sec/step)
step 27340 loss = 0.404, train_acc = 0.800 (3.286 sec/step)
step 27350 loss = 0.186, train_acc = 0.900 (3.314 sec/step)
step 27360 loss = 1.770, train_acc = 0.700 (3.310 sec/step)
step 27370 loss = 0.946, train_acc = 0.700 (3.268 sec/step)
step 27380 loss = 0.374, train_acc = 0.800 (3.319 sec/step)
step 27390 loss = 0.102, train_acc = 0.900 (3.346 sec/step)
step 27400 loss = 1.193, train_acc = 0.900 (3.252 sec/step)
step 27410 loss = 0.690, train_acc = 0.800 (3.355 sec/step)
step 27420 loss = 0.471, train_acc = 0.900 (3.328 sec/step)
step 27430 loss = 0.162, train_acc = 1.000 (3.319 sec/step)
step 27440 loss = 0.317, train_acc = 0.900 (3.290 sec/step)
step 27450 loss = 0.657, train_acc = 0.800 (3.283 sec/step)
step 27460 loss = 0.190, train_acc = 0.900 (3.324 sec/step)
step 27470 loss = 0.293, train_acc = 0.900 (3.319 sec/step)
step 27480 loss = 0.000, train_acc = 1.000 (3.266 sec/step)
step 27490 loss = 0.008, train_acc = 1.000 (3.455 sec/step)
step 27500 loss = 0.039, train_acc = 1.000 (3.280 sec/step)
step 27510 loss = 0.116, train_acc = 1.000 (3.319 sec/step)
step 27520 loss = 0.043, train_acc = 1.000 (3.294 sec/step)
step 27530 loss = 0.118, train_acc = 0.900 (3.298 sec/step)
step 27540 loss = 0.018, train_acc = 1.000 (3.311 sec/step)
step 27550 loss = 0.008, train_acc = 1.000 (3.269 sec/step)
step 27560 loss = 0.032, train_acc = 1.000 (3.282 sec/step)
step 27570 loss = 0.066, train_acc = 1.000 (3.290 sec/step)
step 27580 loss = 0.245, train_acc = 0.900 (3.301 sec/step)
step 27590 loss = 0.022, train_acc = 1.000 (3.344 sec/step)
step 27600 loss = 0.186, train_acc = 0.900 (3.295 sec/step)
step 27610 loss = 0.156, train_acc = 1.000 (3.285 sec/step)
step 27620 loss = 0.044, train_acc = 1.000 (3.295 sec/step)
step 27630 loss = 0.412, train_acc = 0.800 (3.307 sec/step)
step 27640 loss = 0.393, train_acc = 0.900 (3.273 sec/step)
step 27650 loss = 0.066, train_acc = 1.000 (3.284 sec/step)
step 27660 loss = 0.608, train_acc = 0.900 (3.289 sec/step)
step 27670 loss = 0.008, train_acc = 1.000 (3.296 sec/step)
step 27680 loss = 0.098, train_acc = 1.000 (3.326 sec/step)
step 27690 loss = 0.096, train_acc = 1.000 (3.292 sec/step)
step 27700 loss = 0.171, train_acc = 0.900 (3.295 sec/step)
step 27710 loss = 1.004, train_acc = 0.800 (3.266 sec/step)
step 27720 loss = 0.127, train_acc = 0.900 (3.280 sec/step)
step 27730 loss = 0.689, train_acc = 0.800 (3.317 sec/step)
step 27740 loss = 0.437, train_acc = 0.800 (3.272 sec/step)
step 27750 loss = 0.145, train_acc = 0.900 (3.302 sec/step)
step 27760 loss = 0.048, train_acc = 1.000 (3.354 sec/step)
step 27770 loss = 0.145, train_acc = 0.900 (3.291 sec/step)
step 27780 loss = 0.113, train_acc = 1.000 (3.298 sec/step)
step 27790 loss = 0.166, train_acc = 1.000 (3.255 sec/step)
step 27800 loss = 1.047, train_acc = 0.700 (3.294 sec/step)
step 27810 loss = 0.074, train_acc = 1.000 (3.341 sec/step)
step 27820 loss = 0.023, train_acc = 1.000 (3.260 sec/step)
step 27830 loss = 0.105, train_acc = 0.900 (3.283 sec/step)
step 27840 loss = 1.189, train_acc = 0.600 (3.277 sec/step)
step 27850 loss = 0.115, train_acc = 1.000 (3.345 sec/step)
step 27860 loss = 0.907, train_acc = 0.900 (3.279 sec/step)
step 27870 loss = 0.056, train_acc = 1.000 (3.290 sec/step)
step 27880 loss = 0.009, train_acc = 1.000 (3.280 sec/step)
step 27890 loss = 0.401, train_acc = 0.800 (3.291 sec/step)
step 27900 loss = 0.008, train_acc = 1.000 (3.305 sec/step)
step 27910 loss = 0.347, train_acc = 0.900 (3.311 sec/step)
step 27920 loss = 1.764, train_acc = 0.600 (3.300 sec/step)
step 27930 loss = 0.297, train_acc = 0.900 (3.263 sec/step)
step 27940 loss = 0.745, train_acc = 0.800 (3.246 sec/step)
step 27950 loss = 0.953, train_acc = 0.600 (3.312 sec/step)
step 27960 loss = 1.301, train_acc = 0.700 (3.285 sec/step)
step 27970 loss = 0.038, train_acc = 1.000 (3.305 sec/step)
step 27980 loss = 0.038, train_acc = 1.000 (3.329 sec/step)
step 27990 loss = 0.722, train_acc = 0.600 (3.275 sec/step)
step 28000 loss = 0.418, train_acc = 0.800 (3.281 sec/step)
step 28010 loss = 0.045, train_acc = 1.000 (3.324 sec/step)
step 28020 loss = 0.748, train_acc = 0.900 (3.327 sec/step)
step 28030 loss = 0.180, train_acc = 0.900 (3.398 sec/step)
step 28040 loss = 0.058, train_acc = 1.000 (3.286 sec/step)
step 28050 loss = 0.188, train_acc = 0.900 (3.291 sec/step)
step 28060 loss = 0.191, train_acc = 1.000 (3.294 sec/step)
step 28070 loss = 0.168, train_acc = 0.900 (3.327 sec/step)
step 28080 loss = 0.284, train_acc = 0.900 (3.259 sec/step)
step 28090 loss = 0.159, train_acc = 0.900 (3.349 sec/step)
step 28100 loss = 0.013, train_acc = 1.000 (3.293 sec/step)
step 28110 loss = 0.010, train_acc = 1.000 (3.288 sec/step)
step 28120 loss = 0.397, train_acc = 0.900 (3.291 sec/step)
step 28130 loss = 0.178, train_acc = 0.900 (3.287 sec/step)
step 28140 loss = 0.017, train_acc = 1.000 (3.308 sec/step)
step 28150 loss = 0.057, train_acc = 1.000 (3.291 sec/step)
step 28160 loss = 0.400, train_acc = 0.800 (3.322 sec/step)
step 28170 loss = 0.164, train_acc = 0.900 (3.293 sec/step)
step 28180 loss = 0.466, train_acc = 0.900 (3.337 sec/step)
step 28190 loss = 0.200, train_acc = 0.900 (3.296 sec/step)
step 28200 loss = 1.158, train_acc = 0.700 (3.266 sec/step)
step 28210 loss = 0.187, train_acc = 1.000 (3.308 sec/step)
step 28220 loss = 0.055, train_acc = 1.000 (3.294 sec/step)
step 28230 loss = 0.829, train_acc = 0.800 (3.294 sec/step)
step 28240 loss = 0.606, train_acc = 0.800 (3.363 sec/step)
step 28250 loss = 0.427, train_acc = 0.800 (3.312 sec/step)
step 28260 loss = 0.168, train_acc = 1.000 (3.299 sec/step)
step 28270 loss = 0.032, train_acc = 1.000 (3.318 sec/step)
step 28280 loss = 3.068, train_acc = 0.800 (3.284 sec/step)
step 28290 loss = 0.032, train_acc = 1.000 (3.307 sec/step)
step 28300 loss = 0.291, train_acc = 0.800 (3.295 sec/step)
step 28310 loss = 0.313, train_acc = 0.900 (3.293 sec/step)
step 28320 loss = 0.036, train_acc = 1.000 (3.284 sec/step)
step 28330 loss = 0.221, train_acc = 1.000 (3.328 sec/step)
step 28340 loss = 0.288, train_acc = 0.900 (3.327 sec/step)
step 28350 loss = 0.026, train_acc = 1.000 (3.286 sec/step)
step 28360 loss = 0.140, train_acc = 1.000 (3.285 sec/step)
step 28370 loss = 0.039, train_acc = 1.000 (3.317 sec/step)
step 28380 loss = 0.089, train_acc = 1.000 (3.289 sec/step)
step 28390 loss = 0.168, train_acc = 0.900 (3.300 sec/step)
step 28400 loss = 0.203, train_acc = 0.900 (3.334 sec/step)
step 28410 loss = 0.168, train_acc = 1.000 (3.263 sec/step)
step 28420 loss = 0.054, train_acc = 1.000 (3.303 sec/step)
step 28430 loss = 0.527, train_acc = 0.900 (3.264 sec/step)
step 28440 loss = 0.117, train_acc = 0.900 (3.340 sec/step)
step 28450 loss = 0.014, train_acc = 1.000 (3.334 sec/step)
step 28460 loss = 0.839, train_acc = 0.800 (3.255 sec/step)
step 28470 loss = 0.031, train_acc = 1.000 (3.325 sec/step)
step 28480 loss = 0.017, train_acc = 1.000 (3.299 sec/step)
step 28490 loss = 0.061, train_acc = 1.000 (3.371 sec/step)
VALIDATION acc = 0.534 (3.643 sec)
step 28500 loss = 1.687, train_acc = 0.800 (3.299 sec/step)
step 28510 loss = 0.892, train_acc = 0.800 (3.288 sec/step)
step 28520 loss = 0.706, train_acc = 0.900 (3.280 sec/step)
step 28530 loss = 0.346, train_acc = 0.900 (3.335 sec/step)
step 28540 loss = 0.017, train_acc = 1.000 (3.355 sec/step)
step 28550 loss = 0.626, train_acc = 0.700 (3.284 sec/step)
step 28560 loss = 0.085, train_acc = 0.900 (3.271 sec/step)
step 28570 loss = 0.094, train_acc = 1.000 (3.307 sec/step)
step 28580 loss = 0.217, train_acc = 0.900 (3.324 sec/step)
step 28590 loss = 0.321, train_acc = 0.900 (3.370 sec/step)
step 28600 loss = 0.981, train_acc = 0.900 (3.286 sec/step)
step 28610 loss = 0.297, train_acc = 0.900 (3.279 sec/step)
step 28620 loss = 0.383, train_acc = 0.900 (3.305 sec/step)
step 28630 loss = 0.473, train_acc = 0.800 (3.344 sec/step)
step 28640 loss = 0.025, train_acc = 1.000 (3.317 sec/step)
step 28650 loss = 0.138, train_acc = 1.000 (3.343 sec/step)
step 28660 loss = 0.170, train_acc = 0.900 (3.271 sec/step)
step 28670 loss = 0.016, train_acc = 1.000 (3.290 sec/step)
step 28680 loss = 0.014, train_acc = 1.000 (3.289 sec/step)
step 28690 loss = 0.088, train_acc = 1.000 (3.361 sec/step)
step 28700 loss = 0.816, train_acc = 0.700 (3.282 sec/step)
step 28710 loss = 0.071, train_acc = 1.000 (3.265 sec/step)
step 28720 loss = 0.577, train_acc = 0.900 (3.356 sec/step)
step 28730 loss = 0.685, train_acc = 0.800 (3.289 sec/step)
step 28740 loss = 0.064, train_acc = 1.000 (3.339 sec/step)
step 28750 loss = 0.057, train_acc = 1.000 (3.283 sec/step)
step 28760 loss = 0.153, train_acc = 1.000 (3.287 sec/step)
step 28770 loss = 0.668, train_acc = 0.800 (3.305 sec/step)
step 28780 loss = 0.364, train_acc = 0.900 (3.284 sec/step)
step 28790 loss = 0.211, train_acc = 0.900 (3.309 sec/step)
step 28800 loss = 0.977, train_acc = 0.900 (3.313 sec/step)
step 28810 loss = 0.455, train_acc = 0.900 (3.290 sec/step)
step 28820 loss = 0.794, train_acc = 0.700 (3.257 sec/step)
step 28830 loss = 0.070, train_acc = 1.000 (3.281 sec/step)
step 28840 loss = 0.144, train_acc = 0.900 (3.266 sec/step)
step 28850 loss = 0.201, train_acc = 1.000 (3.339 sec/step)
step 28860 loss = 0.456, train_acc = 0.900 (3.322 sec/step)
step 28870 loss = 0.063, train_acc = 1.000 (3.352 sec/step)
step 28880 loss = 0.003, train_acc = 1.000 (3.328 sec/step)
step 28890 loss = 0.358, train_acc = 0.900 (3.337 sec/step)
step 28900 loss = 2.990, train_acc = 0.700 (3.342 sec/step)
step 28910 loss = 0.359, train_acc = 0.900 (3.268 sec/step)
step 28920 loss = 0.088, train_acc = 1.000 (3.339 sec/step)
step 28930 loss = 0.048, train_acc = 1.000 (3.317 sec/step)
step 28940 loss = 0.070, train_acc = 1.000 (3.271 sec/step)
step 28950 loss = 0.244, train_acc = 0.900 (3.295 sec/step)
step 28960 loss = 0.338, train_acc = 0.900 (3.349 sec/step)
step 28970 loss = 0.247, train_acc = 0.900 (3.284 sec/step)
step 28980 loss = 0.007, train_acc = 1.000 (3.300 sec/step)
step 28990 loss = 0.540, train_acc = 0.900 (3.282 sec/step)
step 29000 loss = 0.023, train_acc = 1.000 (3.349 sec/step)
step 29010 loss = 0.146, train_acc = 0.900 (3.305 sec/step)
step 29020 loss = 0.459, train_acc = 0.700 (3.299 sec/step)
step 29030 loss = 0.911, train_acc = 0.700 (3.305 sec/step)
step 29040 loss = 0.006, train_acc = 1.000 (3.307 sec/step)
step 29050 loss = 0.001, train_acc = 1.000 (3.285 sec/step)
step 29060 loss = 0.863, train_acc = 0.800 (3.259 sec/step)
step 29070 loss = 0.146, train_acc = 1.000 (3.335 sec/step)
step 29080 loss = 0.174, train_acc = 0.900 (3.279 sec/step)
step 29090 loss = 0.104, train_acc = 1.000 (3.302 sec/step)
step 29100 loss = 2.195, train_acc = 0.600 (3.356 sec/step)
step 29110 loss = 0.521, train_acc = 0.900 (3.323 sec/step)
step 29120 loss = 0.093, train_acc = 1.000 (3.275 sec/step)
step 29130 loss = 1.625, train_acc = 0.800 (3.277 sec/step)
step 29140 loss = 0.836, train_acc = 0.900 (3.313 sec/step)
step 29150 loss = 0.438, train_acc = 0.800 (3.311 sec/step)
step 29160 loss = 1.549, train_acc = 0.800 (3.409 sec/step)
step 29170 loss = 0.157, train_acc = 1.000 (3.281 sec/step)
step 29180 loss = 0.300, train_acc = 0.800 (3.301 sec/step)
step 29190 loss = 2.745, train_acc = 0.600 (3.258 sec/step)
step 29200 loss = 0.469, train_acc = 0.800 (3.272 sec/step)
step 29210 loss = 0.211, train_acc = 0.900 (3.291 sec/step)
step 29220 loss = 0.088, train_acc = 1.000 (3.286 sec/step)
step 29230 loss = 0.037, train_acc = 1.000 (3.290 sec/step)
step 29240 loss = 0.028, train_acc = 1.000 (3.288 sec/step)
step 29250 loss = 0.148, train_acc = 0.900 (3.282 sec/step)
step 29260 loss = 0.007, train_acc = 1.000 (3.327 sec/step)
step 29270 loss = 0.221, train_acc = 0.900 (3.250 sec/step)
step 29280 loss = 0.337, train_acc = 0.900 (3.311 sec/step)
step 29290 loss = 0.126, train_acc = 0.900 (3.333 sec/step)
step 29300 loss = 0.013, train_acc = 1.000 (3.276 sec/step)
step 29310 loss = 0.005, train_acc = 1.000 (3.365 sec/step)
step 29320 loss = 0.052, train_acc = 1.000 (3.303 sec/step)
step 29330 loss = 0.062, train_acc = 1.000 (3.289 sec/step)
step 29340 loss = 2.248, train_acc = 0.600 (3.319 sec/step)
step 29350 loss = 0.316, train_acc = 0.900 (3.350 sec/step)
step 29360 loss = 0.687, train_acc = 0.800 (3.344 sec/step)
step 29370 loss = 0.195, train_acc = 0.900 (3.322 sec/step)
step 29380 loss = 0.059, train_acc = 1.000 (3.332 sec/step)
step 29390 loss = 0.488, train_acc = 0.900 (3.288 sec/step)
step 29400 loss = 0.015, train_acc = 1.000 (3.333 sec/step)
step 29410 loss = 0.571, train_acc = 0.800 (3.277 sec/step)
step 29420 loss = 0.005, train_acc = 1.000 (3.262 sec/step)
step 29430 loss = 0.181, train_acc = 0.900 (3.338 sec/step)
step 29440 loss = 0.007, train_acc = 1.000 (3.325 sec/step)
step 29450 loss = 0.226, train_acc = 0.900 (3.257 sec/step)
step 29460 loss = 0.185, train_acc = 1.000 (3.350 sec/step)
step 29470 loss = 0.031, train_acc = 1.000 (3.355 sec/step)
step 29480 loss = 0.037, train_acc = 1.000 (3.281 sec/step)
step 29490 loss = 0.375, train_acc = 0.800 (3.350 sec/step)
step 29500 loss = 0.030, train_acc = 1.000 (3.396 sec/step)
step 29510 loss = 0.005, train_acc = 1.000 (3.307 sec/step)
step 29520 loss = 0.053, train_acc = 1.000 (3.306 sec/step)
step 29530 loss = 0.108, train_acc = 0.900 (3.244 sec/step)
step 29540 loss = 0.309, train_acc = 0.900 (3.307 sec/step)
step 29550 loss = 0.154, train_acc = 0.900 (3.315 sec/step)
step 29560 loss = 0.159, train_acc = 0.900 (3.298 sec/step)
step 29570 loss = 0.091, train_acc = 1.000 (3.343 sec/step)
step 29580 loss = 0.101, train_acc = 1.000 (3.274 sec/step)
step 29590 loss = 0.711, train_acc = 0.900 (3.358 sec/step)
step 29600 loss = 1.009, train_acc = 0.800 (3.318 sec/step)
step 29610 loss = 0.005, train_acc = 1.000 (3.316 sec/step)
step 29620 loss = 0.673, train_acc = 0.900 (3.255 sec/step)
step 29630 loss = 0.140, train_acc = 0.900 (3.331 sec/step)
step 29640 loss = 0.879, train_acc = 0.900 (3.269 sec/step)
step 29650 loss = 0.118, train_acc = 1.000 (3.325 sec/step)
step 29660 loss = 0.069, train_acc = 1.000 (3.333 sec/step)
step 29670 loss = 1.149, train_acc = 0.600 (3.308 sec/step)
step 29680 loss = 0.151, train_acc = 1.000 (3.357 sec/step)
step 29690 loss = 0.236, train_acc = 0.900 (3.298 sec/step)
step 29700 loss = 0.173, train_acc = 1.000 (3.272 sec/step)
step 29710 loss = 0.100, train_acc = 1.000 (3.282 sec/step)
step 29720 loss = 0.301, train_acc = 0.900 (3.280 sec/step)
step 29730 loss = 0.235, train_acc = 0.900 (3.269 sec/step)
step 29740 loss = 0.036, train_acc = 1.000 (3.310 sec/step)
step 29750 loss = 0.933, train_acc = 0.700 (3.276 sec/step)
step 29760 loss = 0.096, train_acc = 1.000 (3.338 sec/step)
step 29770 loss = 0.063, train_acc = 1.000 (3.311 sec/step)
step 29780 loss = 0.003, train_acc = 1.000 (3.265 sec/step)
step 29790 loss = 0.172, train_acc = 1.000 (3.311 sec/step)
step 29800 loss = 0.002, train_acc = 1.000 (3.299 sec/step)
step 29810 loss = 0.260, train_acc = 0.900 (3.322 sec/step)
step 29820 loss = 0.907, train_acc = 0.800 (3.344 sec/step)
step 29830 loss = 0.284, train_acc = 0.900 (3.265 sec/step)
step 29840 loss = 0.028, train_acc = 1.000 (3.250 sec/step)
step 29850 loss = 0.660, train_acc = 0.800 (3.296 sec/step)
step 29860 loss = 0.551, train_acc = 0.900 (3.319 sec/step)
step 29870 loss = 0.356, train_acc = 0.900 (3.294 sec/step)
step 29880 loss = 0.464, train_acc = 0.800 (3.306 sec/step)
step 29890 loss = 0.074, train_acc = 1.000 (3.404 sec/step)
step 29900 loss = 0.629, train_acc = 0.900 (3.351 sec/step)
step 29910 loss = 0.272, train_acc = 0.900 (3.310 sec/step)
step 29920 loss = 0.507, train_acc = 0.900 (3.311 sec/step)
step 29930 loss = 0.656, train_acc = 0.800 (3.286 sec/step)
step 29940 loss = 0.007, train_acc = 1.000 (3.320 sec/step)
step 29950 loss = 0.007, train_acc = 1.000 (3.312 sec/step)
step 29960 loss = 0.702, train_acc = 0.900 (3.286 sec/step)
step 29970 loss = 0.017, train_acc = 1.000 (3.308 sec/step)
step 29980 loss = 0.242, train_acc = 0.900 (3.292 sec/step)
step 29990 loss = 0.327, train_acc = 0.800 (3.269 sec/step)
step 30000 loss = 0.092, train_acc = 1.000 (3.294 sec/step)
step 30010 loss = 0.092, train_acc = 1.000 (3.284 sec/step)
step 30020 loss = 0.679, train_acc = 0.800 (3.342 sec/step)
step 30030 loss = 0.183, train_acc = 0.900 (3.352 sec/step)
step 30040 loss = 0.374, train_acc = 0.800 (3.292 sec/step)
step 30050 loss = 0.130, train_acc = 1.000 (3.296 sec/step)
step 30060 loss = 0.519, train_acc = 0.900 (3.328 sec/step)
step 30070 loss = 0.047, train_acc = 1.000 (3.328 sec/step)
step 30080 loss = 0.796, train_acc = 0.800 (3.312 sec/step)
step 30090 loss = 0.386, train_acc = 0.900 (3.327 sec/step)
step 30100 loss = 0.270, train_acc = 0.900 (3.335 sec/step)
step 30110 loss = 0.488, train_acc = 0.900 (3.336 sec/step)
step 30120 loss = 0.052, train_acc = 1.000 (3.283 sec/step)
step 30130 loss = 0.350, train_acc = 0.900 (3.293 sec/step)
step 30140 loss = 0.324, train_acc = 0.800 (3.420 sec/step)
step 30150 loss = 0.171, train_acc = 1.000 (3.307 sec/step)
step 30160 loss = 0.113, train_acc = 1.000 (3.302 sec/step)
step 30170 loss = 0.344, train_acc = 0.800 (3.351 sec/step)
step 30180 loss = 0.474, train_acc = 0.900 (3.299 sec/step)
step 30190 loss = 0.616, train_acc = 0.800 (3.288 sec/step)
step 30200 loss = 0.236, train_acc = 0.900 (3.252 sec/step)
step 30210 loss = 0.474, train_acc = 0.900 (3.316 sec/step)
step 30220 loss = 0.060, train_acc = 1.000 (3.262 sec/step)
step 30230 loss = 0.005, train_acc = 1.000 (3.339 sec/step)
step 30240 loss = 0.327, train_acc = 0.800 (3.286 sec/step)
step 30250 loss = 0.549, train_acc = 0.800 (3.349 sec/step)
step 30260 loss = 0.513, train_acc = 0.900 (3.354 sec/step)
step 30270 loss = 0.293, train_acc = 0.900 (3.290 sec/step)
step 30280 loss = 0.413, train_acc = 0.900 (3.310 sec/step)
step 30290 loss = 0.006, train_acc = 1.000 (3.297 sec/step)
step 30300 loss = 0.025, train_acc = 1.000 (3.319 sec/step)
step 30310 loss = 0.166, train_acc = 0.900 (3.286 sec/step)
step 30320 loss = 0.047, train_acc = 1.000 (3.312 sec/step)
step 30330 loss = 0.111, train_acc = 0.900 (3.272 sec/step)
step 30340 loss = 0.714, train_acc = 0.800 (3.262 sec/step)
step 30350 loss = 0.340, train_acc = 0.800 (3.299 sec/step)
step 30360 loss = 0.220, train_acc = 0.900 (3.285 sec/step)
step 30370 loss = 0.353, train_acc = 0.900 (3.240 sec/step)
step 30380 loss = 0.329, train_acc = 0.900 (3.316 sec/step)
step 30390 loss = 1.245, train_acc = 0.600 (3.311 sec/step)
VALIDATION acc = 0.516 (3.609 sec)
step 30400 loss = 0.044, train_acc = 1.000 (3.278 sec/step)
step 30410 loss = 0.034, train_acc = 1.000 (3.287 sec/step)
step 30420 loss = 0.247, train_acc = 0.800 (3.321 sec/step)
step 30430 loss = 0.034, train_acc = 1.000 (3.367 sec/step)
step 30440 loss = 0.012, train_acc = 1.000 (3.314 sec/step)
step 30450 loss = 0.149, train_acc = 1.000 (3.326 sec/step)
step 30460 loss = 0.009, train_acc = 1.000 (3.261 sec/step)
step 30470 loss = 0.042, train_acc = 1.000 (3.372 sec/step)
step 30480 loss = 0.115, train_acc = 0.900 (3.254 sec/step)
step 30490 loss = 0.020, train_acc = 1.000 (3.324 sec/step)
step 30500 loss = 0.816, train_acc = 0.800 (3.287 sec/step)
step 30510 loss = 0.734, train_acc = 0.900 (3.355 sec/step)
step 30520 loss = 0.127, train_acc = 1.000 (3.268 sec/step)
step 30530 loss = 0.029, train_acc = 1.000 (3.312 sec/step)
step 30540 loss = 0.126, train_acc = 0.900 (3.261 sec/step)
step 30550 loss = 0.025, train_acc = 1.000 (3.309 sec/step)
step 30560 loss = 0.072, train_acc = 1.000 (3.336 sec/step)
step 30570 loss = 0.189, train_acc = 0.900 (3.277 sec/step)
step 30580 loss = 0.503, train_acc = 0.800 (3.350 sec/step)
step 30590 loss = 0.002, train_acc = 1.000 (3.252 sec/step)
step 30600 loss = 0.245, train_acc = 0.900 (3.319 sec/step)
step 30610 loss = 0.062, train_acc = 1.000 (3.307 sec/step)
step 30620 loss = 0.015, train_acc = 1.000 (3.359 sec/step)
step 30630 loss = 0.053, train_acc = 1.000 (3.285 sec/step)
step 30640 loss = 0.734, train_acc = 0.900 (3.297 sec/step)
step 30650 loss = 0.154, train_acc = 1.000 (3.352 sec/step)
step 30660 loss = 0.062, train_acc = 1.000 (3.339 sec/step)
step 30670 loss = 0.261, train_acc = 0.900 (3.295 sec/step)
step 30680 loss = 0.136, train_acc = 0.900 (3.274 sec/step)
step 30690 loss = 0.057, train_acc = 1.000 (3.266 sec/step)
step 30700 loss = 0.064, train_acc = 1.000 (3.282 sec/step)
step 30710 loss = 0.293, train_acc = 0.900 (3.252 sec/step)
step 30720 loss = 0.073, train_acc = 1.000 (3.255 sec/step)
step 30730 loss = 0.603, train_acc = 0.900 (3.254 sec/step)
step 30740 loss = 0.388, train_acc = 0.800 (3.288 sec/step)
step 30750 loss = 0.261, train_acc = 0.900 (3.256 sec/step)
step 30760 loss = 1.135, train_acc = 0.800 (3.261 sec/step)
step 30770 loss = 0.010, train_acc = 1.000 (3.275 sec/step)
step 30780 loss = 0.007, train_acc = 1.000 (3.301 sec/step)
step 30790 loss = 0.001, train_acc = 1.000 (3.303 sec/step)
step 30800 loss = 0.651, train_acc = 0.900 (3.277 sec/step)
step 30810 loss = 0.267, train_acc = 0.900 (3.274 sec/step)
step 30820 loss = 0.029, train_acc = 1.000 (3.311 sec/step)
step 30830 loss = 0.009, train_acc = 1.000 (3.378 sec/step)
step 30840 loss = 0.610, train_acc = 0.900 (3.273 sec/step)
step 30850 loss = 0.105, train_acc = 0.900 (3.263 sec/step)
step 30860 loss = 1.185, train_acc = 0.800 (3.302 sec/step)
step 30870 loss = 0.061, train_acc = 1.000 (3.275 sec/step)
step 30880 loss = 0.453, train_acc = 0.800 (3.292 sec/step)
step 30890 loss = 0.129, train_acc = 1.000 (3.318 sec/step)
step 30900 loss = 0.042, train_acc = 1.000 (3.334 sec/step)
step 30910 loss = 0.117, train_acc = 1.000 (3.284 sec/step)
step 30920 loss = 0.083, train_acc = 1.000 (3.297 sec/step)
step 30930 loss = 0.230, train_acc = 0.900 (3.368 sec/step)
step 30940 loss = 0.500, train_acc = 0.800 (3.264 sec/step)
step 30950 loss = 0.007, train_acc = 1.000 (3.290 sec/step)
step 30960 loss = 0.335, train_acc = 0.900 (3.299 sec/step)
step 30970 loss = 0.129, train_acc = 1.000 (3.331 sec/step)
step 30980 loss = 0.499, train_acc = 0.900 (3.274 sec/step)
step 30990 loss = 0.119, train_acc = 1.000 (3.317 sec/step)
step 31000 loss = 0.298, train_acc = 0.900 (3.272 sec/step)
step 31010 loss = 0.342, train_acc = 0.900 (3.309 sec/step)
step 31020 loss = 0.069, train_acc = 1.000 (3.350 sec/step)
step 31030 loss = 1.016, train_acc = 0.900 (3.288 sec/step)
step 31040 loss = 0.276, train_acc = 0.800 (3.305 sec/step)
step 31050 loss = 0.053, train_acc = 1.000 (3.360 sec/step)
step 31060 loss = 0.328, train_acc = 0.900 (3.290 sec/step)
step 31070 loss = 0.158, train_acc = 0.900 (3.333 sec/step)
step 31080 loss = 0.320, train_acc = 0.900 (3.273 sec/step)
step 31090 loss = 0.253, train_acc = 0.900 (3.283 sec/step)
step 31100 loss = 0.869, train_acc = 0.700 (3.297 sec/step)
step 31110 loss = 0.135, train_acc = 0.900 (3.313 sec/step)
step 31120 loss = 0.063, train_acc = 1.000 (3.330 sec/step)
step 31130 loss = 0.815, train_acc = 0.900 (3.332 sec/step)
step 31140 loss = 0.194, train_acc = 0.900 (3.253 sec/step)
step 31150 loss = 0.260, train_acc = 0.900 (3.326 sec/step)
step 31160 loss = 0.034, train_acc = 1.000 (3.292 sec/step)
step 31170 loss = 0.335, train_acc = 0.900 (3.312 sec/step)
step 31180 loss = 0.881, train_acc = 0.800 (3.330 sec/step)
step 31190 loss = 0.032, train_acc = 1.000 (3.264 sec/step)
step 31200 loss = 0.081, train_acc = 1.000 (3.343 sec/step)
step 31210 loss = 0.043, train_acc = 1.000 (3.351 sec/step)
step 31220 loss = 0.007, train_acc = 1.000 (3.325 sec/step)
step 31230 loss = 0.033, train_acc = 1.000 (3.281 sec/step)
step 31240 loss = 0.496, train_acc = 0.800 (3.337 sec/step)
step 31250 loss = 0.039, train_acc = 1.000 (3.342 sec/step)
step 31260 loss = 0.089, train_acc = 1.000 (3.253 sec/step)
step 31270 loss = 0.398, train_acc = 0.900 (3.321 sec/step)
step 31280 loss = 1.055, train_acc = 0.800 (3.302 sec/step)
step 31290 loss = 0.629, train_acc = 0.800 (3.282 sec/step)
step 31300 loss = 0.022, train_acc = 1.000 (3.309 sec/step)
step 31310 loss = 0.217, train_acc = 0.900 (3.347 sec/step)
step 31320 loss = 0.046, train_acc = 1.000 (3.316 sec/step)
step 31330 loss = 0.002, train_acc = 1.000 (3.315 sec/step)
step 31340 loss = 0.059, train_acc = 1.000 (3.340 sec/step)
step 31350 loss = 1.238, train_acc = 0.600 (3.281 sec/step)
step 31360 loss = 0.325, train_acc = 0.900 (3.343 sec/step)
step 31370 loss = 0.304, train_acc = 0.800 (3.296 sec/step)
step 31380 loss = 0.358, train_acc = 0.900 (3.285 sec/step)
step 31390 loss = 0.871, train_acc = 0.800 (3.258 sec/step)
step 31400 loss = 0.731, train_acc = 0.800 (3.338 sec/step)
step 31410 loss = 0.290, train_acc = 0.900 (3.357 sec/step)
step 31420 loss = 0.161, train_acc = 0.900 (3.381 sec/step)
step 31430 loss = 0.001, train_acc = 1.000 (3.296 sec/step)
step 31440 loss = 0.224, train_acc = 0.900 (3.298 sec/step)
step 31450 loss = 0.109, train_acc = 0.900 (3.325 sec/step)
step 31460 loss = 0.343, train_acc = 0.900 (3.307 sec/step)
step 31470 loss = 0.002, train_acc = 1.000 (3.300 sec/step)
step 31480 loss = 0.278, train_acc = 0.900 (3.280 sec/step)
step 31490 loss = 0.705, train_acc = 0.700 (3.252 sec/step)
step 31500 loss = 0.041, train_acc = 1.000 (3.335 sec/step)
step 31510 loss = 0.315, train_acc = 0.800 (3.300 sec/step)
step 31520 loss = 1.521, train_acc = 0.900 (3.260 sec/step)
step 31530 loss = 0.152, train_acc = 0.900 (3.303 sec/step)
step 31540 loss = 1.096, train_acc = 0.900 (3.338 sec/step)
step 31550 loss = 0.003, train_acc = 1.000 (3.313 sec/step)
step 31560 loss = 1.408, train_acc = 0.700 (3.347 sec/step)
step 31570 loss = 0.149, train_acc = 1.000 (3.296 sec/step)
step 31580 loss = 0.134, train_acc = 1.000 (3.252 sec/step)
step 31590 loss = 0.111, train_acc = 1.000 (3.351 sec/step)
step 31600 loss = 0.896, train_acc = 0.700 (3.352 sec/step)
step 31610 loss = 0.195, train_acc = 0.900 (3.300 sec/step)
step 31620 loss = 0.034, train_acc = 1.000 (3.277 sec/step)
step 31630 loss = 0.394, train_acc = 0.900 (3.316 sec/step)
step 31640 loss = 0.042, train_acc = 1.000 (3.285 sec/step)
step 31650 loss = 0.076, train_acc = 1.000 (3.331 sec/step)
step 31660 loss = 0.307, train_acc = 0.900 (3.311 sec/step)
step 31670 loss = 0.015, train_acc = 1.000 (3.348 sec/step)
step 31680 loss = 0.002, train_acc = 1.000 (3.393 sec/step)
step 31690 loss = 0.393, train_acc = 0.900 (3.260 sec/step)
step 31700 loss = 0.007, train_acc = 1.000 (3.306 sec/step)
step 31710 loss = 0.560, train_acc = 0.900 (3.331 sec/step)
step 31720 loss = 0.166, train_acc = 0.900 (3.267 sec/step)
step 31730 loss = 0.328, train_acc = 0.900 (3.286 sec/step)
step 31740 loss = 0.666, train_acc = 0.800 (3.295 sec/step)
step 31750 loss = 0.005, train_acc = 1.000 (3.268 sec/step)
step 31760 loss = 0.641, train_acc = 0.800 (3.337 sec/step)
step 31770 loss = 0.741, train_acc = 0.900 (3.326 sec/step)
step 31780 loss = 0.041, train_acc = 1.000 (3.316 sec/step)
step 31790 loss = 0.157, train_acc = 1.000 (3.318 sec/step)
step 31800 loss = 0.042, train_acc = 1.000 (3.319 sec/step)
step 31810 loss = 0.144, train_acc = 0.900 (3.256 sec/step)
step 31820 loss = 0.665, train_acc = 0.700 (3.332 sec/step)
step 31830 loss = 0.147, train_acc = 0.900 (3.264 sec/step)
step 31840 loss = 0.137, train_acc = 0.900 (3.286 sec/step)
step 31850 loss = 0.031, train_acc = 1.000 (3.297 sec/step)
step 31860 loss = 0.477, train_acc = 0.800 (3.283 sec/step)
step 31870 loss = 0.020, train_acc = 1.000 (3.315 sec/step)
step 31880 loss = 0.195, train_acc = 0.900 (3.283 sec/step)
step 31890 loss = 0.914, train_acc = 0.900 (3.414 sec/step)
step 31900 loss = 0.015, train_acc = 1.000 (3.266 sec/step)
step 31910 loss = 1.402, train_acc = 0.800 (3.353 sec/step)
step 31920 loss = 0.538, train_acc = 0.900 (3.305 sec/step)
step 31930 loss = 0.023, train_acc = 1.000 (3.366 sec/step)
step 31940 loss = 0.915, train_acc = 0.800 (3.338 sec/step)
step 31950 loss = 0.207, train_acc = 0.900 (3.303 sec/step)
step 31960 loss = 0.652, train_acc = 0.800 (3.292 sec/step)
step 31970 loss = 0.003, train_acc = 1.000 (3.274 sec/step)
step 31980 loss = 0.045, train_acc = 1.000 (3.272 sec/step)
step 31990 loss = 0.050, train_acc = 1.000 (3.298 sec/step)
step 32000 loss = 0.112, train_acc = 1.000 (3.303 sec/step)
step 32010 loss = 0.699, train_acc = 0.900 (3.333 sec/step)
step 32020 loss = 0.026, train_acc = 1.000 (3.251 sec/step)
step 32030 loss = 0.426, train_acc = 0.800 (3.258 sec/step)
step 32040 loss = 0.465, train_acc = 0.900 (3.369 sec/step)
step 32050 loss = 0.699, train_acc = 0.800 (3.323 sec/step)
step 32060 loss = 0.439, train_acc = 0.800 (3.304 sec/step)
step 32070 loss = 0.015, train_acc = 1.000 (3.313 sec/step)
step 32080 loss = 0.004, train_acc = 1.000 (3.284 sec/step)
step 32090 loss = 0.001, train_acc = 1.000 (3.297 sec/step)
step 32100 loss = 0.000, train_acc = 1.000 (3.290 sec/step)
step 32110 loss = 0.607, train_acc = 0.800 (3.292 sec/step)
step 32120 loss = 0.161, train_acc = 1.000 (3.337 sec/step)
step 32130 loss = 0.840, train_acc = 0.600 (3.375 sec/step)
step 32140 loss = 0.012, train_acc = 1.000 (3.327 sec/step)
step 32150 loss = 0.946, train_acc = 0.700 (3.303 sec/step)
step 32160 loss = 0.201, train_acc = 1.000 (3.284 sec/step)
step 32170 loss = 0.015, train_acc = 1.000 (3.306 sec/step)
step 32180 loss = 0.008, train_acc = 1.000 (3.274 sec/step)
step 32190 loss = 1.019, train_acc = 0.800 (3.320 sec/step)
step 32200 loss = 2.159, train_acc = 0.500 (3.292 sec/step)
step 32210 loss = 1.230, train_acc = 0.800 (3.297 sec/step)
step 32220 loss = 2.087, train_acc = 0.500 (3.298 sec/step)
step 32230 loss = 1.304, train_acc = 0.600 (3.306 sec/step)
step 32240 loss = 1.508, train_acc = 0.500 (3.354 sec/step)
step 32250 loss = 1.173, train_acc = 0.800 (3.310 sec/step)
step 32260 loss = 1.201, train_acc = 0.800 (3.310 sec/step)
step 32270 loss = 0.557, train_acc = 0.900 (3.309 sec/step)
step 32280 loss = 0.244, train_acc = 1.000 (3.329 sec/step)
step 32290 loss = 0.223, train_acc = 0.900 (3.274 sec/step)
VALIDATION acc = 0.526 (3.617 sec)
step 32300 loss = 0.077, train_acc = 1.000 (3.285 sec/step)
step 32310 loss = 0.181, train_acc = 0.900 (3.327 sec/step)
step 32320 loss = 0.033, train_acc = 1.000 (3.286 sec/step)
step 32330 loss = 0.058, train_acc = 1.000 (3.292 sec/step)
step 32340 loss = 0.171, train_acc = 0.900 (3.274 sec/step)
step 32350 loss = 1.088, train_acc = 0.800 (3.301 sec/step)
step 32360 loss = 0.941, train_acc = 0.800 (3.320 sec/step)
step 32370 loss = 0.104, train_acc = 0.900 (3.293 sec/step)
step 32380 loss = 0.081, train_acc = 0.900 (3.329 sec/step)
step 32390 loss = 0.409, train_acc = 0.900 (3.318 sec/step)
step 32400 loss = 0.006, train_acc = 1.000 (3.280 sec/step)
step 32410 loss = 0.000, train_acc = 1.000 (3.311 sec/step)
step 32420 loss = 0.851, train_acc = 0.900 (3.316 sec/step)
step 32430 loss = 0.037, train_acc = 1.000 (3.329 sec/step)
step 32440 loss = 0.854, train_acc = 0.700 (3.342 sec/step)
step 32450 loss = 0.045, train_acc = 1.000 (3.256 sec/step)
step 32460 loss = 0.550, train_acc = 0.900 (3.376 sec/step)
step 32470 loss = 0.015, train_acc = 1.000 (3.304 sec/step)
step 32480 loss = 0.048, train_acc = 1.000 (3.257 sec/step)
step 32490 loss = 0.131, train_acc = 0.900 (3.276 sec/step)
step 32500 loss = 0.562, train_acc = 0.700 (3.334 sec/step)
step 32510 loss = 0.135, train_acc = 0.900 (3.338 sec/step)
step 32520 loss = 0.236, train_acc = 0.900 (3.339 sec/step)
step 32530 loss = 0.084, train_acc = 1.000 (3.325 sec/step)
step 32540 loss = 0.004, train_acc = 1.000 (3.328 sec/step)
step 32550 loss = 0.094, train_acc = 1.000 (3.300 sec/step)
step 32560 loss = 0.369, train_acc = 0.800 (3.394 sec/step)
step 32570 loss = 0.088, train_acc = 1.000 (3.313 sec/step)
step 32580 loss = 0.002, train_acc = 1.000 (3.314 sec/step)
step 32590 loss = 0.010, train_acc = 1.000 (3.329 sec/step)
step 32600 loss = 0.165, train_acc = 0.900 (3.280 sec/step)
step 32610 loss = 0.183, train_acc = 0.900 (3.281 sec/step)
step 32620 loss = 0.322, train_acc = 0.900 (3.319 sec/step)
step 32630 loss = 0.354, train_acc = 0.900 (3.322 sec/step)
step 32640 loss = 0.172, train_acc = 1.000 (3.272 sec/step)
step 32650 loss = 0.211, train_acc = 0.900 (3.365 sec/step)
step 32660 loss = 0.249, train_acc = 0.800 (3.361 sec/step)
step 32670 loss = 0.171, train_acc = 0.900 (3.279 sec/step)
step 32680 loss = 0.602, train_acc = 0.900 (3.270 sec/step)
step 32690 loss = 0.027, train_acc = 1.000 (3.342 sec/step)
step 32700 loss = 0.840, train_acc = 0.700 (3.279 sec/step)
step 32710 loss = 0.324, train_acc = 0.900 (3.317 sec/step)
step 32720 loss = 0.184, train_acc = 0.900 (3.308 sec/step)
step 32730 loss = 0.941, train_acc = 0.700 (3.320 sec/step)
step 32740 loss = 0.251, train_acc = 0.900 (3.306 sec/step)
step 32750 loss = 0.203, train_acc = 0.900 (3.459 sec/step)
step 32760 loss = 0.931, train_acc = 0.900 (3.290 sec/step)
step 32770 loss = 0.111, train_acc = 0.900 (3.291 sec/step)
step 32780 loss = 0.033, train_acc = 1.000 (3.340 sec/step)
step 32790 loss = 0.024, train_acc = 1.000 (3.390 sec/step)
step 32800 loss = 1.066, train_acc = 0.900 (3.266 sec/step)
step 32810 loss = 0.397, train_acc = 0.900 (3.303 sec/step)
step 32820 loss = 0.303, train_acc = 0.800 (3.304 sec/step)
step 32830 loss = 0.180, train_acc = 1.000 (3.354 sec/step)
step 32840 loss = 0.022, train_acc = 1.000 (3.376 sec/step)
step 32850 loss = 0.003, train_acc = 1.000 (3.305 sec/step)
step 32860 loss = 0.006, train_acc = 1.000 (3.262 sec/step)
step 32870 loss = 0.435, train_acc = 0.800 (3.353 sec/step)
step 32880 loss = 0.190, train_acc = 0.900 (3.324 sec/step)
step 32890 loss = 0.039, train_acc = 1.000 (3.306 sec/step)
step 32900 loss = 0.078, train_acc = 1.000 (3.301 sec/step)
step 32910 loss = 0.090, train_acc = 1.000 (3.330 sec/step)
step 32920 loss = 0.298, train_acc = 0.900 (3.317 sec/step)
step 32930 loss = 0.240, train_acc = 0.900 (3.268 sec/step)
step 32940 loss = 1.241, train_acc = 0.800 (3.290 sec/step)
step 32950 loss = 0.035, train_acc = 1.000 (3.319 sec/step)
step 32960 loss = 0.002, train_acc = 1.000 (3.283 sec/step)
step 32970 loss = 0.138, train_acc = 0.900 (3.252 sec/step)
step 32980 loss = 0.068, train_acc = 1.000 (3.352 sec/step)
step 32990 loss = 0.214, train_acc = 1.000 (3.359 sec/step)
step 33000 loss = 0.593, train_acc = 0.900 (3.279 sec/step)
step 33010 loss = 0.004, train_acc = 1.000 (3.302 sec/step)
step 33020 loss = 0.730, train_acc = 0.800 (3.295 sec/step)
step 33030 loss = 0.176, train_acc = 0.900 (3.343 sec/step)
step 33040 loss = 0.000, train_acc = 1.000 (3.317 sec/step)
step 33050 loss = 0.055, train_acc = 1.000 (3.306 sec/step)
step 33060 loss = 0.287, train_acc = 0.900 (3.279 sec/step)
step 33070 loss = 0.447, train_acc = 0.900 (3.293 sec/step)
step 33080 loss = 0.026, train_acc = 1.000 (3.291 sec/step)
step 33090 loss = 0.022, train_acc = 1.000 (3.265 sec/step)
step 33100 loss = 2.532, train_acc = 0.800 (3.337 sec/step)
step 33110 loss = 0.315, train_acc = 0.900 (3.332 sec/step)
step 33120 loss = 0.463, train_acc = 0.800 (3.296 sec/step)
step 33130 loss = 0.004, train_acc = 1.000 (3.302 sec/step)
step 33140 loss = 0.780, train_acc = 0.800 (3.308 sec/step)
step 33150 loss = 0.163, train_acc = 1.000 (3.313 sec/step)
step 33160 loss = 0.549, train_acc = 0.900 (3.282 sec/step)
step 33170 loss = 0.157, train_acc = 0.900 (3.303 sec/step)
step 33180 loss = 0.027, train_acc = 1.000 (3.291 sec/step)
step 33190 loss = 0.033, train_acc = 1.000 (3.286 sec/step)
step 33200 loss = 0.002, train_acc = 1.000 (3.269 sec/step)
step 33210 loss = 0.124, train_acc = 1.000 (3.302 sec/step)
step 33220 loss = 0.281, train_acc = 0.800 (3.255 sec/step)
step 33230 loss = 0.004, train_acc = 1.000 (3.320 sec/step)
step 33240 loss = 0.085, train_acc = 1.000 (3.296 sec/step)
step 33250 loss = 0.054, train_acc = 1.000 (3.253 sec/step)
step 33260 loss = 0.260, train_acc = 0.900 (3.301 sec/step)
step 33270 loss = 0.736, train_acc = 0.900 (3.325 sec/step)
step 33280 loss = 0.357, train_acc = 0.800 (3.265 sec/step)
step 33290 loss = 0.137, train_acc = 0.900 (3.251 sec/step)
step 33300 loss = 0.011, train_acc = 1.000 (3.383 sec/step)
step 33310 loss = 1.115, train_acc = 0.800 (3.339 sec/step)
step 33320 loss = 0.280, train_acc = 0.900 (3.257 sec/step)
step 33330 loss = 0.261, train_acc = 0.900 (3.328 sec/step)
step 33340 loss = 0.373, train_acc = 0.900 (3.321 sec/step)
step 33350 loss = 0.675, train_acc = 0.700 (3.319 sec/step)
step 33360 loss = 0.082, train_acc = 1.000 (3.314 sec/step)
step 33370 loss = 0.004, train_acc = 1.000 (3.317 sec/step)
step 33380 loss = 0.225, train_acc = 0.900 (3.297 sec/step)
step 33390 loss = 0.035, train_acc = 1.000 (3.283 sec/step)
step 33400 loss = 0.051, train_acc = 1.000 (3.285 sec/step)
step 33410 loss = 0.063, train_acc = 1.000 (3.326 sec/step)
step 33420 loss = 0.000, train_acc = 1.000 (3.332 sec/step)
step 33430 loss = 0.060, train_acc = 1.000 (3.331 sec/step)
step 33440 loss = 0.096, train_acc = 1.000 (3.332 sec/step)
step 33450 loss = 0.101, train_acc = 0.900 (3.278 sec/step)
step 33460 loss = 0.085, train_acc = 1.000 (3.309 sec/step)
step 33470 loss = 0.245, train_acc = 0.900 (3.328 sec/step)
step 33480 loss = 0.186, train_acc = 0.900 (3.300 sec/step)
step 33490 loss = 0.070, train_acc = 1.000 (3.259 sec/step)
step 33500 loss = 0.192, train_acc = 0.900 (3.357 sec/step)
step 33510 loss = 0.171, train_acc = 0.900 (3.322 sec/step)
step 33520 loss = 0.189, train_acc = 0.900 (3.279 sec/step)
step 33530 loss = 0.183, train_acc = 1.000 (3.317 sec/step)
step 33540 loss = 0.241, train_acc = 0.900 (3.333 sec/step)
step 33550 loss = 0.859, train_acc = 0.700 (3.395 sec/step)
step 33560 loss = 0.678, train_acc = 0.900 (3.295 sec/step)
step 33570 loss = 0.312, train_acc = 0.900 (3.275 sec/step)
step 33580 loss = 0.723, train_acc = 0.800 (3.304 sec/step)
step 33590 loss = 0.718, train_acc = 0.800 (3.313 sec/step)
step 33600 loss = 0.154, train_acc = 0.900 (3.328 sec/step)
step 33610 loss = 0.062, train_acc = 1.000 (3.358 sec/step)
step 33620 loss = 0.092, train_acc = 1.000 (3.332 sec/step)
step 33630 loss = 0.445, train_acc = 0.900 (3.266 sec/step)
step 33640 loss = 0.027, train_acc = 1.000 (3.315 sec/step)
step 33650 loss = 0.322, train_acc = 0.900 (3.295 sec/step)
step 33660 loss = 0.006, train_acc = 1.000 (3.328 sec/step)
step 33670 loss = 0.061, train_acc = 1.000 (3.301 sec/step)
step 33680 loss = 0.349, train_acc = 0.900 (3.292 sec/step)
step 33690 loss = 1.927, train_acc = 0.600 (3.305 sec/step)
step 33700 loss = 0.012, train_acc = 1.000 (3.280 sec/step)
step 33710 loss = 0.316, train_acc = 0.900 (3.274 sec/step)
step 33720 loss = 0.208, train_acc = 0.900 (3.317 sec/step)
step 33730 loss = 0.070, train_acc = 1.000 (3.354 sec/step)
step 33740 loss = 0.224, train_acc = 0.900 (3.332 sec/step)
step 33750 loss = 0.077, train_acc = 1.000 (3.279 sec/step)
step 33760 loss = 0.044, train_acc = 1.000 (3.300 sec/step)
step 33770 loss = 0.142, train_acc = 1.000 (3.282 sec/step)
step 33780 loss = 0.186, train_acc = 0.900 (3.328 sec/step)
step 33790 loss = 0.399, train_acc = 0.800 (3.311 sec/step)
step 33800 loss = 0.285, train_acc = 0.900 (3.305 sec/step)
step 33810 loss = 0.181, train_acc = 0.900 (3.311 sec/step)
step 33820 loss = 0.530, train_acc = 0.900 (3.286 sec/step)
step 33830 loss = 0.208, train_acc = 0.900 (3.262 sec/step)
step 33840 loss = 1.580, train_acc = 0.700 (3.343 sec/step)
step 33850 loss = 1.374, train_acc = 0.600 (3.379 sec/step)
step 33860 loss = 0.364, train_acc = 0.900 (3.341 sec/step)
step 33870 loss = 0.278, train_acc = 0.900 (3.275 sec/step)
step 33880 loss = 0.215, train_acc = 0.900 (3.268 sec/step)
step 33890 loss = 0.001, train_acc = 1.000 (3.273 sec/step)
step 33900 loss = 0.220, train_acc = 0.900 (3.332 sec/step)
step 33910 loss = 0.031, train_acc = 1.000 (3.265 sec/step)
step 33920 loss = 0.229, train_acc = 0.900 (3.317 sec/step)
step 33930 loss = 0.570, train_acc = 0.800 (3.324 sec/step)
step 33940 loss = 0.614, train_acc = 0.800 (3.271 sec/step)
step 33950 loss = 0.305, train_acc = 0.900 (3.438 sec/step)
step 33960 loss = 0.055, train_acc = 1.000 (3.322 sec/step)
step 33970 loss = 0.243, train_acc = 0.900 (3.255 sec/step)
step 33980 loss = 0.917, train_acc = 0.900 (3.287 sec/step)
step 33990 loss = 0.214, train_acc = 0.900 (3.312 sec/step)
step 34000 loss = 0.108, train_acc = 1.000 (3.292 sec/step)
step 34010 loss = 0.074, train_acc = 1.000 (3.268 sec/step)
step 34020 loss = 0.562, train_acc = 0.700 (3.359 sec/step)
step 34030 loss = 0.308, train_acc = 0.900 (3.329 sec/step)
step 34040 loss = 0.022, train_acc = 1.000 (3.311 sec/step)
step 34050 loss = 0.071, train_acc = 1.000 (3.294 sec/step)
step 34060 loss = 0.006, train_acc = 1.000 (3.301 sec/step)
step 34070 loss = 0.227, train_acc = 0.900 (3.301 sec/step)
step 34080 loss = 0.725, train_acc = 0.800 (3.269 sec/step)
step 34090 loss = 0.066, train_acc = 1.000 (3.256 sec/step)
step 34100 loss = 0.635, train_acc = 0.800 (3.326 sec/step)
step 34110 loss = 0.647, train_acc = 0.800 (3.350 sec/step)
step 34120 loss = 0.085, train_acc = 1.000 (3.345 sec/step)
step 34130 loss = 0.131, train_acc = 0.900 (3.296 sec/step)
step 34140 loss = 1.139, train_acc = 0.800 (3.327 sec/step)
step 34150 loss = 0.007, train_acc = 1.000 (3.298 sec/step)
step 34160 loss = 0.113, train_acc = 1.000 (3.278 sec/step)
step 34170 loss = 0.009, train_acc = 1.000 (3.311 sec/step)
step 34180 loss = 0.016, train_acc = 1.000 (3.377 sec/step)
step 34190 loss = 0.121, train_acc = 0.900 (3.323 sec/step)
VALIDATION acc = 0.543 (3.652 sec)
step 34200 loss = 0.018, train_acc = 1.000 (3.305 sec/step)
step 34210 loss = 0.087, train_acc = 1.000 (3.291 sec/step)
step 34220 loss = 0.208, train_acc = 0.900 (3.278 sec/step)
step 34230 loss = 0.143, train_acc = 1.000 (3.268 sec/step)
step 34240 loss = 0.023, train_acc = 1.000 (3.293 sec/step)
step 34250 loss = 0.536, train_acc = 0.800 (3.280 sec/step)
step 34260 loss = 0.003, train_acc = 1.000 (3.309 sec/step)
step 34270 loss = 0.016, train_acc = 1.000 (3.312 sec/step)
step 34280 loss = 0.173, train_acc = 0.900 (3.334 sec/step)
step 34290 loss = 0.277, train_acc = 0.800 (3.292 sec/step)
step 34300 loss = 0.279, train_acc = 0.900 (3.271 sec/step)
step 34310 loss = 1.419, train_acc = 0.800 (3.351 sec/step)
step 34320 loss = 0.183, train_acc = 0.900 (3.298 sec/step)
step 34330 loss = 0.378, train_acc = 0.900 (3.329 sec/step)
step 34340 loss = 0.001, train_acc = 1.000 (3.283 sec/step)
step 34350 loss = 0.570, train_acc = 0.800 (3.380 sec/step)
step 34360 loss = 0.126, train_acc = 1.000 (3.278 sec/step)
step 34370 loss = 0.004, train_acc = 1.000 (3.315 sec/step)
step 34380 loss = 0.004, train_acc = 1.000 (3.330 sec/step)
step 34390 loss = 0.000, train_acc = 1.000 (3.296 sec/step)
step 34400 loss = 0.157, train_acc = 1.000 (3.305 sec/step)
step 34410 loss = 0.180, train_acc = 0.900 (3.301 sec/step)
step 34420 loss = 1.285, train_acc = 0.800 (3.281 sec/step)
step 34430 loss = 0.141, train_acc = 0.900 (3.301 sec/step)
step 34440 loss = 0.344, train_acc = 0.900 (3.296 sec/step)
step 34450 loss = 0.026, train_acc = 1.000 (3.350 sec/step)
step 34460 loss = 0.180, train_acc = 1.000 (3.305 sec/step)
step 34470 loss = 1.182, train_acc = 0.700 (3.323 sec/step)
step 34480 loss = 0.950, train_acc = 0.800 (3.271 sec/step)
step 34490 loss = 0.032, train_acc = 1.000 (3.327 sec/step)
step 34500 loss = 0.006, train_acc = 1.000 (3.321 sec/step)
step 34510 loss = 0.425, train_acc = 0.800 (3.299 sec/step)
step 34520 loss = 0.344, train_acc = 0.800 (3.279 sec/step)
step 34530 loss = 0.539, train_acc = 0.800 (3.272 sec/step)
step 34540 loss = 0.781, train_acc = 0.800 (3.285 sec/step)
step 34550 loss = 0.079, train_acc = 1.000 (3.298 sec/step)
step 34560 loss = 0.047, train_acc = 1.000 (3.316 sec/step)
step 34570 loss = 0.009, train_acc = 1.000 (3.311 sec/step)
step 34580 loss = 0.066, train_acc = 1.000 (3.290 sec/step)
step 34590 loss = 0.045, train_acc = 1.000 (3.260 sec/step)
step 34600 loss = 1.290, train_acc = 0.700 (3.362 sec/step)
step 34610 loss = 0.229, train_acc = 0.900 (3.291 sec/step)
step 34620 loss = 0.214, train_acc = 0.900 (3.273 sec/step)
step 34630 loss = 0.159, train_acc = 0.900 (3.315 sec/step)
step 34640 loss = 1.275, train_acc = 0.800 (3.350 sec/step)
step 34650 loss = 0.351, train_acc = 0.900 (3.337 sec/step)
step 34660 loss = 0.028, train_acc = 1.000 (3.306 sec/step)
step 34670 loss = 0.189, train_acc = 0.900 (3.337 sec/step)
step 34680 loss = 0.001, train_acc = 1.000 (3.309 sec/step)
step 34690 loss = 1.692, train_acc = 0.800 (3.354 sec/step)
step 34700 loss = 0.834, train_acc = 0.700 (3.288 sec/step)
step 34710 loss = 0.315, train_acc = 0.900 (3.331 sec/step)
step 34720 loss = 0.076, train_acc = 1.000 (3.339 sec/step)
step 34730 loss = 0.012, train_acc = 1.000 (3.308 sec/step)
step 34740 loss = 0.039, train_acc = 1.000 (3.286 sec/step)
step 34750 loss = 0.006, train_acc = 1.000 (3.302 sec/step)
step 34760 loss = 0.333, train_acc = 0.900 (3.350 sec/step)
step 34770 loss = 0.200, train_acc = 0.900 (3.343 sec/step)
step 34780 loss = 0.103, train_acc = 1.000 (3.254 sec/step)
step 34790 loss = 0.037, train_acc = 1.000 (3.362 sec/step)
step 34800 loss = 0.039, train_acc = 1.000 (3.288 sec/step)
step 34810 loss = 2.006, train_acc = 0.900 (3.284 sec/step)
step 34820 loss = 0.839, train_acc = 0.700 (3.297 sec/step)
step 34830 loss = 0.207, train_acc = 1.000 (3.287 sec/step)
step 34840 loss = 0.039, train_acc = 1.000 (3.332 sec/step)
step 34850 loss = 0.295, train_acc = 0.900 (3.364 sec/step)
step 34860 loss = 0.002, train_acc = 1.000 (3.339 sec/step)
step 34870 loss = 0.486, train_acc = 0.900 (3.311 sec/step)
step 34880 loss = 0.040, train_acc = 1.000 (3.296 sec/step)
step 34890 loss = 0.052, train_acc = 1.000 (3.412 sec/step)
step 34900 loss = 0.164, train_acc = 1.000 (3.323 sec/step)
step 34910 loss = 0.854, train_acc = 0.800 (3.339 sec/step)
step 34920 loss = 0.507, train_acc = 0.800 (3.281 sec/step)
step 34930 loss = 0.211, train_acc = 1.000 (3.264 sec/step)
step 34940 loss = 0.121, train_acc = 0.900 (3.350 sec/step)
step 34950 loss = 0.379, train_acc = 0.900 (3.276 sec/step)
step 34960 loss = 0.051, train_acc = 1.000 (3.333 sec/step)
step 34970 loss = 0.287, train_acc = 0.900 (3.308 sec/step)
step 34980 loss = 0.012, train_acc = 1.000 (3.294 sec/step)
step 34990 loss = 0.004, train_acc = 1.000 (3.335 sec/step)
step 35000 loss = 0.121, train_acc = 0.900 (3.276 sec/step)
step 35010 loss = 1.074, train_acc = 0.700 (3.259 sec/step)
step 35020 loss = 0.002, train_acc = 1.000 (3.285 sec/step)
step 35030 loss = 0.281, train_acc = 0.900 (3.273 sec/step)
step 35040 loss = 0.176, train_acc = 1.000 (3.289 sec/step)
step 35050 loss = 0.011, train_acc = 1.000 (3.296 sec/step)
step 35060 loss = 0.305, train_acc = 0.800 (3.348 sec/step)
step 35070 loss = 0.211, train_acc = 0.900 (3.312 sec/step)
step 35080 loss = 0.171, train_acc = 0.900 (3.283 sec/step)
step 35090 loss = 0.722, train_acc = 0.800 (3.281 sec/step)
step 35100 loss = 0.367, train_acc = 0.800 (3.343 sec/step)
step 35110 loss = 0.697, train_acc = 0.800 (3.329 sec/step)
step 35120 loss = 0.012, train_acc = 1.000 (3.318 sec/step)
step 35130 loss = 0.016, train_acc = 1.000 (3.315 sec/step)
step 35140 loss = 0.456, train_acc = 0.900 (3.354 sec/step)
step 35150 loss = 0.139, train_acc = 0.900 (3.330 sec/step)
step 35160 loss = 0.002, train_acc = 1.000 (3.309 sec/step)
step 35170 loss = 0.249, train_acc = 0.900 (3.349 sec/step)
step 35180 loss = 0.364, train_acc = 0.900 (3.345 sec/step)
step 35190 loss = 0.284, train_acc = 0.900 (3.304 sec/step)
step 35200 loss = 0.008, train_acc = 1.000 (3.361 sec/step)
step 35210 loss = 0.093, train_acc = 1.000 (3.339 sec/step)
step 35220 loss = 1.192, train_acc = 0.900 (3.330 sec/step)
step 35230 loss = 0.124, train_acc = 0.900 (3.349 sec/step)
step 35240 loss = 0.071, train_acc = 1.000 (3.343 sec/step)
step 35250 loss = 0.043, train_acc = 1.000 (3.289 sec/step)
step 35260 loss = 0.085, train_acc = 1.000 (3.342 sec/step)
step 35270 loss = 0.219, train_acc = 0.900 (3.283 sec/step)
step 35280 loss = 0.525, train_acc = 0.800 (3.286 sec/step)
step 35290 loss = 0.154, train_acc = 0.900 (3.300 sec/step)
step 35300 loss = 0.076, train_acc = 1.000 (3.273 sec/step)
step 35310 loss = 0.317, train_acc = 0.900 (3.294 sec/step)
step 35320 loss = 0.003, train_acc = 1.000 (3.331 sec/step)
step 35330 loss = 0.124, train_acc = 0.900 (3.407 sec/step)
step 35340 loss = 0.205, train_acc = 0.800 (3.286 sec/step)
step 35350 loss = 0.825, train_acc = 0.800 (3.338 sec/step)
step 35360 loss = 0.091, train_acc = 1.000 (3.289 sec/step)
step 35370 loss = 0.064, train_acc = 1.000 (3.316 sec/step)
step 35380 loss = 0.020, train_acc = 1.000 (3.306 sec/step)
step 35390 loss = 0.219, train_acc = 1.000 (3.314 sec/step)
step 35400 loss = 0.166, train_acc = 1.000 (3.371 sec/step)
step 35410 loss = 0.140, train_acc = 0.900 (3.302 sec/step)
step 35420 loss = 0.074, train_acc = 1.000 (3.260 sec/step)
step 35430 loss = 0.006, train_acc = 1.000 (3.333 sec/step)
step 35440 loss = 0.024, train_acc = 1.000 (3.316 sec/step)
step 35450 loss = 0.074, train_acc = 1.000 (3.290 sec/step)
step 35460 loss = 0.221, train_acc = 0.900 (3.291 sec/step)
step 35470 loss = 0.359, train_acc = 0.900 (3.355 sec/step)
step 35480 loss = 0.028, train_acc = 1.000 (3.333 sec/step)
step 35490 loss = 0.006, train_acc = 1.000 (3.285 sec/step)
step 35500 loss = 0.011, train_acc = 1.000 (3.362 sec/step)
step 35510 loss = 0.328, train_acc = 0.900 (3.323 sec/step)
step 35520 loss = 0.630, train_acc = 0.800 (3.343 sec/step)
step 35530 loss = 0.136, train_acc = 1.000 (3.283 sec/step)
step 35540 loss = 0.113, train_acc = 0.900 (3.338 sec/step)
step 35550 loss = 0.628, train_acc = 0.900 (3.375 sec/step)
step 35560 loss = 0.395, train_acc = 0.900 (3.301 sec/step)
step 35570 loss = 0.027, train_acc = 1.000 (3.358 sec/step)
step 35580 loss = 0.056, train_acc = 1.000 (3.335 sec/step)
step 35590 loss = 0.796, train_acc = 0.800 (3.315 sec/step)
step 35600 loss = 0.047, train_acc = 1.000 (3.342 sec/step)
step 35610 loss = 0.927, train_acc = 0.800 (3.337 sec/step)
step 35620 loss = 0.426, train_acc = 0.800 (3.300 sec/step)
step 35630 loss = 0.174, train_acc = 0.900 (3.335 sec/step)
step 35640 loss = 0.015, train_acc = 1.000 (3.279 sec/step)
step 35650 loss = 1.106, train_acc = 0.700 (3.342 sec/step)
step 35660 loss = 0.023, train_acc = 1.000 (3.296 sec/step)
step 35670 loss = 0.173, train_acc = 1.000 (3.349 sec/step)
step 35680 loss = 0.142, train_acc = 1.000 (3.257 sec/step)
step 35690 loss = 0.233, train_acc = 0.900 (3.295 sec/step)
step 35700 loss = 0.752, train_acc = 0.900 (3.298 sec/step)
step 35710 loss = 0.583, train_acc = 0.900 (3.319 sec/step)
step 35720 loss = 0.015, train_acc = 1.000 (3.342 sec/step)
step 35730 loss = 0.010, train_acc = 1.000 (3.294 sec/step)
step 35740 loss = 0.041, train_acc = 1.000 (3.338 sec/step)
step 35750 loss = 1.817, train_acc = 0.700 (3.324 sec/step)
step 35760 loss = 0.122, train_acc = 1.000 (3.326 sec/step)
step 35770 loss = 0.328, train_acc = 0.800 (3.311 sec/step)
step 35780 loss = 0.056, train_acc = 1.000 (3.290 sec/step)
step 35790 loss = 0.081, train_acc = 1.000 (3.315 sec/step)
step 35800 loss = 0.154, train_acc = 0.900 (3.312 sec/step)
step 35810 loss = 0.496, train_acc = 0.800 (3.283 sec/step)
step 35820 loss = 0.005, train_acc = 1.000 (3.358 sec/step)
step 35830 loss = 0.238, train_acc = 1.000 (3.337 sec/step)
step 35840 loss = 1.900, train_acc = 0.700 (3.299 sec/step)
step 35850 loss = 0.064, train_acc = 1.000 (3.311 sec/step)
step 35860 loss = 0.333, train_acc = 0.900 (3.268 sec/step)
step 35870 loss = 0.017, train_acc = 1.000 (3.279 sec/step)
step 35880 loss = 0.014, train_acc = 1.000 (3.333 sec/step)
step 35890 loss = 0.570, train_acc = 0.600 (3.250 sec/step)
step 35900 loss = 0.267, train_acc = 1.000 (3.324 sec/step)
step 35910 loss = 0.229, train_acc = 0.900 (3.334 sec/step)
step 35920 loss = 0.063, train_acc = 1.000 (3.297 sec/step)
step 35930 loss = 0.393, train_acc = 0.900 (3.361 sec/step)
step 35940 loss = 0.170, train_acc = 0.900 (3.301 sec/step)
step 35950 loss = 0.372, train_acc = 0.900 (3.326 sec/step)
step 35960 loss = 0.011, train_acc = 1.000 (3.317 sec/step)
step 35970 loss = 0.009, train_acc = 1.000 (3.322 sec/step)
step 35980 loss = 0.310, train_acc = 0.900 (3.326 sec/step)
step 35990 loss = 0.311, train_acc = 0.900 (3.261 sec/step)
step 36000 loss = 0.349, train_acc = 0.900 (3.312 sec/step)
step 36010 loss = 1.281, train_acc = 0.700 (3.309 sec/step)
step 36020 loss = 0.099, train_acc = 0.900 (3.324 sec/step)
step 36030 loss = 1.412, train_acc = 0.600 (3.302 sec/step)
step 36040 loss = 1.029, train_acc = 0.600 (3.281 sec/step)
step 36050 loss = 0.151, train_acc = 1.000 (3.263 sec/step)
step 36060 loss = 1.142, train_acc = 0.700 (3.317 sec/step)
step 36070 loss = 1.882, train_acc = 0.600 (3.274 sec/step)
step 36080 loss = 0.465, train_acc = 0.900 (3.290 sec/step)
step 36090 loss = 0.902, train_acc = 0.700 (3.292 sec/step)
VALIDATION acc = 0.509 (3.634 sec)
step 36100 loss = 0.179, train_acc = 0.900 (3.352 sec/step)
step 36110 loss = 0.150, train_acc = 1.000 (3.299 sec/step)
step 36120 loss = 0.272, train_acc = 0.900 (3.445 sec/step)
step 36130 loss = 0.133, train_acc = 0.900 (3.286 sec/step)
step 36140 loss = 1.044, train_acc = 0.900 (3.278 sec/step)
step 36150 loss = 0.549, train_acc = 0.900 (3.256 sec/step)
step 36160 loss = 0.389, train_acc = 0.900 (3.302 sec/step)
step 36170 loss = 0.128, train_acc = 0.900 (3.283 sec/step)
step 36180 loss = 0.000, train_acc = 1.000 (3.324 sec/step)
step 36190 loss = 0.046, train_acc = 1.000 (3.258 sec/step)
step 36200 loss = 0.248, train_acc = 0.900 (3.327 sec/step)
step 36210 loss = 0.344, train_acc = 0.900 (3.333 sec/step)
step 36220 loss = 0.044, train_acc = 1.000 (3.325 sec/step)
step 36230 loss = 0.394, train_acc = 0.900 (3.298 sec/step)
step 36240 loss = 0.839, train_acc = 0.900 (3.311 sec/step)
step 36250 loss = 0.041, train_acc = 1.000 (3.320 sec/step)
step 36260 loss = 0.609, train_acc = 0.900 (3.325 sec/step)
step 36270 loss = 0.086, train_acc = 0.900 (3.336 sec/step)
step 36280 loss = 0.053, train_acc = 1.000 (3.352 sec/step)
step 36290 loss = 0.731, train_acc = 0.900 (3.360 sec/step)
step 36300 loss = 0.567, train_acc = 0.900 (3.317 sec/step)
step 36310 loss = 0.187, train_acc = 0.900 (3.332 sec/step)
step 36320 loss = 0.442, train_acc = 0.800 (3.306 sec/step)
step 36330 loss = 0.065, train_acc = 1.000 (3.418 sec/step)
step 36340 loss = 0.331, train_acc = 0.900 (3.321 sec/step)
step 36350 loss = 0.067, train_acc = 1.000 (3.258 sec/step)
step 36360 loss = 0.614, train_acc = 0.800 (3.317 sec/step)
step 36370 loss = 0.014, train_acc = 1.000 (3.332 sec/step)
step 36380 loss = 0.066, train_acc = 1.000 (3.314 sec/step)
step 36390 loss = 0.293, train_acc = 0.900 (3.281 sec/step)
step 36400 loss = 0.916, train_acc = 0.900 (3.357 sec/step)
step 36410 loss = 0.017, train_acc = 1.000 (3.267 sec/step)
step 36420 loss = 0.022, train_acc = 1.000 (3.351 sec/step)
step 36430 loss = 0.019, train_acc = 1.000 (3.316 sec/step)
step 36440 loss = 0.013, train_acc = 1.000 (3.289 sec/step)
step 36450 loss = 0.124, train_acc = 0.900 (3.299 sec/step)
step 36460 loss = 1.535, train_acc = 0.800 (3.313 sec/step)
step 36470 loss = 0.026, train_acc = 1.000 (3.327 sec/step)
step 36480 loss = 0.001, train_acc = 1.000 (3.318 sec/step)
step 36490 loss = 0.030, train_acc = 1.000 (3.311 sec/step)
step 36500 loss = 0.838, train_acc = 0.800 (3.280 sec/step)
step 36510 loss = 0.765, train_acc = 0.800 (3.296 sec/step)
step 36520 loss = 0.020, train_acc = 1.000 (3.277 sec/step)
step 36530 loss = 0.289, train_acc = 0.900 (3.344 sec/step)
step 36540 loss = 0.013, train_acc = 1.000 (3.331 sec/step)
step 36550 loss = 0.302, train_acc = 0.800 (3.266 sec/step)
step 36560 loss = 0.001, train_acc = 1.000 (3.334 sec/step)
step 36570 loss = 0.463, train_acc = 0.900 (3.310 sec/step)
step 36580 loss = 0.866, train_acc = 0.800 (3.409 sec/step)
step 36590 loss = 0.054, train_acc = 1.000 (3.248 sec/step)
step 36600 loss = 0.007, train_acc = 1.000 (3.282 sec/step)
step 36610 loss = 0.002, train_acc = 1.000 (3.268 sec/step)
step 36620 loss = 0.152, train_acc = 0.900 (3.322 sec/step)
step 36630 loss = 0.092, train_acc = 1.000 (3.319 sec/step)
step 36640 loss = 0.921, train_acc = 0.800 (3.347 sec/step)
step 36650 loss = 0.049, train_acc = 1.000 (3.279 sec/step)
step 36660 loss = 0.970, train_acc = 0.900 (3.273 sec/step)
step 36670 loss = 0.303, train_acc = 0.900 (3.361 sec/step)
step 36680 loss = 0.002, train_acc = 1.000 (3.344 sec/step)
step 36690 loss = 0.767, train_acc = 0.700 (3.341 sec/step)
step 36700 loss = 0.620, train_acc = 0.800 (3.285 sec/step)
step 36710 loss = 0.018, train_acc = 1.000 (3.265 sec/step)
step 36720 loss = 0.002, train_acc = 1.000 (3.361 sec/step)
step 36730 loss = 0.234, train_acc = 0.900 (3.285 sec/step)
step 36740 loss = 0.071, train_acc = 1.000 (3.323 sec/step)
step 36750 loss = 0.000, train_acc = 1.000 (3.303 sec/step)
step 36760 loss = 1.732, train_acc = 0.800 (3.288 sec/step)
step 36770 loss = 0.098, train_acc = 0.900 (3.320 sec/step)
step 36780 loss = 0.583, train_acc = 0.900 (3.317 sec/step)
step 36790 loss = 0.015, train_acc = 1.000 (3.285 sec/step)
step 36800 loss = 0.724, train_acc = 0.900 (3.286 sec/step)
step 36810 loss = 0.098, train_acc = 1.000 (3.263 sec/step)
step 36820 loss = 0.691, train_acc = 0.900 (3.326 sec/step)
step 36830 loss = 0.213, train_acc = 1.000 (3.335 sec/step)
step 36840 loss = 0.077, train_acc = 0.900 (3.293 sec/step)
step 36850 loss = 0.655, train_acc = 0.900 (3.264 sec/step)
step 36860 loss = 0.400, train_acc = 0.800 (3.270 sec/step)
step 36870 loss = 0.077, train_acc = 1.000 (3.379 sec/step)
step 36880 loss = 0.205, train_acc = 0.900 (3.355 sec/step)
step 36890 loss = 0.003, train_acc = 1.000 (3.298 sec/step)
step 36900 loss = 0.157, train_acc = 0.900 (3.297 sec/step)
step 36910 loss = 0.211, train_acc = 0.900 (3.375 sec/step)
step 36920 loss = 0.017, train_acc = 1.000 (3.330 sec/step)
step 36930 loss = 0.624, train_acc = 0.900 (3.292 sec/step)
step 36940 loss = 0.145, train_acc = 1.000 (3.354 sec/step)
step 36950 loss = 0.100, train_acc = 0.900 (3.330 sec/step)
step 36960 loss = 0.009, train_acc = 1.000 (3.323 sec/step)
step 36970 loss = 0.011, train_acc = 1.000 (3.347 sec/step)
step 36980 loss = 0.959, train_acc = 0.900 (3.339 sec/step)
step 36990 loss = 0.376, train_acc = 0.900 (3.356 sec/step)
step 37000 loss = 0.198, train_acc = 1.000 (3.270 sec/step)
step 37010 loss = 0.064, train_acc = 1.000 (3.258 sec/step)
step 37020 loss = 0.017, train_acc = 1.000 (3.306 sec/step)
step 37030 loss = 0.001, train_acc = 1.000 (3.400 sec/step)
step 37040 loss = 0.019, train_acc = 1.000 (3.330 sec/step)
step 37050 loss = 0.049, train_acc = 1.000 (3.287 sec/step)
step 37060 loss = 0.075, train_acc = 1.000 (3.287 sec/step)
step 37070 loss = 0.307, train_acc = 0.900 (3.369 sec/step)
step 37080 loss = 0.187, train_acc = 0.900 (3.335 sec/step)
step 37090 loss = 0.951, train_acc = 0.800 (3.337 sec/step)
step 37100 loss = 0.017, train_acc = 1.000 (3.298 sec/step)
step 37110 loss = 0.031, train_acc = 1.000 (3.290 sec/step)
step 37120 loss = 0.225, train_acc = 0.900 (3.358 sec/step)
step 37130 loss = 0.145, train_acc = 0.900 (3.292 sec/step)
step 37140 loss = 0.079, train_acc = 1.000 (3.310 sec/step)
step 37150 loss = 0.016, train_acc = 1.000 (3.282 sec/step)
step 37160 loss = 0.016, train_acc = 1.000 (3.281 sec/step)
step 37170 loss = 0.099, train_acc = 1.000 (3.288 sec/step)
step 37180 loss = 0.025, train_acc = 1.000 (3.302 sec/step)
step 37190 loss = 0.003, train_acc = 1.000 (3.297 sec/step)
step 37200 loss = 0.011, train_acc = 1.000 (3.314 sec/step)
step 37210 loss = 0.776, train_acc = 0.800 (3.315 sec/step)
step 37220 loss = 0.004, train_acc = 1.000 (3.288 sec/step)
step 37230 loss = 0.222, train_acc = 0.900 (3.275 sec/step)
step 37240 loss = 0.692, train_acc = 0.700 (3.311 sec/step)
step 37250 loss = 0.033, train_acc = 1.000 (3.449 sec/step)
step 37260 loss = 0.100, train_acc = 1.000 (3.281 sec/step)
step 37270 loss = 0.002, train_acc = 1.000 (3.320 sec/step)
step 37280 loss = 1.029, train_acc = 0.900 (3.332 sec/step)
step 37290 loss = 0.308, train_acc = 0.900 (3.293 sec/step)
step 37300 loss = 0.091, train_acc = 1.000 (3.296 sec/step)
step 37310 loss = 0.678, train_acc = 0.800 (3.317 sec/step)
step 37320 loss = 0.536, train_acc = 0.900 (3.341 sec/step)
step 37330 loss = 0.049, train_acc = 1.000 (3.338 sec/step)
step 37340 loss = 0.074, train_acc = 1.000 (3.448 sec/step)
step 37350 loss = 0.095, train_acc = 1.000 (3.320 sec/step)
step 37360 loss = 0.007, train_acc = 1.000 (3.294 sec/step)
step 37370 loss = 0.143, train_acc = 0.900 (3.321 sec/step)
step 37380 loss = 0.120, train_acc = 0.900 (3.312 sec/step)
step 37390 loss = 1.175, train_acc = 0.800 (3.367 sec/step)
step 37400 loss = 0.000, train_acc = 1.000 (3.348 sec/step)
step 37410 loss = 0.016, train_acc = 1.000 (3.363 sec/step)
step 37420 loss = 0.199, train_acc = 0.900 (3.316 sec/step)
step 37430 loss = 0.304, train_acc = 0.900 (3.257 sec/step)
step 37440 loss = 0.293, train_acc = 0.800 (3.304 sec/step)
step 37450 loss = 0.174, train_acc = 0.900 (3.332 sec/step)
step 37460 loss = 0.039, train_acc = 1.000 (3.326 sec/step)
step 37470 loss = 0.055, train_acc = 1.000 (3.291 sec/step)
step 37480 loss = 0.028, train_acc = 1.000 (3.308 sec/step)
step 37490 loss = 0.040, train_acc = 1.000 (3.343 sec/step)
step 37500 loss = 0.035, train_acc = 1.000 (3.315 sec/step)
step 37510 loss = 0.097, train_acc = 1.000 (3.289 sec/step)
step 37520 loss = 0.225, train_acc = 0.900 (3.300 sec/step)
step 37530 loss = 0.426, train_acc = 0.800 (3.352 sec/step)
step 37540 loss = 0.341, train_acc = 0.800 (3.357 sec/step)
step 37550 loss = 0.450, train_acc = 0.900 (3.303 sec/step)
step 37560 loss = 0.032, train_acc = 1.000 (3.311 sec/step)
step 37570 loss = 0.003, train_acc = 1.000 (3.364 sec/step)
step 37580 loss = 0.602, train_acc = 0.800 (3.349 sec/step)
step 37590 loss = 0.131, train_acc = 0.900 (3.339 sec/step)
step 37600 loss = 0.087, train_acc = 1.000 (3.343 sec/step)
step 37610 loss = 0.001, train_acc = 1.000 (3.341 sec/step)
step 37620 loss = 0.117, train_acc = 0.900 (3.327 sec/step)
step 37630 loss = 0.511, train_acc = 0.900 (3.293 sec/step)
step 37640 loss = 0.356, train_acc = 0.800 (3.327 sec/step)
step 37650 loss = 0.250, train_acc = 0.900 (3.270 sec/step)
step 37660 loss = 0.219, train_acc = 0.900 (3.291 sec/step)
step 37670 loss = 0.008, train_acc = 1.000 (3.295 sec/step)
step 37680 loss = 0.005, train_acc = 1.000 (3.328 sec/step)
step 37690 loss = 0.157, train_acc = 1.000 (3.309 sec/step)
step 37700 loss = 0.060, train_acc = 1.000 (3.301 sec/step)
step 37710 loss = 0.499, train_acc = 0.900 (3.305 sec/step)
step 37720 loss = 0.067, train_acc = 1.000 (3.307 sec/step)
step 37730 loss = 0.283, train_acc = 0.900 (3.297 sec/step)
step 37740 loss = 0.386, train_acc = 0.900 (3.302 sec/step)
step 37750 loss = 0.793, train_acc = 0.800 (3.409 sec/step)
step 37760 loss = 0.314, train_acc = 0.800 (3.290 sec/step)
step 37770 loss = 0.171, train_acc = 1.000 (3.316 sec/step)
step 37780 loss = 0.001, train_acc = 1.000 (3.464 sec/step)
step 37790 loss = 0.169, train_acc = 0.900 (3.306 sec/step)
step 37800 loss = 0.180, train_acc = 0.900 (3.306 sec/step)
step 37810 loss = 0.219, train_acc = 0.900 (3.275 sec/step)
step 37820 loss = 0.162, train_acc = 0.900 (3.304 sec/step)
step 37830 loss = 0.041, train_acc = 1.000 (3.348 sec/step)
step 37840 loss = 0.408, train_acc = 0.900 (3.335 sec/step)
step 37850 loss = 0.035, train_acc = 1.000 (3.303 sec/step)
step 37860 loss = 0.048, train_acc = 1.000 (3.325 sec/step)
step 37870 loss = 0.051, train_acc = 1.000 (3.401 sec/step)
step 37880 loss = 1.381, train_acc = 0.700 (3.399 sec/step)
step 37890 loss = 0.050, train_acc = 1.000 (3.326 sec/step)
step 37900 loss = 0.167, train_acc = 0.900 (3.356 sec/step)
step 37910 loss = 0.070, train_acc = 1.000 (3.325 sec/step)
step 37920 loss = 0.062, train_acc = 1.000 (3.265 sec/step)
step 37930 loss = 0.326, train_acc = 0.800 (3.342 sec/step)
step 37940 loss = 0.025, train_acc = 1.000 (3.359 sec/step)
step 37950 loss = 0.808, train_acc = 0.700 (3.352 sec/step)
step 37960 loss = 0.237, train_acc = 0.900 (3.352 sec/step)
step 37970 loss = 0.130, train_acc = 0.900 (3.358 sec/step)
step 37980 loss = 0.094, train_acc = 1.000 (3.448 sec/step)
step 37990 loss = 1.008, train_acc = 0.700 (3.320 sec/step)
VALIDATION acc = 0.563 (3.612 sec)
New Best Accuracy 0.563 > Old Best 0.561. Saving...
The checkpoint has been created.
step 38000 loss = 0.041, train_acc = 1.000 (3.308 sec/step)
step 38010 loss = 0.073, train_acc = 1.000 (3.287 sec/step)
step 38020 loss = 0.012, train_acc = 1.000 (3.322 sec/step)
step 38030 loss = 0.453, train_acc = 0.900 (3.308 sec/step)
step 38040 loss = 0.002, train_acc = 1.000 (3.328 sec/step)
step 38050 loss = 0.271, train_acc = 0.900 (3.276 sec/step)
step 38060 loss = 0.388, train_acc = 0.700 (3.282 sec/step)
step 38070 loss = 0.056, train_acc = 1.000 (3.277 sec/step)
step 38080 loss = 0.242, train_acc = 0.900 (3.454 sec/step)
step 38090 loss = 0.014, train_acc = 1.000 (3.312 sec/step)
step 38100 loss = 0.449, train_acc = 0.900 (3.286 sec/step)
step 38110 loss = 0.004, train_acc = 1.000 (3.282 sec/step)
step 38120 loss = 0.150, train_acc = 0.900 (3.307 sec/step)
step 38130 loss = 0.016, train_acc = 1.000 (3.309 sec/step)
step 38140 loss = 0.701, train_acc = 0.900 (3.316 sec/step)
step 38150 loss = 0.197, train_acc = 0.800 (3.329 sec/step)
step 38160 loss = 0.336, train_acc = 0.900 (3.354 sec/step)
step 38170 loss = 0.498, train_acc = 0.900 (3.377 sec/step)
step 38180 loss = 0.011, train_acc = 1.000 (3.280 sec/step)
step 38190 loss = 0.009, train_acc = 1.000 (3.345 sec/step)
step 38200 loss = 1.322, train_acc = 0.900 (3.276 sec/step)
step 38210 loss = 0.706, train_acc = 0.600 (3.287 sec/step)
step 38220 loss = 0.442, train_acc = 0.800 (3.308 sec/step)
step 38230 loss = 0.040, train_acc = 1.000 (3.320 sec/step)
step 38240 loss = 0.023, train_acc = 1.000 (3.390 sec/step)
step 38250 loss = 0.126, train_acc = 0.900 (3.372 sec/step)
step 38260 loss = 0.150, train_acc = 0.900 (3.327 sec/step)
step 38270 loss = 0.210, train_acc = 0.900 (3.298 sec/step)
step 38280 loss = 0.142, train_acc = 1.000 (3.310 sec/step)
step 38290 loss = 0.939, train_acc = 0.900 (3.344 sec/step)
step 38300 loss = 0.369, train_acc = 0.900 (3.302 sec/step)
step 38310 loss = 1.301, train_acc = 0.700 (3.334 sec/step)
step 38320 loss = 0.130, train_acc = 1.000 (3.294 sec/step)
step 38330 loss = 0.985, train_acc = 0.700 (3.275 sec/step)
step 38340 loss = 0.048, train_acc = 1.000 (3.276 sec/step)
step 38350 loss = 0.001, train_acc = 1.000 (3.291 sec/step)
step 38360 loss = 0.016, train_acc = 1.000 (3.275 sec/step)
step 38370 loss = 0.141, train_acc = 0.900 (3.330 sec/step)
step 38380 loss = 0.079, train_acc = 0.900 (3.269 sec/step)
step 38390 loss = 0.094, train_acc = 0.900 (3.358 sec/step)
step 38400 loss = 0.089, train_acc = 0.900 (3.309 sec/step)
step 38410 loss = 0.509, train_acc = 0.900 (3.288 sec/step)
step 38420 loss = 0.072, train_acc = 1.000 (3.364 sec/step)
step 38430 loss = 0.081, train_acc = 1.000 (3.346 sec/step)
step 38440 loss = 0.104, train_acc = 1.000 (3.267 sec/step)
step 38450 loss = 0.014, train_acc = 1.000 (3.337 sec/step)
step 38460 loss = 0.878, train_acc = 0.900 (3.359 sec/step)
step 38470 loss = 0.048, train_acc = 1.000 (3.271 sec/step)
step 38480 loss = 0.102, train_acc = 1.000 (3.296 sec/step)
step 38490 loss = 0.197, train_acc = 0.900 (3.293 sec/step)
step 38500 loss = 0.619, train_acc = 0.900 (3.325 sec/step)
step 38510 loss = 0.204, train_acc = 0.900 (3.358 sec/step)
step 38520 loss = 0.016, train_acc = 1.000 (3.345 sec/step)
step 38530 loss = 0.162, train_acc = 0.900 (3.318 sec/step)
step 38540 loss = 1.357, train_acc = 0.500 (3.334 sec/step)
step 38550 loss = 0.003, train_acc = 1.000 (3.347 sec/step)
step 38560 loss = 0.002, train_acc = 1.000 (3.308 sec/step)
step 38570 loss = 0.047, train_acc = 1.000 (3.311 sec/step)
step 38580 loss = 0.004, train_acc = 1.000 (3.305 sec/step)
step 38590 loss = 0.028, train_acc = 1.000 (3.317 sec/step)
step 38600 loss = 0.132, train_acc = 1.000 (3.318 sec/step)
step 38610 loss = 0.202, train_acc = 0.900 (3.307 sec/step)
step 38620 loss = 0.001, train_acc = 1.000 (3.296 sec/step)
step 38630 loss = 0.727, train_acc = 0.600 (3.365 sec/step)
step 38640 loss = 0.081, train_acc = 1.000 (3.287 sec/step)
step 38650 loss = 0.007, train_acc = 1.000 (3.343 sec/step)
step 38660 loss = 0.025, train_acc = 1.000 (3.272 sec/step)
step 38670 loss = 0.006, train_acc = 1.000 (3.298 sec/step)
step 38680 loss = 0.047, train_acc = 1.000 (3.376 sec/step)
step 38690 loss = 0.743, train_acc = 0.800 (3.386 sec/step)
step 38700 loss = 0.112, train_acc = 1.000 (3.282 sec/step)
step 38710 loss = 0.571, train_acc = 0.800 (3.359 sec/step)
step 38720 loss = 0.055, train_acc = 1.000 (3.294 sec/step)
step 38730 loss = 0.436, train_acc = 0.900 (3.269 sec/step)
step 38740 loss = 0.000, train_acc = 1.000 (3.312 sec/step)
step 38750 loss = 0.082, train_acc = 1.000 (3.334 sec/step)
step 38760 loss = 0.062, train_acc = 1.000 (3.342 sec/step)
step 38770 loss = 0.020, train_acc = 1.000 (3.295 sec/step)
step 38780 loss = 0.003, train_acc = 1.000 (3.308 sec/step)
step 38790 loss = 0.014, train_acc = 1.000 (3.287 sec/step)
step 38800 loss = 0.054, train_acc = 1.000 (3.365 sec/step)
step 38810 loss = 0.564, train_acc = 0.800 (3.320 sec/step)
step 38820 loss = 0.622, train_acc = 0.900 (3.319 sec/step)
step 38830 loss = 0.004, train_acc = 1.000 (3.369 sec/step)
step 38840 loss = 0.128, train_acc = 1.000 (3.311 sec/step)
step 38850 loss = 0.564, train_acc = 0.900 (3.297 sec/step)
step 38860 loss = 0.019, train_acc = 1.000 (3.276 sec/step)
step 38870 loss = 0.701, train_acc = 0.800 (3.319 sec/step)
step 38880 loss = 0.083, train_acc = 1.000 (3.259 sec/step)
step 38890 loss = 0.012, train_acc = 1.000 (3.361 sec/step)
step 38900 loss = 1.662, train_acc = 0.700 (3.405 sec/step)
step 38910 loss = 0.036, train_acc = 1.000 (3.276 sec/step)
step 38920 loss = 0.060, train_acc = 1.000 (3.301 sec/step)
step 38930 loss = 0.004, train_acc = 1.000 (3.337 sec/step)
step 38940 loss = 0.004, train_acc = 1.000 (3.301 sec/step)
step 38950 loss = 0.484, train_acc = 0.900 (3.320 sec/step)
step 38960 loss = 0.005, train_acc = 1.000 (3.309 sec/step)
step 38970 loss = 0.070, train_acc = 1.000 (3.346 sec/step)
step 38980 loss = 0.045, train_acc = 1.000 (3.321 sec/step)
step 38990 loss = 0.259, train_acc = 0.900 (3.297 sec/step)
step 39000 loss = 0.006, train_acc = 1.000 (3.329 sec/step)
step 39010 loss = 0.077, train_acc = 1.000 (3.313 sec/step)
step 39020 loss = 0.143, train_acc = 0.900 (3.265 sec/step)
step 39030 loss = 0.027, train_acc = 1.000 (3.284 sec/step)
step 39040 loss = 0.213, train_acc = 0.900 (3.339 sec/step)
step 39050 loss = 0.261, train_acc = 1.000 (3.318 sec/step)
step 39060 loss = 0.486, train_acc = 0.800 (3.339 sec/step)
step 39070 loss = 0.201, train_acc = 0.900 (3.266 sec/step)
step 39080 loss = 0.423, train_acc = 0.800 (3.292 sec/step)
step 39090 loss = 0.713, train_acc = 0.800 (3.316 sec/step)
step 39100 loss = 0.743, train_acc = 0.900 (3.380 sec/step)
step 39110 loss = 3.242, train_acc = 0.800 (3.344 sec/step)
step 39120 loss = 0.139, train_acc = 0.900 (3.300 sec/step)
step 39130 loss = 1.179, train_acc = 0.700 (3.341 sec/step)
step 39140 loss = 0.527, train_acc = 0.800 (3.263 sec/step)
step 39150 loss = 0.384, train_acc = 0.900 (3.275 sec/step)
step 39160 loss = 0.230, train_acc = 0.900 (3.297 sec/step)
step 39170 loss = 0.141, train_acc = 0.900 (3.288 sec/step)
step 39180 loss = 0.096, train_acc = 1.000 (3.301 sec/step)
step 39190 loss = 0.027, train_acc = 1.000 (3.289 sec/step)
step 39200 loss = 0.537, train_acc = 0.900 (3.321 sec/step)
step 39210 loss = 0.122, train_acc = 0.900 (3.328 sec/step)
step 39220 loss = 0.237, train_acc = 0.900 (3.317 sec/step)
step 39230 loss = 0.001, train_acc = 1.000 (3.273 sec/step)
step 39240 loss = 0.001, train_acc = 1.000 (3.265 sec/step)
step 39250 loss = 0.021, train_acc = 1.000 (3.310 sec/step)
step 39260 loss = 0.232, train_acc = 0.900 (3.338 sec/step)
step 39270 loss = 0.361, train_acc = 0.900 (3.351 sec/step)
step 39280 loss = 0.614, train_acc = 0.900 (3.320 sec/step)
step 39290 loss = 0.754, train_acc = 0.900 (3.312 sec/step)
step 39300 loss = 0.795, train_acc = 0.900 (3.292 sec/step)
step 39310 loss = 0.099, train_acc = 1.000 (3.372 sec/step)
step 39320 loss = 0.775, train_acc = 0.800 (3.364 sec/step)
step 39330 loss = 0.033, train_acc = 1.000 (3.343 sec/step)
step 39340 loss = 0.005, train_acc = 1.000 (3.348 sec/step)
step 39350 loss = 0.577, train_acc = 0.900 (3.322 sec/step)
step 39360 loss = 0.171, train_acc = 0.900 (3.307 sec/step)
step 39370 loss = 0.903, train_acc = 0.800 (3.317 sec/step)
step 39380 loss = 0.008, train_acc = 1.000 (3.332 sec/step)
step 39390 loss = 0.020, train_acc = 1.000 (3.322 sec/step)
step 39400 loss = 0.799, train_acc = 0.800 (3.288 sec/step)
step 39410 loss = 0.028, train_acc = 1.000 (3.275 sec/step)
step 39420 loss = 0.105, train_acc = 0.900 (3.320 sec/step)
step 39430 loss = 0.054, train_acc = 1.000 (3.278 sec/step)
step 39440 loss = 0.136, train_acc = 0.900 (3.346 sec/step)
step 39450 loss = 0.237, train_acc = 0.900 (3.327 sec/step)
step 39460 loss = 0.043, train_acc = 1.000 (3.305 sec/step)
step 39470 loss = 0.333, train_acc = 0.800 (3.352 sec/step)
step 39480 loss = 0.493, train_acc = 0.900 (3.383 sec/step)
step 39490 loss = 0.032, train_acc = 1.000 (3.341 sec/step)
step 39500 loss = 0.179, train_acc = 0.900 (3.327 sec/step)
step 39510 loss = 0.362, train_acc = 0.900 (3.351 sec/step)
step 39520 loss = 0.160, train_acc = 0.900 (3.262 sec/step)
step 39530 loss = 0.337, train_acc = 0.900 (3.292 sec/step)
step 39540 loss = 0.193, train_acc = 0.900 (3.271 sec/step)
step 39550 loss = 0.032, train_acc = 1.000 (3.367 sec/step)
step 39560 loss = 0.480, train_acc = 0.800 (3.339 sec/step)
step 39570 loss = 0.199, train_acc = 0.900 (3.304 sec/step)
step 39580 loss = 0.534, train_acc = 0.900 (3.297 sec/step)
step 39590 loss = 0.008, train_acc = 1.000 (3.354 sec/step)
step 39600 loss = 0.384, train_acc = 0.800 (3.299 sec/step)
step 39610 loss = 0.011, train_acc = 1.000 (3.268 sec/step)
step 39620 loss = 0.017, train_acc = 1.000 (3.261 sec/step)
step 39630 loss = 0.584, train_acc = 0.700 (3.292 sec/step)
step 39640 loss = 1.750, train_acc = 0.600 (3.389 sec/step)
step 39650 loss = 0.027, train_acc = 1.000 (3.261 sec/step)
step 39660 loss = 1.284, train_acc = 0.600 (3.281 sec/step)
step 39670 loss = 0.740, train_acc = 0.800 (3.323 sec/step)
step 39680 loss = 0.156, train_acc = 0.900 (3.363 sec/step)
step 39690 loss = 0.000, train_acc = 1.000 (3.300 sec/step)
step 39700 loss = 0.019, train_acc = 1.000 (3.342 sec/step)
step 39710 loss = 0.001, train_acc = 1.000 (3.333 sec/step)
step 39720 loss = 0.168, train_acc = 0.900 (3.271 sec/step)
step 39730 loss = 0.417, train_acc = 0.900 (3.378 sec/step)
step 39740 loss = 0.002, train_acc = 1.000 (3.318 sec/step)
step 39750 loss = 0.086, train_acc = 1.000 (3.337 sec/step)
step 39760 loss = 1.011, train_acc = 0.800 (3.322 sec/step)
step 39770 loss = 0.539, train_acc = 0.900 (3.260 sec/step)
step 39780 loss = 0.000, train_acc = 1.000 (3.337 sec/step)
step 39790 loss = 0.085, train_acc = 1.000 (3.388 sec/step)
step 39800 loss = 0.146, train_acc = 1.000 (3.320 sec/step)
step 39810 loss = 0.630, train_acc = 0.900 (3.356 sec/step)
step 39820 loss = 0.022, train_acc = 1.000 (3.362 sec/step)
step 39830 loss = 0.439, train_acc = 0.800 (3.267 sec/step)
step 39840 loss = 0.988, train_acc = 0.800 (3.356 sec/step)
step 39850 loss = 0.135, train_acc = 1.000 (3.446 sec/step)
step 39860 loss = 0.003, train_acc = 1.000 (3.267 sec/step)
step 39870 loss = 0.207, train_acc = 0.900 (3.335 sec/step)
step 39880 loss = 0.024, train_acc = 1.000 (3.312 sec/step)
step 39890 loss = 0.024, train_acc = 1.000 (3.297 sec/step)
VALIDATION acc = 0.555 (3.625 sec)
step 39900 loss = 0.009, train_acc = 1.000 (3.283 sec/step)
step 39910 loss = 0.019, train_acc = 1.000 (3.302 sec/step)
step 39920 loss = 0.124, train_acc = 1.000 (3.374 sec/step)
step 39930 loss = 0.582, train_acc = 0.900 (3.387 sec/step)
step 39940 loss = 0.329, train_acc = 0.900 (3.295 sec/step)
step 39950 loss = 0.310, train_acc = 0.800 (3.359 sec/step)
step 39960 loss = 0.004, train_acc = 1.000 (3.279 sec/step)
step 39970 loss = 0.537, train_acc = 0.800 (3.334 sec/step)
step 39980 loss = 0.000, train_acc = 1.000 (3.296 sec/step)
step 39990 loss = 0.152, train_acc = 0.900 (3.298 sec/step)
step 40000 loss = 0.020, train_acc = 1.000 (3.320 sec/step)
step 40010 loss = 0.002, train_acc = 1.000 (3.324 sec/step)
step 40020 loss = 0.318, train_acc = 0.900 (3.298 sec/step)
step 40030 loss = 0.542, train_acc = 0.900 (3.326 sec/step)
step 40040 loss = 1.337, train_acc = 0.900 (3.350 sec/step)
step 40050 loss = 0.010, train_acc = 1.000 (3.266 sec/step)
step 40060 loss = 0.092, train_acc = 1.000 (3.353 sec/step)
step 40070 loss = 0.505, train_acc = 0.900 (3.338 sec/step)
step 40080 loss = 0.596, train_acc = 0.900 (3.317 sec/step)
step 40090 loss = 0.178, train_acc = 0.900 (3.324 sec/step)
step 40100 loss = 0.357, train_acc = 0.900 (3.321 sec/step)
step 40110 loss = 0.064, train_acc = 1.000 (3.328 sec/step)
step 40120 loss = 0.268, train_acc = 0.800 (3.344 sec/step)
step 40130 loss = 0.627, train_acc = 0.900 (3.325 sec/step)
step 40140 loss = 0.487, train_acc = 0.900 (3.313 sec/step)
step 40150 loss = 0.457, train_acc = 0.700 (3.349 sec/step)
step 40160 loss = 0.035, train_acc = 1.000 (3.381 sec/step)
step 40170 loss = 0.001, train_acc = 1.000 (3.329 sec/step)
step 40180 loss = 0.189, train_acc = 0.900 (3.268 sec/step)
step 40190 loss = 0.912, train_acc = 0.900 (3.352 sec/step)
step 40200 loss = 0.002, train_acc = 1.000 (3.279 sec/step)
step 40210 loss = 0.697, train_acc = 0.800 (3.325 sec/step)
step 40220 loss = 0.003, train_acc = 1.000 (3.341 sec/step)
step 40230 loss = 0.202, train_acc = 0.900 (3.289 sec/step)
step 40240 loss = 0.058, train_acc = 1.000 (3.296 sec/step)
step 40250 loss = 0.104, train_acc = 1.000 (3.295 sec/step)
step 40260 loss = 0.364, train_acc = 0.800 (3.340 sec/step)
step 40270 loss = 0.009, train_acc = 1.000 (3.312 sec/step)
step 40280 loss = 0.164, train_acc = 0.900 (3.324 sec/step)
step 40290 loss = 0.015, train_acc = 1.000 (3.310 sec/step)
step 40300 loss = 0.123, train_acc = 0.900 (3.280 sec/step)
step 40310 loss = 0.003, train_acc = 1.000 (3.298 sec/step)
step 40320 loss = 0.533, train_acc = 0.700 (3.296 sec/step)
step 40330 loss = 0.099, train_acc = 1.000 (3.369 sec/step)
step 40340 loss = 0.206, train_acc = 0.900 (3.334 sec/step)
step 40350 loss = 0.202, train_acc = 0.800 (3.289 sec/step)
step 40360 loss = 0.001, train_acc = 1.000 (3.392 sec/step)
step 40370 loss = 0.000, train_acc = 1.000 (3.342 sec/step)
step 40380 loss = 0.043, train_acc = 1.000 (3.312 sec/step)
step 40390 loss = 0.365, train_acc = 0.700 (3.316 sec/step)
step 40400 loss = 0.030, train_acc = 1.000 (3.287 sec/step)
step 40410 loss = 0.364, train_acc = 0.900 (3.265 sec/step)
step 40420 loss = 0.013, train_acc = 1.000 (3.293 sec/step)
step 40430 loss = 0.387, train_acc = 0.900 (3.304 sec/step)
step 40440 loss = 0.101, train_acc = 1.000 (3.267 sec/step)
step 40450 loss = 0.930, train_acc = 0.800 (3.352 sec/step)
step 40460 loss = 0.667, train_acc = 0.900 (3.393 sec/step)
step 40470 loss = 0.106, train_acc = 1.000 (3.329 sec/step)
step 40480 loss = 0.070, train_acc = 1.000 (3.407 sec/step)
step 40490 loss = 0.497, train_acc = 0.900 (3.318 sec/step)
step 40500 loss = 0.073, train_acc = 1.000 (3.396 sec/step)
step 40510 loss = 0.008, train_acc = 1.000 (3.274 sec/step)
step 40520 loss = 0.019, train_acc = 1.000 (3.324 sec/step)
step 40530 loss = 0.183, train_acc = 0.900 (3.305 sec/step)
step 40540 loss = 0.324, train_acc = 0.800 (3.275 sec/step)
step 40550 loss = 0.763, train_acc = 0.800 (3.324 sec/step)
step 40560 loss = 0.355, train_acc = 0.900 (3.303 sec/step)
step 40570 loss = 0.420, train_acc = 0.800 (3.271 sec/step)
step 40580 loss = 0.001, train_acc = 1.000 (3.353 sec/step)
step 40590 loss = 0.420, train_acc = 0.800 (3.291 sec/step)
step 40600 loss = 0.049, train_acc = 1.000 (3.292 sec/step)
step 40610 loss = 0.197, train_acc = 0.900 (3.335 sec/step)
step 40620 loss = 0.186, train_acc = 0.900 (3.343 sec/step)
step 40630 loss = 0.312, train_acc = 0.900 (3.298 sec/step)
step 40640 loss = 0.006, train_acc = 1.000 (3.318 sec/step)
step 40650 loss = 0.062, train_acc = 1.000 (3.322 sec/step)
step 40660 loss = 0.002, train_acc = 1.000 (3.318 sec/step)
step 40670 loss = 0.603, train_acc = 0.900 (3.331 sec/step)
step 40680 loss = 0.133, train_acc = 1.000 (3.298 sec/step)
step 40690 loss = 0.077, train_acc = 1.000 (3.331 sec/step)
step 40700 loss = 0.059, train_acc = 1.000 (3.276 sec/step)
step 40710 loss = 0.120, train_acc = 0.900 (3.291 sec/step)
step 40720 loss = 0.387, train_acc = 0.700 (3.298 sec/step)
step 40730 loss = 0.208, train_acc = 0.900 (3.325 sec/step)
step 40740 loss = 0.261, train_acc = 0.900 (3.346 sec/step)
step 40750 loss = 0.094, train_acc = 0.900 (3.280 sec/step)
step 40760 loss = 0.843, train_acc = 0.900 (3.336 sec/step)
step 40770 loss = 0.014, train_acc = 1.000 (3.322 sec/step)
step 40780 loss = 0.007, train_acc = 1.000 (3.312 sec/step)
step 40790 loss = 0.159, train_acc = 0.900 (3.296 sec/step)
step 40800 loss = 0.146, train_acc = 0.900 (3.282 sec/step)
step 40810 loss = 0.142, train_acc = 0.900 (3.316 sec/step)
step 40820 loss = 0.011, train_acc = 1.000 (3.359 sec/step)
step 40830 loss = 0.190, train_acc = 0.900 (3.257 sec/step)
step 40840 loss = 0.237, train_acc = 0.900 (3.298 sec/step)
step 40850 loss = 0.076, train_acc = 1.000 (3.334 sec/step)
step 40860 loss = 0.021, train_acc = 1.000 (3.303 sec/step)
step 40870 loss = 0.002, train_acc = 1.000 (3.302 sec/step)
step 40880 loss = 3.499, train_acc = 0.700 (3.302 sec/step)
step 40890 loss = 0.147, train_acc = 1.000 (3.466 sec/step)
step 40900 loss = 1.034, train_acc = 0.800 (3.312 sec/step)
step 40910 loss = 0.849, train_acc = 0.900 (3.339 sec/step)
step 40920 loss = 0.003, train_acc = 1.000 (3.347 sec/step)
step 40930 loss = 0.132, train_acc = 0.900 (3.330 sec/step)
step 40940 loss = 0.164, train_acc = 1.000 (3.323 sec/step)
step 40950 loss = 0.003, train_acc = 1.000 (3.301 sec/step)
step 40960 loss = 0.032, train_acc = 1.000 (3.332 sec/step)
step 40970 loss = 0.223, train_acc = 0.900 (3.303 sec/step)
step 40980 loss = 0.008, train_acc = 1.000 (3.311 sec/step)
step 40990 loss = 0.510, train_acc = 0.800 (3.286 sec/step)
step 41000 loss = 0.020, train_acc = 1.000 (3.350 sec/step)
step 41010 loss = 0.000, train_acc = 1.000 (3.274 sec/step)
step 41020 loss = 0.003, train_acc = 1.000 (3.330 sec/step)
step 41030 loss = 0.110, train_acc = 0.900 (3.341 sec/step)
step 41040 loss = 0.010, train_acc = 1.000 (3.330 sec/step)
step 41050 loss = 0.052, train_acc = 1.000 (3.364 sec/step)
step 41060 loss = 0.957, train_acc = 0.900 (3.330 sec/step)
step 41070 loss = 0.003, train_acc = 1.000 (3.289 sec/step)
step 41080 loss = 0.867, train_acc = 0.800 (3.303 sec/step)
step 41090 loss = 0.333, train_acc = 1.000 (3.313 sec/step)
step 41100 loss = 0.003, train_acc = 1.000 (3.320 sec/step)
step 41110 loss = 0.089, train_acc = 0.900 (3.309 sec/step)
step 41120 loss = 0.256, train_acc = 0.900 (3.295 sec/step)
step 41130 loss = 0.644, train_acc = 0.900 (3.404 sec/step)
step 41140 loss = 0.233, train_acc = 1.000 (3.328 sec/step)
step 41150 loss = 0.259, train_acc = 0.900 (3.350 sec/step)
step 41160 loss = 0.131, train_acc = 0.900 (3.305 sec/step)
step 41170 loss = 0.046, train_acc = 1.000 (3.308 sec/step)
step 41180 loss = 0.240, train_acc = 0.900 (3.356 sec/step)
step 41190 loss = 0.211, train_acc = 0.900 (3.382 sec/step)
step 41200 loss = 0.026, train_acc = 1.000 (3.302 sec/step)
step 41210 loss = 0.020, train_acc = 1.000 (3.295 sec/step)
step 41220 loss = 0.363, train_acc = 0.900 (3.301 sec/step)
step 41230 loss = 0.007, train_acc = 1.000 (3.350 sec/step)
step 41240 loss = 0.410, train_acc = 0.900 (3.375 sec/step)
step 41250 loss = 0.225, train_acc = 0.800 (3.299 sec/step)
step 41260 loss = 0.739, train_acc = 0.800 (3.341 sec/step)
step 41270 loss = 0.313, train_acc = 0.900 (3.277 sec/step)
step 41280 loss = 0.280, train_acc = 0.900 (3.316 sec/step)
step 41290 loss = 0.175, train_acc = 0.900 (3.315 sec/step)
step 41300 loss = 0.893, train_acc = 0.900 (3.323 sec/step)
step 41310 loss = 0.348, train_acc = 0.900 (3.281 sec/step)
step 41320 loss = 0.071, train_acc = 1.000 (3.313 sec/step)
step 41330 loss = 0.138, train_acc = 0.900 (3.344 sec/step)
step 41340 loss = 0.083, train_acc = 0.900 (3.368 sec/step)
step 41350 loss = 0.250, train_acc = 0.900 (3.337 sec/step)
step 41360 loss = 0.018, train_acc = 1.000 (3.354 sec/step)
step 41370 loss = 0.652, train_acc = 0.900 (3.318 sec/step)
step 41380 loss = 0.210, train_acc = 0.900 (3.299 sec/step)
step 41390 loss = 0.001, train_acc = 1.000 (3.314 sec/step)
step 41400 loss = 0.008, train_acc = 1.000 (3.316 sec/step)
step 41410 loss = 0.225, train_acc = 0.900 (3.323 sec/step)
step 41420 loss = 0.002, train_acc = 1.000 (3.306 sec/step)
step 41430 loss = 0.194, train_acc = 0.900 (3.306 sec/step)
step 41440 loss = 0.121, train_acc = 1.000 (3.336 sec/step)
step 41450 loss = 0.003, train_acc = 1.000 (3.259 sec/step)
step 41460 loss = 0.045, train_acc = 1.000 (3.319 sec/step)
step 41470 loss = 0.003, train_acc = 1.000 (3.305 sec/step)
step 41480 loss = 0.006, train_acc = 1.000 (3.342 sec/step)
step 41490 loss = 0.000, train_acc = 1.000 (3.286 sec/step)
step 41500 loss = 1.131, train_acc = 0.800 (3.346 sec/step)
step 41510 loss = 0.517, train_acc = 0.900 (3.319 sec/step)
step 41520 loss = 0.054, train_acc = 1.000 (3.336 sec/step)
step 41530 loss = 0.199, train_acc = 1.000 (3.346 sec/step)
step 41540 loss = 0.001, train_acc = 1.000 (3.478 sec/step)
step 41550 loss = 0.211, train_acc = 0.900 (3.346 sec/step)
step 41560 loss = 0.001, train_acc = 1.000 (3.340 sec/step)
step 41570 loss = 0.079, train_acc = 1.000 (3.322 sec/step)
step 41580 loss = 0.001, train_acc = 1.000 (3.323 sec/step)
step 41590 loss = 0.000, train_acc = 1.000 (3.285 sec/step)
step 41600 loss = 0.006, train_acc = 1.000 (3.324 sec/step)
step 41610 loss = 0.038, train_acc = 1.000 (3.307 sec/step)
step 41620 loss = 0.102, train_acc = 1.000 (3.310 sec/step)
step 41630 loss = 0.167, train_acc = 1.000 (3.323 sec/step)
step 41640 loss = 0.054, train_acc = 1.000 (3.333 sec/step)
step 41650 loss = 0.006, train_acc = 1.000 (3.336 sec/step)
step 41660 loss = 0.032, train_acc = 1.000 (3.316 sec/step)
step 41670 loss = 0.000, train_acc = 1.000 (3.361 sec/step)
step 41680 loss = 1.638, train_acc = 0.800 (3.393 sec/step)
step 41690 loss = 0.061, train_acc = 1.000 (3.292 sec/step)
step 41700 loss = 0.089, train_acc = 1.000 (3.280 sec/step)
step 41710 loss = 0.750, train_acc = 0.900 (3.344 sec/step)
step 41720 loss = 0.646, train_acc = 0.800 (3.268 sec/step)
step 41730 loss = 0.186, train_acc = 0.900 (3.368 sec/step)
step 41740 loss = 0.392, train_acc = 0.900 (3.328 sec/step)
step 41750 loss = 0.247, train_acc = 0.900 (3.310 sec/step)
step 41760 loss = 0.136, train_acc = 0.900 (3.321 sec/step)
step 41770 loss = 0.124, train_acc = 1.000 (3.428 sec/step)
step 41780 loss = 0.478, train_acc = 0.900 (3.344 sec/step)
step 41790 loss = 0.476, train_acc = 0.800 (3.345 sec/step)
VALIDATION acc = 0.520 (3.633 sec)
step 41800 loss = 0.389, train_acc = 0.900 (3.304 sec/step)
step 41810 loss = 0.460, train_acc = 0.800 (3.281 sec/step)
step 41820 loss = 0.351, train_acc = 0.800 (3.290 sec/step)
step 41830 loss = 0.009, train_acc = 1.000 (3.405 sec/step)
step 41840 loss = 0.426, train_acc = 0.900 (3.350 sec/step)
step 41850 loss = 0.022, train_acc = 1.000 (3.346 sec/step)
step 41860 loss = 0.016, train_acc = 1.000 (3.299 sec/step)
step 41870 loss = 0.481, train_acc = 0.800 (3.266 sec/step)
step 41880 loss = 0.256, train_acc = 0.900 (3.327 sec/step)
step 41890 loss = 0.040, train_acc = 1.000 (3.304 sec/step)
step 41900 loss = 0.206, train_acc = 0.900 (3.289 sec/step)
step 41910 loss = 0.131, train_acc = 0.900 (3.273 sec/step)
step 41920 loss = 0.339, train_acc = 0.800 (3.318 sec/step)
step 41930 loss = 0.270, train_acc = 0.900 (3.303 sec/step)
step 41940 loss = 0.096, train_acc = 1.000 (3.322 sec/step)
step 41950 loss = 2.675, train_acc = 0.600 (3.363 sec/step)
step 41960 loss = 0.382, train_acc = 0.900 (3.383 sec/step)
step 41970 loss = 0.004, train_acc = 1.000 (3.357 sec/step)
step 41980 loss = 0.212, train_acc = 0.900 (3.291 sec/step)
step 41990 loss = 0.630, train_acc = 0.900 (3.276 sec/step)
step 42000 loss = 0.570, train_acc = 0.900 (3.480 sec/step)
step 42010 loss = 0.551, train_acc = 0.900 (3.301 sec/step)
step 42020 loss = 0.505, train_acc = 0.800 (3.314 sec/step)
step 42030 loss = 0.503, train_acc = 0.900 (3.352 sec/step)
step 42040 loss = 0.055, train_acc = 1.000 (3.328 sec/step)
step 42050 loss = 0.086, train_acc = 1.000 (3.374 sec/step)
step 42060 loss = 0.044, train_acc = 1.000 (3.324 sec/step)
step 42070 loss = 0.268, train_acc = 1.000 (3.333 sec/step)
step 42080 loss = 0.067, train_acc = 1.000 (3.344 sec/step)
step 42090 loss = 0.108, train_acc = 0.900 (3.332 sec/step)
step 42100 loss = 0.671, train_acc = 0.800 (3.316 sec/step)
step 42110 loss = 0.040, train_acc = 1.000 (3.319 sec/step)
step 42120 loss = 0.161, train_acc = 0.900 (3.319 sec/step)
step 42130 loss = 0.483, train_acc = 0.900 (3.344 sec/step)
step 42140 loss = 0.322, train_acc = 0.800 (3.289 sec/step)
step 42150 loss = 0.306, train_acc = 0.900 (3.304 sec/step)
step 42160 loss = 0.156, train_acc = 1.000 (3.325 sec/step)
step 42170 loss = 0.118, train_acc = 1.000 (3.354 sec/step)
step 42180 loss = 0.008, train_acc = 1.000 (3.331 sec/step)
step 42190 loss = 0.116, train_acc = 0.900 (3.342 sec/step)
step 42200 loss = 0.342, train_acc = 0.900 (3.296 sec/step)
step 42210 loss = 0.125, train_acc = 1.000 (3.360 sec/step)
step 42220 loss = 0.003, train_acc = 1.000 (3.308 sec/step)
step 42230 loss = 0.023, train_acc = 1.000 (3.298 sec/step)
step 42240 loss = 1.113, train_acc = 0.700 (3.279 sec/step)
step 42250 loss = 0.020, train_acc = 1.000 (3.360 sec/step)
step 42260 loss = 0.003, train_acc = 1.000 (3.332 sec/step)
step 42270 loss = 0.003, train_acc = 1.000 (3.317 sec/step)
step 42280 loss = 0.504, train_acc = 0.800 (3.352 sec/step)
step 42290 loss = 0.041, train_acc = 1.000 (3.310 sec/step)
step 42300 loss = 0.003, train_acc = 1.000 (3.290 sec/step)
step 42310 loss = 0.022, train_acc = 1.000 (3.312 sec/step)
step 42320 loss = 0.342, train_acc = 0.900 (3.305 sec/step)
step 42330 loss = 0.666, train_acc = 0.800 (3.362 sec/step)
step 42340 loss = 0.126, train_acc = 1.000 (3.314 sec/step)
step 42350 loss = 0.054, train_acc = 1.000 (3.282 sec/step)
step 42360 loss = 0.002, train_acc = 1.000 (3.345 sec/step)
step 42370 loss = 0.125, train_acc = 0.900 (3.286 sec/step)
step 42380 loss = 0.916, train_acc = 0.900 (3.306 sec/step)
step 42390 loss = 0.147, train_acc = 0.900 (3.336 sec/step)
step 42400 loss = 0.260, train_acc = 0.900 (3.280 sec/step)
step 42410 loss = 0.294, train_acc = 0.900 (3.374 sec/step)
step 42420 loss = 0.007, train_acc = 1.000 (3.330 sec/step)
step 42430 loss = 0.256, train_acc = 0.900 (3.334 sec/step)
step 42440 loss = 0.242, train_acc = 0.900 (3.303 sec/step)
step 42450 loss = 0.000, train_acc = 1.000 (3.294 sec/step)
step 42460 loss = 0.038, train_acc = 1.000 (3.268 sec/step)
step 42470 loss = 0.423, train_acc = 0.900 (3.296 sec/step)
step 42480 loss = 0.001, train_acc = 1.000 (3.278 sec/step)
step 42490 loss = 0.147, train_acc = 1.000 (3.286 sec/step)
step 42500 loss = 0.671, train_acc = 0.700 (3.313 sec/step)
step 42510 loss = 0.002, train_acc = 1.000 (3.307 sec/step)
step 42520 loss = 0.517, train_acc = 0.800 (3.260 sec/step)
step 42530 loss = 0.144, train_acc = 0.900 (3.324 sec/step)
step 42540 loss = 0.000, train_acc = 1.000 (3.357 sec/step)
step 42550 loss = 0.017, train_acc = 1.000 (3.250 sec/step)
step 42560 loss = 0.019, train_acc = 1.000 (3.269 sec/step)
step 42570 loss = 0.115, train_acc = 1.000 (3.322 sec/step)
step 42580 loss = 0.396, train_acc = 0.800 (3.335 sec/step)
step 42590 loss = 0.021, train_acc = 1.000 (3.297 sec/step)
step 42600 loss = 0.261, train_acc = 0.900 (3.306 sec/step)
step 42610 loss = 0.021, train_acc = 1.000 (3.339 sec/step)
step 42620 loss = 0.100, train_acc = 1.000 (3.308 sec/step)
step 42630 loss = 0.266, train_acc = 0.900 (3.293 sec/step)
step 42640 loss = 0.015, train_acc = 1.000 (3.338 sec/step)
step 42650 loss = 0.764, train_acc = 0.700 (3.283 sec/step)
step 42660 loss = 0.013, train_acc = 1.000 (3.310 sec/step)
step 42670 loss = 0.286, train_acc = 0.900 (3.364 sec/step)
step 42680 loss = 0.067, train_acc = 1.000 (3.284 sec/step)
step 42690 loss = 0.703, train_acc = 0.800 (3.305 sec/step)
step 42700 loss = 0.040, train_acc = 1.000 (3.300 sec/step)
step 42710 loss = 0.193, train_acc = 0.900 (3.268 sec/step)
step 42720 loss = 0.235, train_acc = 0.900 (3.447 sec/step)
step 42730 loss = 0.311, train_acc = 0.800 (3.288 sec/step)
step 42740 loss = 0.046, train_acc = 1.000 (3.419 sec/step)
step 42750 loss = 0.000, train_acc = 1.000 (3.319 sec/step)
step 42760 loss = 0.293, train_acc = 0.900 (3.319 sec/step)
step 42770 loss = 0.032, train_acc = 1.000 (3.299 sec/step)
step 42780 loss = 0.396, train_acc = 0.900 (3.304 sec/step)
step 42790 loss = 0.015, train_acc = 1.000 (3.315 sec/step)
step 42800 loss = 0.025, train_acc = 1.000 (3.302 sec/step)
step 42810 loss = 0.095, train_acc = 1.000 (3.307 sec/step)
step 42820 loss = 0.505, train_acc = 0.900 (3.317 sec/step)
step 42830 loss = 0.008, train_acc = 1.000 (3.323 sec/step)
step 42840 loss = 0.292, train_acc = 0.800 (3.337 sec/step)
step 42850 loss = 0.026, train_acc = 1.000 (3.339 sec/step)
step 42860 loss = 0.118, train_acc = 1.000 (3.335 sec/step)
step 42870 loss = 0.001, train_acc = 1.000 (3.344 sec/step)
step 42880 loss = 0.062, train_acc = 1.000 (3.264 sec/step)
step 42890 loss = 0.014, train_acc = 1.000 (3.296 sec/step)
step 42900 loss = 0.246, train_acc = 0.900 (3.321 sec/step)
step 42910 loss = 0.059, train_acc = 1.000 (3.333 sec/step)
step 42920 loss = 0.088, train_acc = 1.000 (3.331 sec/step)
step 42930 loss = 0.442, train_acc = 0.700 (3.346 sec/step)
step 42940 loss = 0.785, train_acc = 0.800 (3.281 sec/step)
step 42950 loss = 0.862, train_acc = 0.900 (3.286 sec/step)
step 42960 loss = 0.001, train_acc = 1.000 (3.317 sec/step)
step 42970 loss = 0.178, train_acc = 0.900 (3.306 sec/step)
step 42980 loss = 0.019, train_acc = 1.000 (3.295 sec/step)
step 42990 loss = 0.682, train_acc = 0.700 (3.310 sec/step)
step 43000 loss = 0.154, train_acc = 0.900 (3.327 sec/step)
step 43010 loss = 0.026, train_acc = 1.000 (3.306 sec/step)
step 43020 loss = 0.128, train_acc = 0.900 (3.293 sec/step)
step 43030 loss = 0.015, train_acc = 1.000 (3.340 sec/step)
step 43040 loss = 0.292, train_acc = 0.900 (3.301 sec/step)
step 43050 loss = 0.404, train_acc = 0.800 (3.337 sec/step)
step 43060 loss = 0.045, train_acc = 1.000 (3.326 sec/step)
step 43070 loss = 0.028, train_acc = 1.000 (3.317 sec/step)
step 43080 loss = 0.178, train_acc = 0.900 (3.316 sec/step)
step 43090 loss = 0.357, train_acc = 0.900 (3.357 sec/step)
step 43100 loss = 0.036, train_acc = 1.000 (3.314 sec/step)
step 43110 loss = 0.059, train_acc = 1.000 (3.276 sec/step)
step 43120 loss = 0.106, train_acc = 0.900 (3.286 sec/step)
step 43130 loss = 0.255, train_acc = 0.900 (3.303 sec/step)
step 43140 loss = 0.003, train_acc = 1.000 (3.291 sec/step)
step 43150 loss = 0.540, train_acc = 0.900 (3.322 sec/step)
step 43160 loss = 0.144, train_acc = 1.000 (3.309 sec/step)
step 43170 loss = 0.264, train_acc = 0.900 (3.296 sec/step)
step 43180 loss = 0.101, train_acc = 1.000 (3.301 sec/step)
step 43190 loss = 0.310, train_acc = 0.800 (3.333 sec/step)
step 43200 loss = 0.608, train_acc = 0.900 (3.285 sec/step)
step 43210 loss = 0.025, train_acc = 1.000 (3.290 sec/step)
step 43220 loss = 0.336, train_acc = 0.900 (3.316 sec/step)
step 43230 loss = 0.004, train_acc = 1.000 (3.264 sec/step)
step 43240 loss = 0.046, train_acc = 1.000 (3.315 sec/step)
step 43250 loss = 0.193, train_acc = 0.900 (3.327 sec/step)
step 43260 loss = 0.001, train_acc = 1.000 (3.364 sec/step)
step 43270 loss = 0.021, train_acc = 1.000 (3.354 sec/step)
step 43280 loss = 0.085, train_acc = 1.000 (3.305 sec/step)
step 43290 loss = 1.013, train_acc = 0.900 (3.298 sec/step)
step 43300 loss = 0.030, train_acc = 1.000 (3.318 sec/step)
step 43310 loss = 0.470, train_acc = 0.900 (3.302 sec/step)
step 43320 loss = 0.606, train_acc = 0.900 (3.294 sec/step)
step 43330 loss = 0.485, train_acc = 0.800 (3.275 sec/step)
step 43340 loss = 0.073, train_acc = 1.000 (3.339 sec/step)
step 43350 loss = 0.041, train_acc = 1.000 (3.357 sec/step)
step 43360 loss = 0.191, train_acc = 1.000 (3.362 sec/step)
step 43370 loss = 0.103, train_acc = 0.900 (3.315 sec/step)
step 43380 loss = 0.019, train_acc = 1.000 (3.306 sec/step)
step 43390 loss = 0.016, train_acc = 1.000 (3.438 sec/step)
step 43400 loss = 0.084, train_acc = 0.900 (3.318 sec/step)
step 43410 loss = 0.093, train_acc = 1.000 (3.345 sec/step)
step 43420 loss = 0.001, train_acc = 1.000 (3.330 sec/step)
step 43430 loss = 0.055, train_acc = 1.000 (3.357 sec/step)
step 43440 loss = 0.004, train_acc = 1.000 (3.318 sec/step)
step 43450 loss = 0.501, train_acc = 0.700 (3.357 sec/step)
step 43460 loss = 0.052, train_acc = 1.000 (3.319 sec/step)
step 43470 loss = 0.111, train_acc = 0.900 (3.326 sec/step)
step 43480 loss = 0.358, train_acc = 0.800 (3.320 sec/step)
step 43490 loss = 0.057, train_acc = 1.000 (3.309 sec/step)
step 43500 loss = 0.017, train_acc = 1.000 (3.342 sec/step)
step 43510 loss = 0.086, train_acc = 1.000 (3.361 sec/step)
step 43520 loss = 0.235, train_acc = 0.900 (3.284 sec/step)
step 43530 loss = 0.216, train_acc = 0.900 (3.279 sec/step)
step 43540 loss = 0.302, train_acc = 0.900 (3.272 sec/step)
step 43550 loss = 0.186, train_acc = 0.900 (3.346 sec/step)
step 43560 loss = 0.300, train_acc = 0.900 (3.323 sec/step)
step 43570 loss = 0.002, train_acc = 1.000 (3.340 sec/step)
step 43580 loss = 0.122, train_acc = 0.900 (3.321 sec/step)
step 43590 loss = 0.288, train_acc = 0.900 (3.374 sec/step)
step 43600 loss = 0.663, train_acc = 0.900 (3.281 sec/step)
step 43610 loss = 0.075, train_acc = 1.000 (3.317 sec/step)
step 43620 loss = 0.191, train_acc = 0.900 (3.280 sec/step)
step 43630 loss = 0.021, train_acc = 1.000 (3.301 sec/step)
step 43640 loss = 0.019, train_acc = 1.000 (3.300 sec/step)
step 43650 loss = 0.052, train_acc = 1.000 (3.339 sec/step)
step 43660 loss = 0.004, train_acc = 1.000 (3.283 sec/step)
step 43670 loss = 0.155, train_acc = 0.900 (3.353 sec/step)
step 43680 loss = 0.764, train_acc = 0.800 (3.281 sec/step)
step 43690 loss = 0.050, train_acc = 1.000 (3.330 sec/step)
VALIDATION acc = 0.543 (3.631 sec)
step 43700 loss = 0.941, train_acc = 0.700 (3.344 sec/step)
step 43710 loss = 0.079, train_acc = 1.000 (3.295 sec/step)
step 43720 loss = 1.023, train_acc = 0.700 (3.295 sec/step)
step 43730 loss = 0.234, train_acc = 0.900 (3.330 sec/step)
step 43740 loss = 0.000, train_acc = 1.000 (3.374 sec/step)
step 43750 loss = 0.885, train_acc = 0.800 (3.318 sec/step)
step 43760 loss = 0.006, train_acc = 1.000 (3.315 sec/step)
step 43770 loss = 0.000, train_acc = 1.000 (3.266 sec/step)
step 43780 loss = 0.217, train_acc = 0.900 (3.329 sec/step)
step 43790 loss = 0.181, train_acc = 0.900 (3.364 sec/step)
step 43800 loss = 0.999, train_acc = 0.800 (3.299 sec/step)
step 43810 loss = 0.460, train_acc = 0.900 (3.333 sec/step)
step 43820 loss = 0.125, train_acc = 0.900 (3.290 sec/step)
step 43830 loss = 0.937, train_acc = 0.900 (3.355 sec/step)
step 43840 loss = 0.101, train_acc = 1.000 (3.330 sec/step)
step 43850 loss = 0.008, train_acc = 1.000 (3.306 sec/step)
step 43860 loss = 0.056, train_acc = 1.000 (3.346 sec/step)
step 43870 loss = 0.062, train_acc = 1.000 (3.324 sec/step)
step 43880 loss = 0.054, train_acc = 1.000 (3.350 sec/step)
step 43890 loss = 0.375, train_acc = 0.900 (3.316 sec/step)
step 43900 loss = 0.302, train_acc = 0.900 (3.447 sec/step)
step 43910 loss = 0.516, train_acc = 0.900 (3.279 sec/step)
step 43920 loss = 0.064, train_acc = 1.000 (3.306 sec/step)
step 43930 loss = 0.001, train_acc = 1.000 (3.307 sec/step)
step 43940 loss = 0.605, train_acc = 0.900 (3.355 sec/step)
step 43950 loss = 0.132, train_acc = 1.000 (3.307 sec/step)
step 43960 loss = 0.003, train_acc = 1.000 (3.359 sec/step)
step 43970 loss = 0.132, train_acc = 0.900 (3.352 sec/step)
step 43980 loss = 0.013, train_acc = 1.000 (3.306 sec/step)
step 43990 loss = 0.236, train_acc = 0.900 (3.327 sec/step)
step 44000 loss = 0.002, train_acc = 1.000 (3.276 sec/step)
step 44010 loss = 0.754, train_acc = 0.800 (3.317 sec/step)
step 44020 loss = 0.232, train_acc = 1.000 (3.315 sec/step)
step 44030 loss = 0.149, train_acc = 0.900 (3.351 sec/step)
step 44040 loss = 0.151, train_acc = 0.900 (3.311 sec/step)
step 44050 loss = 0.579, train_acc = 0.900 (3.295 sec/step)
step 44060 loss = 0.049, train_acc = 1.000 (3.317 sec/step)
step 44070 loss = 0.057, train_acc = 1.000 (3.317 sec/step)
step 44080 loss = 0.000, train_acc = 1.000 (3.281 sec/step)
step 44090 loss = 0.140, train_acc = 0.900 (3.360 sec/step)
step 44100 loss = 0.330, train_acc = 0.900 (3.301 sec/step)
step 44110 loss = 0.596, train_acc = 0.800 (3.312 sec/step)
step 44120 loss = 0.558, train_acc = 0.800 (3.347 sec/step)
step 44130 loss = 0.018, train_acc = 1.000 (3.287 sec/step)
step 44140 loss = 0.276, train_acc = 0.900 (3.275 sec/step)
step 44150 loss = 0.608, train_acc = 0.900 (3.308 sec/step)
step 44160 loss = 0.934, train_acc = 0.800 (3.339 sec/step)
step 44170 loss = 0.001, train_acc = 1.000 (3.357 sec/step)
step 44180 loss = 0.256, train_acc = 0.900 (3.296 sec/step)
step 44190 loss = 0.431, train_acc = 0.900 (3.326 sec/step)
step 44200 loss = 0.075, train_acc = 1.000 (3.274 sec/step)
step 44210 loss = 0.233, train_acc = 0.800 (3.300 sec/step)
step 44220 loss = 0.062, train_acc = 1.000 (3.298 sec/step)
step 44230 loss = 0.249, train_acc = 0.900 (3.299 sec/step)
step 44240 loss = 0.652, train_acc = 0.900 (3.325 sec/step)
step 44250 loss = 0.109, train_acc = 1.000 (3.339 sec/step)
step 44260 loss = 0.001, train_acc = 1.000 (3.282 sec/step)
step 44270 loss = 0.019, train_acc = 1.000 (3.287 sec/step)
step 44280 loss = 0.002, train_acc = 1.000 (3.289 sec/step)
step 44290 loss = 0.371, train_acc = 0.800 (3.342 sec/step)
step 44300 loss = 0.443, train_acc = 0.800 (3.319 sec/step)
step 44310 loss = 0.003, train_acc = 1.000 (3.298 sec/step)
step 44320 loss = 0.001, train_acc = 1.000 (3.304 sec/step)
step 44330 loss = 0.185, train_acc = 0.900 (3.304 sec/step)
step 44340 loss = 0.880, train_acc = 0.900 (3.351 sec/step)
step 44350 loss = 0.001, train_acc = 1.000 (3.306 sec/step)
step 44360 loss = 0.031, train_acc = 1.000 (3.344 sec/step)
step 44370 loss = 0.176, train_acc = 1.000 (3.278 sec/step)
step 44380 loss = 0.006, train_acc = 1.000 (3.453 sec/step)
step 44390 loss = 0.232, train_acc = 0.900 (3.282 sec/step)
step 44400 loss = 0.553, train_acc = 0.800 (3.281 sec/step)
step 44410 loss = 0.024, train_acc = 1.000 (3.352 sec/step)
step 44420 loss = 0.001, train_acc = 1.000 (3.273 sec/step)
step 44430 loss = 0.113, train_acc = 1.000 (3.348 sec/step)
step 44440 loss = 0.146, train_acc = 0.900 (3.359 sec/step)
step 44450 loss = 0.048, train_acc = 1.000 (3.404 sec/step)
step 44460 loss = 0.302, train_acc = 0.900 (3.323 sec/step)
step 44470 loss = 0.185, train_acc = 1.000 (3.265 sec/step)
step 44480 loss = 0.012, train_acc = 1.000 (3.299 sec/step)
step 44490 loss = 0.008, train_acc = 1.000 (3.368 sec/step)
step 44500 loss = 0.025, train_acc = 1.000 (3.308 sec/step)
step 44510 loss = 0.411, train_acc = 0.900 (3.346 sec/step)
step 44520 loss = 0.001, train_acc = 1.000 (3.338 sec/step)
step 44530 loss = 0.045, train_acc = 1.000 (3.310 sec/step)
step 44540 loss = 0.597, train_acc = 0.800 (3.358 sec/step)
step 44550 loss = 0.112, train_acc = 1.000 (3.299 sec/step)
step 44560 loss = 0.509, train_acc = 0.900 (3.282 sec/step)
step 44570 loss = 0.005, train_acc = 1.000 (3.332 sec/step)
step 44580 loss = 0.054, train_acc = 1.000 (3.371 sec/step)
step 44590 loss = 0.000, train_acc = 1.000 (3.386 sec/step)
step 44600 loss = 0.023, train_acc = 1.000 (3.280 sec/step)
step 44610 loss = 0.040, train_acc = 1.000 (3.347 sec/step)
step 44620 loss = 0.427, train_acc = 0.900 (3.352 sec/step)
step 44630 loss = 0.253, train_acc = 0.900 (3.302 sec/step)
step 44640 loss = 0.063, train_acc = 1.000 (3.345 sec/step)
step 44650 loss = 0.001, train_acc = 1.000 (3.322 sec/step)
step 44660 loss = 0.099, train_acc = 1.000 (3.348 sec/step)
step 44670 loss = 0.845, train_acc = 0.900 (3.332 sec/step)
step 44680 loss = 0.001, train_acc = 1.000 (3.319 sec/step)
step 44690 loss = 0.924, train_acc = 0.900 (3.385 sec/step)
step 44700 loss = 0.329, train_acc = 0.800 (3.340 sec/step)
step 44710 loss = 0.056, train_acc = 1.000 (3.323 sec/step)
step 44720 loss = 0.017, train_acc = 1.000 (3.354 sec/step)
step 44730 loss = 0.000, train_acc = 1.000 (3.337 sec/step)
step 44740 loss = 0.589, train_acc = 0.900 (3.323 sec/step)
step 44750 loss = 0.957, train_acc = 0.900 (3.331 sec/step)
step 44760 loss = 0.317, train_acc = 0.900 (3.315 sec/step)
step 44770 loss = 0.174, train_acc = 0.900 (3.347 sec/step)
step 44780 loss = 0.088, train_acc = 1.000 (3.289 sec/step)
step 44790 loss = 2.106, train_acc = 0.800 (3.355 sec/step)
step 44800 loss = 0.006, train_acc = 1.000 (3.281 sec/step)
step 44810 loss = 0.151, train_acc = 0.900 (3.272 sec/step)
step 44820 loss = 0.001, train_acc = 1.000 (3.284 sec/step)
step 44830 loss = 0.136, train_acc = 1.000 (3.307 sec/step)
step 44840 loss = 0.055, train_acc = 1.000 (3.333 sec/step)
step 44850 loss = 0.475, train_acc = 0.900 (3.306 sec/step)
step 44860 loss = 0.007, train_acc = 1.000 (3.336 sec/step)
step 44870 loss = 0.015, train_acc = 1.000 (3.349 sec/step)
step 44880 loss = 0.039, train_acc = 1.000 (3.410 sec/step)
step 44890 loss = 0.295, train_acc = 0.900 (3.342 sec/step)
step 44900 loss = 0.201, train_acc = 0.900 (3.326 sec/step)
step 44910 loss = 0.287, train_acc = 0.900 (3.324 sec/step)
step 44920 loss = 0.097, train_acc = 1.000 (3.288 sec/step)
step 44930 loss = 0.236, train_acc = 0.900 (3.343 sec/step)
step 44940 loss = 0.014, train_acc = 1.000 (3.354 sec/step)
step 44950 loss = 0.010, train_acc = 1.000 (3.366 sec/step)
step 44960 loss = 0.062, train_acc = 1.000 (3.374 sec/step)
step 44970 loss = 0.836, train_acc = 0.900 (3.334 sec/step)
step 44980 loss = 0.001, train_acc = 1.000 (3.306 sec/step)
step 44990 loss = 0.062, train_acc = 1.000 (3.343 sec/step)
step 45000 loss = 0.001, train_acc = 1.000 (3.307 sec/step)
step 45010 loss = 0.242, train_acc = 0.900 (3.369 sec/step)
step 45020 loss = 0.069, train_acc = 1.000 (3.385 sec/step)
step 45030 loss = 0.003, train_acc = 1.000 (3.426 sec/step)
step 45040 loss = 0.707, train_acc = 0.900 (3.326 sec/step)
step 45050 loss = 0.407, train_acc = 0.900 (3.344 sec/step)
step 45060 loss = 0.205, train_acc = 0.900 (3.314 sec/step)
step 45070 loss = 0.021, train_acc = 1.000 (3.302 sec/step)
step 45080 loss = 0.023, train_acc = 1.000 (3.364 sec/step)
step 45090 loss = 0.174, train_acc = 0.900 (3.283 sec/step)
step 45100 loss = 0.351, train_acc = 0.800 (3.358 sec/step)
step 45110 loss = 0.183, train_acc = 1.000 (3.325 sec/step)
step 45120 loss = 0.002, train_acc = 1.000 (3.334 sec/step)
step 45130 loss = 1.899, train_acc = 0.900 (3.337 sec/step)
step 45140 loss = 0.226, train_acc = 0.800 (3.336 sec/step)
step 45150 loss = 1.213, train_acc = 0.800 (3.299 sec/step)
step 45160 loss = 0.132, train_acc = 0.900 (3.372 sec/step)
step 45170 loss = 0.053, train_acc = 1.000 (3.322 sec/step)
step 45180 loss = 0.071, train_acc = 1.000 (3.291 sec/step)
step 45190 loss = 0.157, train_acc = 0.900 (3.327 sec/step)
step 45200 loss = 0.572, train_acc = 0.900 (3.328 sec/step)
step 45210 loss = 0.002, train_acc = 1.000 (3.272 sec/step)
step 45220 loss = 0.001, train_acc = 1.000 (3.304 sec/step)
step 45230 loss = 0.031, train_acc = 1.000 (3.316 sec/step)
step 45240 loss = 0.086, train_acc = 1.000 (3.272 sec/step)
step 45250 loss = 0.004, train_acc = 1.000 (3.319 sec/step)
step 45260 loss = 0.029, train_acc = 1.000 (3.361 sec/step)
step 45270 loss = 0.353, train_acc = 0.700 (3.381 sec/step)
step 45280 loss = 0.030, train_acc = 1.000 (3.370 sec/step)
step 45290 loss = 0.113, train_acc = 0.900 (3.292 sec/step)
step 45300 loss = 0.163, train_acc = 0.900 (3.305 sec/step)
step 45310 loss = 0.305, train_acc = 0.900 (3.337 sec/step)
step 45320 loss = 0.000, train_acc = 1.000 (3.392 sec/step)
step 45330 loss = 0.003, train_acc = 1.000 (3.321 sec/step)
step 45340 loss = 0.039, train_acc = 1.000 (3.281 sec/step)
step 45350 loss = 0.059, train_acc = 1.000 (3.307 sec/step)
step 45360 loss = 0.185, train_acc = 0.900 (3.319 sec/step)
step 45370 loss = 0.029, train_acc = 1.000 (3.282 sec/step)
step 45380 loss = 0.068, train_acc = 1.000 (3.274 sec/step)
step 45390 loss = 0.004, train_acc = 1.000 (3.359 sec/step)
step 45400 loss = 0.001, train_acc = 1.000 (3.336 sec/step)
step 45410 loss = 0.730, train_acc = 0.900 (3.311 sec/step)
step 45420 loss = 0.060, train_acc = 1.000 (3.346 sec/step)
step 45430 loss = 0.100, train_acc = 1.000 (3.345 sec/step)
step 45440 loss = 0.269, train_acc = 0.900 (3.315 sec/step)
step 45450 loss = 0.023, train_acc = 1.000 (3.415 sec/step)
step 45460 loss = 0.036, train_acc = 1.000 (3.316 sec/step)
step 45470 loss = 0.000, train_acc = 1.000 (3.336 sec/step)
step 45480 loss = 0.010, train_acc = 1.000 (3.297 sec/step)
step 45490 loss = 0.000, train_acc = 1.000 (3.351 sec/step)
step 45500 loss = 0.628, train_acc = 0.800 (3.343 sec/step)
step 45510 loss = 0.188, train_acc = 0.900 (3.337 sec/step)
step 45520 loss = 3.747, train_acc = 0.900 (3.357 sec/step)
step 45530 loss = 0.220, train_acc = 0.900 (3.300 sec/step)
step 45540 loss = 0.501, train_acc = 0.900 (3.295 sec/step)
step 45550 loss = 0.104, train_acc = 1.000 (3.304 sec/step)
step 45560 loss = 0.297, train_acc = 0.900 (3.396 sec/step)
step 45570 loss = 0.030, train_acc = 1.000 (3.325 sec/step)
step 45580 loss = 0.017, train_acc = 1.000 (3.307 sec/step)
step 45590 loss = 0.940, train_acc = 0.800 (3.321 sec/step)
VALIDATION acc = 0.545 (3.618 sec)
step 45600 loss = 0.291, train_acc = 0.900 (3.336 sec/step)
step 45610 loss = 0.378, train_acc = 0.900 (3.352 sec/step)
step 45620 loss = 0.119, train_acc = 1.000 (3.316 sec/step)
step 45630 loss = 0.110, train_acc = 1.000 (3.282 sec/step)
step 45640 loss = 0.262, train_acc = 0.800 (3.347 sec/step)
step 45650 loss = 0.123, train_acc = 1.000 (3.284 sec/step)
step 45660 loss = 0.003, train_acc = 1.000 (3.342 sec/step)
step 45670 loss = 0.230, train_acc = 0.900 (3.325 sec/step)
step 45680 loss = 0.014, train_acc = 1.000 (3.343 sec/step)
step 45690 loss = 0.002, train_acc = 1.000 (3.326 sec/step)
step 45700 loss = 0.362, train_acc = 0.900 (3.275 sec/step)
step 45710 loss = 0.074, train_acc = 1.000 (3.335 sec/step)
step 45720 loss = 0.477, train_acc = 0.800 (3.408 sec/step)
step 45730 loss = 0.142, train_acc = 0.900 (3.402 sec/step)
step 45740 loss = 0.512, train_acc = 0.900 (3.344 sec/step)
step 45750 loss = 0.001, train_acc = 1.000 (3.320 sec/step)
step 45760 loss = 0.601, train_acc = 0.800 (3.408 sec/step)
step 45770 loss = 0.584, train_acc = 0.900 (3.322 sec/step)
step 45780 loss = 0.798, train_acc = 0.900 (3.309 sec/step)
step 45790 loss = 0.190, train_acc = 1.000 (3.307 sec/step)
step 45800 loss = 0.112, train_acc = 1.000 (3.268 sec/step)
step 45810 loss = 0.039, train_acc = 1.000 (3.300 sec/step)
step 45820 loss = 0.020, train_acc = 1.000 (3.343 sec/step)
step 45830 loss = 0.321, train_acc = 0.900 (3.318 sec/step)
step 45840 loss = 0.454, train_acc = 0.800 (3.326 sec/step)
step 45850 loss = 0.271, train_acc = 0.900 (3.297 sec/step)
step 45860 loss = 0.078, train_acc = 1.000 (3.348 sec/step)
step 45870 loss = 0.444, train_acc = 0.800 (3.393 sec/step)
step 45880 loss = 0.080, train_acc = 1.000 (3.336 sec/step)
step 45890 loss = 0.234, train_acc = 0.900 (3.318 sec/step)
step 45900 loss = 1.558, train_acc = 0.600 (3.298 sec/step)
step 45910 loss = 0.251, train_acc = 0.900 (3.365 sec/step)
step 45920 loss = 0.699, train_acc = 0.900 (3.348 sec/step)
step 45930 loss = 0.354, train_acc = 0.900 (3.366 sec/step)
step 45940 loss = 0.363, train_acc = 0.900 (3.276 sec/step)
step 45950 loss = 0.334, train_acc = 0.900 (3.342 sec/step)
step 45960 loss = 0.619, train_acc = 0.800 (3.371 sec/step)
step 45970 loss = 0.001, train_acc = 1.000 (3.374 sec/step)
step 45980 loss = 0.013, train_acc = 1.000 (3.407 sec/step)
step 45990 loss = 0.389, train_acc = 0.900 (3.303 sec/step)
step 46000 loss = 0.007, train_acc = 1.000 (3.302 sec/step)
step 46010 loss = 0.108, train_acc = 1.000 (3.368 sec/step)
step 46020 loss = 0.205, train_acc = 0.800 (3.298 sec/step)
step 46030 loss = 0.010, train_acc = 1.000 (3.378 sec/step)
step 46040 loss = 0.140, train_acc = 0.900 (3.366 sec/step)
step 46050 loss = 0.189, train_acc = 1.000 (3.423 sec/step)
step 46060 loss = 0.227, train_acc = 0.900 (3.295 sec/step)
step 46070 loss = 1.088, train_acc = 0.800 (3.303 sec/step)
step 46080 loss = 0.088, train_acc = 0.900 (3.328 sec/step)
step 46090 loss = 0.173, train_acc = 0.900 (3.285 sec/step)
step 46100 loss = 0.567, train_acc = 0.700 (3.302 sec/step)
step 46110 loss = 0.200, train_acc = 0.900 (3.350 sec/step)
step 46120 loss = 0.160, train_acc = 0.900 (3.323 sec/step)
step 46130 loss = 0.535, train_acc = 0.900 (3.432 sec/step)
step 46140 loss = 0.005, train_acc = 1.000 (3.320 sec/step)
step 46150 loss = 0.174, train_acc = 0.900 (3.360 sec/step)
step 46160 loss = 0.406, train_acc = 0.800 (3.271 sec/step)
step 46170 loss = 0.030, train_acc = 1.000 (3.307 sec/step)
step 46180 loss = 0.193, train_acc = 1.000 (3.311 sec/step)
step 46190 loss = 0.029, train_acc = 1.000 (3.332 sec/step)
step 46200 loss = 0.211, train_acc = 0.900 (3.413 sec/step)
step 46210 loss = 0.681, train_acc = 0.800 (3.309 sec/step)
step 46220 loss = 0.194, train_acc = 0.900 (3.376 sec/step)
step 46230 loss = 0.724, train_acc = 0.600 (3.353 sec/step)
step 46240 loss = 0.963, train_acc = 0.900 (3.313 sec/step)
step 46250 loss = 0.495, train_acc = 0.800 (3.362 sec/step)
step 46260 loss = 0.208, train_acc = 0.900 (3.323 sec/step)
step 46270 loss = 0.136, train_acc = 1.000 (3.284 sec/step)
step 46280 loss = 0.641, train_acc = 0.900 (3.350 sec/step)
step 46290 loss = 0.027, train_acc = 1.000 (3.283 sec/step)
step 46300 loss = 0.014, train_acc = 1.000 (3.334 sec/step)
step 46310 loss = 0.471, train_acc = 0.900 (3.345 sec/step)
step 46320 loss = 0.218, train_acc = 0.900 (3.321 sec/step)
step 46330 loss = 0.057, train_acc = 1.000 (3.352 sec/step)
step 46340 loss = 0.061, train_acc = 1.000 (3.297 sec/step)
step 46350 loss = 0.047, train_acc = 1.000 (3.370 sec/step)
step 46360 loss = 0.249, train_acc = 0.800 (3.304 sec/step)
step 46370 loss = 0.002, train_acc = 1.000 (3.322 sec/step)
step 46380 loss = 0.063, train_acc = 1.000 (3.317 sec/step)
step 46390 loss = 0.288, train_acc = 0.900 (3.342 sec/step)
step 46400 loss = 0.044, train_acc = 1.000 (3.335 sec/step)
step 46410 loss = 0.175, train_acc = 0.900 (3.338 sec/step)
step 46420 loss = 0.034, train_acc = 1.000 (3.420 sec/step)
step 46430 loss = 0.000, train_acc = 1.000 (3.327 sec/step)
step 46440 loss = 0.243, train_acc = 0.900 (3.364 sec/step)
step 46450 loss = 0.899, train_acc = 0.900 (3.327 sec/step)
step 46460 loss = 0.401, train_acc = 0.900 (3.277 sec/step)
step 46470 loss = 1.277, train_acc = 0.900 (3.305 sec/step)
step 46480 loss = 0.606, train_acc = 0.900 (3.342 sec/step)
step 46490 loss = 0.274, train_acc = 0.900 (3.416 sec/step)
step 46500 loss = 0.368, train_acc = 0.900 (3.294 sec/step)
step 46510 loss = 0.496, train_acc = 0.900 (3.322 sec/step)
step 46520 loss = 0.220, train_acc = 0.900 (3.360 sec/step)
step 46530 loss = 0.178, train_acc = 0.900 (3.338 sec/step)
step 46540 loss = 0.618, train_acc = 0.800 (3.361 sec/step)
step 46550 loss = 0.393, train_acc = 0.800 (3.326 sec/step)
step 46560 loss = 0.409, train_acc = 0.900 (3.303 sec/step)
step 46570 loss = 0.000, train_acc = 1.000 (3.348 sec/step)
step 46580 loss = 0.240, train_acc = 0.800 (3.297 sec/step)
step 46590 loss = 0.176, train_acc = 0.900 (3.311 sec/step)
step 46600 loss = 0.191, train_acc = 0.900 (3.370 sec/step)
step 46610 loss = 0.071, train_acc = 1.000 (3.372 sec/step)
step 46620 loss = 0.008, train_acc = 1.000 (3.312 sec/step)
step 46630 loss = 0.041, train_acc = 1.000 (3.326 sec/step)
step 46640 loss = 0.082, train_acc = 1.000 (3.312 sec/step)
step 46650 loss = 0.192, train_acc = 0.900 (3.328 sec/step)
step 46660 loss = 0.039, train_acc = 1.000 (3.348 sec/step)
step 46670 loss = 0.288, train_acc = 0.800 (3.408 sec/step)
step 46680 loss = 0.106, train_acc = 1.000 (3.342 sec/step)
step 46690 loss = 0.078, train_acc = 1.000 (3.361 sec/step)
step 46700 loss = 0.027, train_acc = 1.000 (3.311 sec/step)
step 46710 loss = 0.259, train_acc = 0.900 (3.331 sec/step)
step 46720 loss = 0.055, train_acc = 1.000 (3.375 sec/step)
step 46730 loss = 0.018, train_acc = 1.000 (3.298 sec/step)
step 46740 loss = 0.446, train_acc = 0.900 (3.308 sec/step)
step 46750 loss = 0.052, train_acc = 1.000 (3.367 sec/step)
step 46760 loss = 0.106, train_acc = 1.000 (3.361 sec/step)
step 46770 loss = 0.000, train_acc = 1.000 (3.321 sec/step)
step 46780 loss = 0.015, train_acc = 1.000 (3.333 sec/step)
step 46790 loss = 0.035, train_acc = 1.000 (3.357 sec/step)
step 46800 loss = 1.581, train_acc = 0.900 (3.304 sec/step)
step 46810 loss = 0.378, train_acc = 0.800 (3.281 sec/step)
step 46820 loss = 0.004, train_acc = 1.000 (3.327 sec/step)
step 46830 loss = 0.168, train_acc = 0.900 (3.358 sec/step)
step 46840 loss = 1.065, train_acc = 0.900 (3.280 sec/step)
step 46850 loss = 0.113, train_acc = 0.900 (3.340 sec/step)
step 46860 loss = 0.235, train_acc = 0.900 (3.299 sec/step)
step 46870 loss = 0.482, train_acc = 0.800 (3.308 sec/step)
step 46880 loss = 0.052, train_acc = 1.000 (3.294 sec/step)
step 46890 loss = 0.492, train_acc = 0.800 (3.342 sec/step)
step 46900 loss = 0.003, train_acc = 1.000 (3.287 sec/step)
step 46910 loss = 0.169, train_acc = 0.900 (3.346 sec/step)
step 46920 loss = 0.237, train_acc = 0.900 (3.321 sec/step)
step 46930 loss = 0.068, train_acc = 1.000 (3.331 sec/step)
step 46940 loss = 0.002, train_acc = 1.000 (3.363 sec/step)
step 46950 loss = 0.126, train_acc = 0.900 (3.368 sec/step)
step 46960 loss = 0.036, train_acc = 1.000 (3.284 sec/step)
step 46970 loss = 0.017, train_acc = 1.000 (3.383 sec/step)
step 46980 loss = 0.001, train_acc = 1.000 (3.310 sec/step)
step 46990 loss = 1.210, train_acc = 0.900 (3.285 sec/step)
step 47000 loss = 0.259, train_acc = 0.900 (3.294 sec/step)
step 47010 loss = 0.383, train_acc = 0.800 (3.304 sec/step)
step 47020 loss = 0.109, train_acc = 1.000 (3.368 sec/step)
step 47030 loss = 0.021, train_acc = 1.000 (3.273 sec/step)
step 47040 loss = 0.000, train_acc = 1.000 (3.324 sec/step)
step 47050 loss = 0.318, train_acc = 0.900 (3.289 sec/step)
step 47060 loss = 0.001, train_acc = 1.000 (3.330 sec/step)
step 47070 loss = 0.870, train_acc = 0.800 (3.284 sec/step)
step 47080 loss = 0.640, train_acc = 0.800 (3.268 sec/step)
step 47090 loss = 0.367, train_acc = 0.800 (3.350 sec/step)
step 47100 loss = 0.380, train_acc = 0.900 (3.358 sec/step)
step 47110 loss = 0.372, train_acc = 0.900 (3.293 sec/step)
step 47120 loss = 0.880, train_acc = 0.800 (3.285 sec/step)
step 47130 loss = 0.098, train_acc = 1.000 (3.301 sec/step)
step 47140 loss = 0.259, train_acc = 0.900 (3.282 sec/step)
step 47150 loss = 0.072, train_acc = 1.000 (3.291 sec/step)
step 47160 loss = 0.087, train_acc = 0.900 (3.381 sec/step)
step 47170 loss = 0.000, train_acc = 1.000 (3.286 sec/step)
step 47180 loss = 0.014, train_acc = 1.000 (3.310 sec/step)
step 47190 loss = 0.006, train_acc = 1.000 (3.322 sec/step)
step 47200 loss = 0.316, train_acc = 0.900 (3.308 sec/step)
step 47210 loss = 0.539, train_acc = 0.800 (3.323 sec/step)
step 47220 loss = 0.019, train_acc = 1.000 (3.324 sec/step)
step 47230 loss = 0.032, train_acc = 1.000 (3.352 sec/step)
step 47240 loss = 0.007, train_acc = 1.000 (3.358 sec/step)
step 47250 loss = 0.225, train_acc = 0.800 (3.352 sec/step)
step 47260 loss = 0.004, train_acc = 1.000 (3.364 sec/step)
step 47270 loss = 0.003, train_acc = 1.000 (3.349 sec/step)
step 47280 loss = 0.156, train_acc = 0.900 (3.358 sec/step)
step 47290 loss = 0.003, train_acc = 1.000 (3.357 sec/step)
step 47300 loss = 0.254, train_acc = 0.900 (3.291 sec/step)
step 47310 loss = 0.100, train_acc = 1.000 (3.304 sec/step)
step 47320 loss = 0.317, train_acc = 0.900 (3.324 sec/step)
step 47330 loss = 0.074, train_acc = 1.000 (3.283 sec/step)
step 47340 loss = 0.050, train_acc = 1.000 (3.276 sec/step)
step 47350 loss = 0.003, train_acc = 1.000 (3.342 sec/step)
step 47360 loss = 0.270, train_acc = 0.900 (3.324 sec/step)
step 47370 loss = 0.067, train_acc = 1.000 (3.322 sec/step)
step 47380 loss = 0.369, train_acc = 0.900 (3.317 sec/step)
step 47390 loss = 0.416, train_acc = 0.900 (3.353 sec/step)
step 47400 loss = 0.246, train_acc = 0.900 (3.327 sec/step)
step 47410 loss = 0.002, train_acc = 1.000 (3.354 sec/step)
step 47420 loss = 0.017, train_acc = 1.000 (3.399 sec/step)
step 47430 loss = 0.166, train_acc = 0.900 (3.347 sec/step)
step 47440 loss = 0.494, train_acc = 0.900 (3.352 sec/step)
step 47450 loss = 0.256, train_acc = 0.900 (3.327 sec/step)
step 47460 loss = 0.084, train_acc = 1.000 (3.379 sec/step)
step 47470 loss = 0.011, train_acc = 1.000 (3.424 sec/step)
step 47480 loss = 0.006, train_acc = 1.000 (3.316 sec/step)
step 47490 loss = 0.678, train_acc = 0.900 (3.325 sec/step)
VALIDATION acc = 0.546 (3.628 sec)
step 47500 loss = 0.967, train_acc = 0.800 (3.339 sec/step)
step 47510 loss = 0.106, train_acc = 1.000 (3.303 sec/step)
step 47520 loss = 0.051, train_acc = 1.000 (3.348 sec/step)
step 47530 loss = 0.149, train_acc = 0.900 (3.296 sec/step)
step 47540 loss = 0.044, train_acc = 1.000 (3.348 sec/step)
step 47550 loss = 0.349, train_acc = 0.900 (3.342 sec/step)
step 47560 loss = 0.277, train_acc = 0.800 (3.372 sec/step)
step 47570 loss = 0.001, train_acc = 1.000 (3.292 sec/step)
step 47580 loss = 0.184, train_acc = 0.900 (3.336 sec/step)
step 47590 loss = 0.002, train_acc = 1.000 (3.319 sec/step)
step 47600 loss = 0.113, train_acc = 0.900 (3.301 sec/step)
step 47610 loss = 0.067, train_acc = 1.000 (3.358 sec/step)
step 47620 loss = 0.110, train_acc = 1.000 (3.303 sec/step)
step 47630 loss = 0.063, train_acc = 1.000 (3.328 sec/step)
step 47640 loss = 0.076, train_acc = 1.000 (3.360 sec/step)
step 47650 loss = 0.414, train_acc = 0.800 (3.326 sec/step)
step 47660 loss = 0.005, train_acc = 1.000 (3.283 sec/step)
step 47670 loss = 0.040, train_acc = 1.000 (3.361 sec/step)
step 47680 loss = 0.001, train_acc = 1.000 (3.323 sec/step)
step 47690 loss = 0.026, train_acc = 1.000 (3.347 sec/step)
step 47700 loss = 1.146, train_acc = 0.900 (3.309 sec/step)
step 47710 loss = 0.771, train_acc = 0.900 (3.351 sec/step)
step 47720 loss = 0.081, train_acc = 1.000 (3.361 sec/step)
step 47730 loss = 0.194, train_acc = 0.900 (3.322 sec/step)
step 47740 loss = 0.158, train_acc = 1.000 (3.343 sec/step)
step 47750 loss = 0.294, train_acc = 0.900 (3.303 sec/step)
step 47760 loss = 0.354, train_acc = 0.900 (3.342 sec/step)
step 47770 loss = 0.312, train_acc = 0.800 (3.361 sec/step)
step 47780 loss = 0.006, train_acc = 1.000 (3.322 sec/step)
step 47790 loss = 0.101, train_acc = 1.000 (3.287 sec/step)
step 47800 loss = 0.548, train_acc = 0.800 (3.315 sec/step)
step 47810 loss = 0.702, train_acc = 0.800 (3.367 sec/step)
step 47820 loss = 0.025, train_acc = 1.000 (3.301 sec/step)
step 47830 loss = 0.198, train_acc = 0.900 (3.298 sec/step)
step 47840 loss = 1.347, train_acc = 0.800 (3.313 sec/step)
step 47850 loss = 0.327, train_acc = 0.800 (3.309 sec/step)
step 47860 loss = 0.450, train_acc = 0.900 (3.293 sec/step)
step 47870 loss = 0.045, train_acc = 1.000 (3.332 sec/step)
step 47880 loss = 0.018, train_acc = 1.000 (3.334 sec/step)
step 47890 loss = 0.084, train_acc = 1.000 (3.302 sec/step)
step 47900 loss = 1.012, train_acc = 0.700 (3.377 sec/step)
step 47910 loss = 0.088, train_acc = 1.000 (3.300 sec/step)
step 47920 loss = 0.262, train_acc = 0.900 (3.334 sec/step)
step 47930 loss = 0.009, train_acc = 1.000 (3.323 sec/step)
step 47940 loss = 1.024, train_acc = 0.800 (3.352 sec/step)
step 47950 loss = 0.361, train_acc = 0.900 (3.297 sec/step)
step 47960 loss = 0.001, train_acc = 1.000 (3.316 sec/step)
step 47970 loss = 0.348, train_acc = 0.900 (3.284 sec/step)
step 47980 loss = 0.301, train_acc = 0.800 (3.297 sec/step)
step 47990 loss = 0.226, train_acc = 0.900 (3.357 sec/step)
step 48000 loss = 0.076, train_acc = 1.000 (3.304 sec/step)
step 48010 loss = 1.307, train_acc = 0.900 (3.360 sec/step)
step 48020 loss = 0.620, train_acc = 0.700 (3.346 sec/step)
step 48030 loss = 0.632, train_acc = 0.800 (3.276 sec/step)
step 48040 loss = 0.270, train_acc = 0.900 (3.371 sec/step)
step 48050 loss = 0.000, train_acc = 1.000 (3.345 sec/step)
step 48060 loss = 0.115, train_acc = 1.000 (3.296 sec/step)
step 48070 loss = 0.043, train_acc = 1.000 (3.361 sec/step)
step 48080 loss = 0.061, train_acc = 1.000 (3.325 sec/step)
step 48090 loss = 0.019, train_acc = 1.000 (3.353 sec/step)
step 48100 loss = 0.300, train_acc = 0.900 (3.359 sec/step)
step 48110 loss = 0.095, train_acc = 1.000 (3.315 sec/step)
step 48120 loss = 0.002, train_acc = 1.000 (3.343 sec/step)
step 48130 loss = 0.130, train_acc = 0.900 (3.332 sec/step)
step 48140 loss = 0.950, train_acc = 0.800 (3.272 sec/step)
step 48150 loss = 0.381, train_acc = 0.900 (3.360 sec/step)
step 48160 loss = 0.435, train_acc = 0.900 (3.353 sec/step)
step 48170 loss = 0.703, train_acc = 0.900 (3.331 sec/step)
step 48180 loss = 0.528, train_acc = 0.900 (3.360 sec/step)
step 48190 loss = 0.113, train_acc = 0.900 (3.368 sec/step)
step 48200 loss = 0.340, train_acc = 0.900 (3.360 sec/step)
step 48210 loss = 0.039, train_acc = 1.000 (3.328 sec/step)
step 48220 loss = 0.028, train_acc = 1.000 (3.290 sec/step)
step 48230 loss = 0.012, train_acc = 1.000 (3.294 sec/step)
step 48240 loss = 0.000, train_acc = 1.000 (3.332 sec/step)
step 48250 loss = 0.198, train_acc = 0.900 (3.309 sec/step)
step 48260 loss = 0.065, train_acc = 1.000 (3.313 sec/step)
step 48270 loss = 0.673, train_acc = 0.900 (3.324 sec/step)
step 48280 loss = 0.491, train_acc = 0.900 (3.301 sec/step)
step 48290 loss = 0.048, train_acc = 1.000 (3.323 sec/step)
step 48300 loss = 0.001, train_acc = 1.000 (3.298 sec/step)
step 48310 loss = 0.031, train_acc = 1.000 (3.293 sec/step)
step 48320 loss = 0.001, train_acc = 1.000 (3.312 sec/step)
step 48330 loss = 0.000, train_acc = 1.000 (3.325 sec/step)
step 48340 loss = 0.859, train_acc = 0.700 (3.318 sec/step)
step 48350 loss = 0.032, train_acc = 1.000 (3.354 sec/step)
step 48360 loss = 0.802, train_acc = 0.800 (3.330 sec/step)
step 48370 loss = 0.029, train_acc = 1.000 (3.349 sec/step)
step 48380 loss = 0.004, train_acc = 1.000 (3.365 sec/step)
step 48390 loss = 0.891, train_acc = 0.900 (3.292 sec/step)
step 48400 loss = 0.000, train_acc = 1.000 (3.349 sec/step)
step 48410 loss = 0.234, train_acc = 0.900 (3.286 sec/step)
step 48420 loss = 0.038, train_acc = 1.000 (3.352 sec/step)
step 48430 loss = 0.027, train_acc = 1.000 (3.347 sec/step)
step 48440 loss = 0.023, train_acc = 1.000 (3.289 sec/step)
step 48450 loss = 0.022, train_acc = 1.000 (3.301 sec/step)
step 48460 loss = 0.002, train_acc = 1.000 (3.317 sec/step)
step 48470 loss = 0.902, train_acc = 0.900 (3.315 sec/step)
step 48480 loss = 0.156, train_acc = 0.900 (3.322 sec/step)
step 48490 loss = 0.227, train_acc = 0.800 (3.282 sec/step)
step 48500 loss = 0.167, train_acc = 0.900 (3.385 sec/step)
step 48510 loss = 0.318, train_acc = 0.800 (3.302 sec/step)
step 48520 loss = 0.486, train_acc = 0.900 (3.277 sec/step)
step 48530 loss = 0.903, train_acc = 0.800 (3.362 sec/step)
step 48540 loss = 0.375, train_acc = 0.900 (3.342 sec/step)
step 48550 loss = 0.285, train_acc = 0.800 (3.432 sec/step)
step 48560 loss = 0.012, train_acc = 1.000 (3.326 sec/step)
step 48570 loss = 0.744, train_acc = 0.800 (3.364 sec/step)
step 48580 loss = 0.480, train_acc = 0.900 (3.318 sec/step)
step 48590 loss = 0.369, train_acc = 0.800 (3.311 sec/step)
step 48600 loss = 0.121, train_acc = 0.900 (3.332 sec/step)
step 48610 loss = 0.089, train_acc = 1.000 (3.283 sec/step)
step 48620 loss = 0.060, train_acc = 1.000 (3.313 sec/step)
step 48630 loss = 0.177, train_acc = 0.900 (3.304 sec/step)
step 48640 loss = 0.394, train_acc = 0.800 (3.335 sec/step)
step 48650 loss = 0.009, train_acc = 1.000 (3.312 sec/step)
step 48660 loss = 0.417, train_acc = 0.800 (3.332 sec/step)
step 48670 loss = 0.561, train_acc = 0.800 (3.294 sec/step)
step 48680 loss = 0.107, train_acc = 0.900 (3.315 sec/step)
step 48690 loss = 0.006, train_acc = 1.000 (3.308 sec/step)
step 48700 loss = 0.000, train_acc = 1.000 (3.338 sec/step)
step 48710 loss = 0.042, train_acc = 1.000 (3.302 sec/step)
step 48720 loss = 0.276, train_acc = 0.800 (3.395 sec/step)
step 48730 loss = 0.003, train_acc = 1.000 (3.315 sec/step)
step 48740 loss = 0.354, train_acc = 0.900 (3.387 sec/step)
step 48750 loss = 0.028, train_acc = 1.000 (3.305 sec/step)
step 48760 loss = 0.049, train_acc = 1.000 (3.400 sec/step)
step 48770 loss = 0.005, train_acc = 1.000 (3.307 sec/step)
step 48780 loss = 0.236, train_acc = 0.900 (3.326 sec/step)
step 48790 loss = 0.199, train_acc = 0.900 (3.313 sec/step)
step 48800 loss = 0.022, train_acc = 1.000 (3.355 sec/step)
step 48810 loss = 0.314, train_acc = 0.900 (3.386 sec/step)
step 48820 loss = 0.002, train_acc = 1.000 (3.284 sec/step)
step 48830 loss = 0.340, train_acc = 0.800 (3.324 sec/step)
step 48840 loss = 0.025, train_acc = 1.000 (3.297 sec/step)
step 48850 loss = 1.268, train_acc = 0.800 (3.347 sec/step)
step 48860 loss = 0.309, train_acc = 0.900 (3.341 sec/step)
step 48870 loss = 0.475, train_acc = 0.900 (3.378 sec/step)
step 48880 loss = 1.126, train_acc = 0.700 (3.363 sec/step)
step 48890 loss = 1.105, train_acc = 0.800 (3.288 sec/step)
step 48900 loss = 0.110, train_acc = 1.000 (3.361 sec/step)
step 48910 loss = 0.224, train_acc = 0.900 (3.317 sec/step)
step 48920 loss = 0.105, train_acc = 1.000 (3.349 sec/step)
step 48930 loss = 0.452, train_acc = 0.800 (3.293 sec/step)
step 48940 loss = 0.015, train_acc = 1.000 (3.341 sec/step)
step 48950 loss = 0.672, train_acc = 0.800 (3.295 sec/step)
step 48960 loss = 0.000, train_acc = 1.000 (3.309 sec/step)
step 48970 loss = 0.004, train_acc = 1.000 (3.285 sec/step)
step 48980 loss = 0.159, train_acc = 0.900 (3.292 sec/step)
step 48990 loss = 3.243, train_acc = 0.700 (3.295 sec/step)
step 49000 loss = 0.079, train_acc = 1.000 (3.344 sec/step)
step 49010 loss = 0.235, train_acc = 0.900 (3.348 sec/step)
step 49020 loss = 0.070, train_acc = 0.900 (3.311 sec/step)
step 49030 loss = 2.552, train_acc = 0.600 (3.346 sec/step)
step 49040 loss = 0.357, train_acc = 0.900 (3.402 sec/step)
step 49050 loss = 0.094, train_acc = 1.000 (3.375 sec/step)
step 49060 loss = 0.015, train_acc = 1.000 (3.329 sec/step)
step 49070 loss = 0.000, train_acc = 1.000 (3.340 sec/step)
step 49080 loss = 0.004, train_acc = 1.000 (3.317 sec/step)
step 49090 loss = 0.001, train_acc = 1.000 (3.366 sec/step)
step 49100 loss = 0.370, train_acc = 0.900 (3.322 sec/step)
step 49110 loss = 0.084, train_acc = 1.000 (3.326 sec/step)
step 49120 loss = 0.029, train_acc = 1.000 (3.268 sec/step)
step 49130 loss = 0.906, train_acc = 0.700 (3.301 sec/step)
step 49140 loss = 1.694, train_acc = 0.500 (3.374 sec/step)
step 49150 loss = 0.166, train_acc = 0.900 (3.317 sec/step)
step 49160 loss = 0.343, train_acc = 0.900 (3.322 sec/step)
step 49170 loss = 0.542, train_acc = 0.700 (3.368 sec/step)
step 49180 loss = 0.009, train_acc = 1.000 (3.362 sec/step)
step 49190 loss = 0.008, train_acc = 1.000 (3.289 sec/step)
step 49200 loss = 0.662, train_acc = 0.900 (3.292 sec/step)
step 49210 loss = 0.347, train_acc = 0.900 (3.376 sec/step)
step 49220 loss = 0.140, train_acc = 0.900 (3.340 sec/step)
step 49230 loss = 0.181, train_acc = 0.900 (3.360 sec/step)
step 49240 loss = 4.162, train_acc = 0.700 (3.323 sec/step)
step 49250 loss = 0.155, train_acc = 0.900 (3.307 sec/step)
step 49260 loss = 0.167, train_acc = 0.900 (3.330 sec/step)
step 49270 loss = 0.306, train_acc = 0.900 (3.361 sec/step)
step 49280 loss = 0.306, train_acc = 0.900 (3.344 sec/step)
step 49290 loss = 0.111, train_acc = 0.900 (3.293 sec/step)
step 49300 loss = 0.155, train_acc = 0.900 (3.319 sec/step)
step 49310 loss = 0.141, train_acc = 0.900 (3.306 sec/step)
step 49320 loss = 0.308, train_acc = 0.800 (3.376 sec/step)
step 49330 loss = 1.215, train_acc = 0.600 (3.320 sec/step)
step 49340 loss = 0.984, train_acc = 0.700 (3.332 sec/step)
step 49350 loss = 0.090, train_acc = 0.900 (3.270 sec/step)
step 49360 loss = 0.516, train_acc = 0.800 (3.331 sec/step)
step 49370 loss = 0.104, train_acc = 0.900 (3.335 sec/step)
step 49380 loss = 0.066, train_acc = 1.000 (3.320 sec/step)
step 49390 loss = 0.104, train_acc = 0.900 (3.318 sec/step)
VALIDATION acc = 0.533 (3.640 sec)
step 49400 loss = 0.001, train_acc = 1.000 (3.292 sec/step)
step 49410 loss = 0.152, train_acc = 0.900 (3.410 sec/step)
step 49420 loss = 0.000, train_acc = 1.000 (3.353 sec/step)
step 49430 loss = 0.006, train_acc = 1.000 (3.323 sec/step)
step 49440 loss = 0.002, train_acc = 1.000 (3.364 sec/step)
step 49450 loss = 0.345, train_acc = 0.900 (3.304 sec/step)
step 49460 loss = 0.370, train_acc = 0.900 (3.322 sec/step)
step 49470 loss = 0.296, train_acc = 0.900 (3.415 sec/step)
step 49480 loss = 0.000, train_acc = 1.000 (3.285 sec/step)
step 49490 loss = 0.039, train_acc = 1.000 (3.350 sec/step)
step 49500 loss = 0.004, train_acc = 1.000 (3.296 sec/step)
step 49510 loss = 0.033, train_acc = 1.000 (3.319 sec/step)
step 49520 loss = 0.216, train_acc = 0.900 (3.328 sec/step)
step 49530 loss = 0.152, train_acc = 0.900 (3.371 sec/step)
step 49540 loss = 0.257, train_acc = 0.900 (3.313 sec/step)
step 49550 loss = 0.013, train_acc = 1.000 (3.305 sec/step)
step 49560 loss = 0.287, train_acc = 0.800 (3.287 sec/step)
step 49570 loss = 0.026, train_acc = 1.000 (3.344 sec/step)
step 49580 loss = 0.044, train_acc = 1.000 (3.307 sec/step)
step 49590 loss = 0.607, train_acc = 0.900 (3.316 sec/step)
step 49600 loss = 0.395, train_acc = 0.800 (3.280 sec/step)
step 49610 loss = 0.161, train_acc = 1.000 (3.340 sec/step)
step 49620 loss = 0.002, train_acc = 1.000 (3.297 sec/step)
step 49630 loss = 0.035, train_acc = 1.000 (3.413 sec/step)
step 49640 loss = 0.017, train_acc = 1.000 (3.326 sec/step)
step 49650 loss = 0.585, train_acc = 0.800 (3.272 sec/step)
step 49660 loss = 0.288, train_acc = 0.900 (3.302 sec/step)
step 49670 loss = 0.005, train_acc = 1.000 (3.307 sec/step)
step 49680 loss = 0.000, train_acc = 1.000 (3.318 sec/step)
step 49690 loss = 0.026, train_acc = 1.000 (3.364 sec/step)
step 49700 loss = 0.023, train_acc = 1.000 (3.312 sec/step)
step 49710 loss = 1.758, train_acc = 0.900 (3.297 sec/step)
step 49720 loss = 0.002, train_acc = 1.000 (3.352 sec/step)
step 49730 loss = 0.006, train_acc = 1.000 (3.366 sec/step)
step 49740 loss = 0.055, train_acc = 1.000 (3.335 sec/step)
step 49750 loss = 0.001, train_acc = 1.000 (3.299 sec/step)
step 49760 loss = 0.004, train_acc = 1.000 (3.337 sec/step)
step 49770 loss = 0.142, train_acc = 0.900 (3.478 sec/step)
step 49780 loss = 1.062, train_acc = 0.900 (3.293 sec/step)
step 49790 loss = 0.000, train_acc = 1.000 (3.331 sec/step)
step 49800 loss = 2.561, train_acc = 0.600 (3.357 sec/step)
step 49810 loss = 0.148, train_acc = 0.900 (3.309 sec/step)
step 49820 loss = 0.002, train_acc = 1.000 (3.328 sec/step)
step 49830 loss = 0.045, train_acc = 1.000 (3.349 sec/step)
step 49840 loss = 0.245, train_acc = 0.800 (3.310 sec/step)
step 49850 loss = 0.797, train_acc = 0.800 (3.351 sec/step)
step 49860 loss = 1.001, train_acc = 0.900 (3.278 sec/step)
step 49870 loss = 0.000, train_acc = 1.000 (3.347 sec/step)
step 49880 loss = 0.004, train_acc = 1.000 (3.317 sec/step)
step 49890 loss = 0.052, train_acc = 1.000 (3.348 sec/step)
step 49900 loss = 0.022, train_acc = 1.000 (3.369 sec/step)
step 49910 loss = 0.073, train_acc = 1.000 (3.356 sec/step)
step 49920 loss = 0.783, train_acc = 0.900 (3.294 sec/step)
step 49930 loss = 0.299, train_acc = 1.000 (3.319 sec/step)
step 49940 loss = 0.007, train_acc = 1.000 (3.312 sec/step)
step 49950 loss = 0.000, train_acc = 1.000 (3.339 sec/step)
step 49960 loss = 0.001, train_acc = 1.000 (3.318 sec/step)
step 49970 loss = 0.022, train_acc = 1.000 (3.292 sec/step)
step 49980 loss = 0.100, train_acc = 1.000 (3.323 sec/step)
step 49990 loss = 0.042, train_acc = 1.000 (3.315 sec/step)
step 50000 loss = 1.661, train_acc = 0.900 (3.307 sec/step)
step 50010 loss = 0.034, train_acc = 1.000 (3.334 sec/step)
step 50020 loss = 0.156, train_acc = 1.000 (3.299 sec/step)
step 50030 loss = 0.055, train_acc = 1.000 (3.320 sec/step)
step 50040 loss = 0.006, train_acc = 1.000 (3.303 sec/step)
step 50050 loss = 0.203, train_acc = 0.900 (3.299 sec/step)
step 50060 loss = 0.051, train_acc = 1.000 (3.337 sec/step)
step 50070 loss = 0.020, train_acc = 1.000 (3.305 sec/step)
step 50080 loss = 0.017, train_acc = 1.000 (3.315 sec/step)
step 50090 loss = 0.069, train_acc = 1.000 (3.330 sec/step)
step 50100 loss = 0.036, train_acc = 1.000 (3.341 sec/step)
step 50110 loss = 0.046, train_acc = 1.000 (3.289 sec/step)
step 50120 loss = 0.006, train_acc = 1.000 (3.356 sec/step)
step 50130 loss = 0.258, train_acc = 0.900 (3.395 sec/step)
step 50140 loss = 0.000, train_acc = 1.000 (3.322 sec/step)
step 50150 loss = 0.000, train_acc = 1.000 (3.339 sec/step)
step 50160 loss = 0.659, train_acc = 0.900 (3.362 sec/step)
step 50170 loss = 0.003, train_acc = 1.000 (3.347 sec/step)
step 50180 loss = 0.013, train_acc = 1.000 (3.375 sec/step)
step 50190 loss = 0.004, train_acc = 1.000 (3.277 sec/step)
step 50200 loss = 0.511, train_acc = 0.900 (3.314 sec/step)
step 50210 loss = 0.000, train_acc = 1.000 (3.314 sec/step)
step 50220 loss = 1.102, train_acc = 0.900 (3.308 sec/step)
step 50230 loss = 0.039, train_acc = 1.000 (3.320 sec/step)
step 50240 loss = 0.017, train_acc = 1.000 (3.317 sec/step)
step 50250 loss = 0.000, train_acc = 1.000 (3.364 sec/step)
step 50260 loss = 0.000, train_acc = 1.000 (3.369 sec/step)
step 50270 loss = 0.128, train_acc = 0.900 (3.283 sec/step)
step 50280 loss = 0.150, train_acc = 1.000 (3.333 sec/step)
step 50290 loss = 0.002, train_acc = 1.000 (3.345 sec/step)
step 50300 loss = 0.072, train_acc = 1.000 (3.382 sec/step)
step 50310 loss = 0.749, train_acc = 0.800 (3.303 sec/step)
step 50320 loss = 0.169, train_acc = 0.900 (3.306 sec/step)
step 50330 loss = 0.016, train_acc = 1.000 (3.337 sec/step)
step 50340 loss = 0.334, train_acc = 0.900 (3.332 sec/step)
step 50350 loss = 0.368, train_acc = 0.800 (3.361 sec/step)
step 50360 loss = 0.107, train_acc = 1.000 (3.347 sec/step)
step 50370 loss = 0.031, train_acc = 1.000 (3.347 sec/step)
step 50380 loss = 0.010, train_acc = 1.000 (3.332 sec/step)
step 50390 loss = 0.010, train_acc = 1.000 (3.289 sec/step)
step 50400 loss = 0.024, train_acc = 1.000 (3.321 sec/step)
step 50410 loss = 0.186, train_acc = 0.900 (3.345 sec/step)
step 50420 loss = 0.012, train_acc = 1.000 (3.282 sec/step)
step 50430 loss = 1.736, train_acc = 0.800 (3.287 sec/step)
step 50440 loss = 1.029, train_acc = 0.600 (3.328 sec/step)
step 50450 loss = 0.052, train_acc = 1.000 (3.307 sec/step)
step 50460 loss = 0.133, train_acc = 0.900 (3.383 sec/step)
step 50470 loss = 0.284, train_acc = 0.900 (3.284 sec/step)
step 50480 loss = 0.481, train_acc = 0.900 (3.355 sec/step)
step 50490 loss = 0.632, train_acc = 0.900 (3.307 sec/step)
step 50500 loss = 0.010, train_acc = 1.000 (3.289 sec/step)
step 50510 loss = 0.003, train_acc = 1.000 (3.308 sec/step)
step 50520 loss = 0.002, train_acc = 1.000 (3.343 sec/step)
step 50530 loss = 0.008, train_acc = 1.000 (3.345 sec/step)
step 50540 loss = 0.123, train_acc = 0.900 (3.309 sec/step)
step 50550 loss = 0.516, train_acc = 0.900 (3.363 sec/step)
step 50560 loss = 0.060, train_acc = 1.000 (3.321 sec/step)
step 50570 loss = 0.004, train_acc = 1.000 (3.347 sec/step)
step 50580 loss = 0.022, train_acc = 1.000 (3.341 sec/step)
step 50590 loss = 0.088, train_acc = 1.000 (3.280 sec/step)
step 50600 loss = 0.187, train_acc = 0.900 (3.395 sec/step)
step 50610 loss = 0.096, train_acc = 0.900 (3.340 sec/step)
step 50620 loss = 0.425, train_acc = 0.900 (3.328 sec/step)
step 50630 loss = 0.010, train_acc = 1.000 (3.310 sec/step)
step 50640 loss = 0.017, train_acc = 1.000 (3.385 sec/step)
step 50650 loss = 0.180, train_acc = 0.900 (3.331 sec/step)
step 50660 loss = 0.113, train_acc = 0.900 (3.333 sec/step)
step 50670 loss = 0.175, train_acc = 0.900 (3.322 sec/step)
step 50680 loss = 0.000, train_acc = 1.000 (3.356 sec/step)
step 50690 loss = 0.006, train_acc = 1.000 (3.309 sec/step)
step 50700 loss = 0.629, train_acc = 0.900 (3.330 sec/step)
step 50710 loss = 0.228, train_acc = 0.900 (3.342 sec/step)
step 50720 loss = 0.022, train_acc = 1.000 (3.363 sec/step)
step 50730 loss = 0.150, train_acc = 0.900 (3.327 sec/step)
step 50740 loss = 0.334, train_acc = 0.900 (3.301 sec/step)
step 50750 loss = 0.705, train_acc = 0.900 (3.302 sec/step)
step 50760 loss = 0.803, train_acc = 0.700 (3.404 sec/step)
step 50770 loss = 0.000, train_acc = 1.000 (3.287 sec/step)
step 50780 loss = 0.774, train_acc = 0.800 (3.346 sec/step)
step 50790 loss = 0.151, train_acc = 0.900 (3.305 sec/step)
step 50800 loss = 0.077, train_acc = 1.000 (3.355 sec/step)
step 50810 loss = 0.048, train_acc = 1.000 (3.286 sec/step)
step 50820 loss = 0.066, train_acc = 1.000 (3.326 sec/step)
step 50830 loss = 0.041, train_acc = 1.000 (3.324 sec/step)
step 50840 loss = 0.138, train_acc = 0.900 (3.303 sec/step)
step 50850 loss = 0.010, train_acc = 1.000 (3.344 sec/step)
step 50860 loss = 0.008, train_acc = 1.000 (3.306 sec/step)
step 50870 loss = 0.022, train_acc = 1.000 (3.315 sec/step)
step 50880 loss = 0.950, train_acc = 0.700 (3.329 sec/step)
step 50890 loss = 0.014, train_acc = 1.000 (3.359 sec/step)
step 50900 loss = 0.845, train_acc = 0.700 (3.348 sec/step)
step 50910 loss = 0.596, train_acc = 0.900 (3.319 sec/step)
step 50920 loss = 0.114, train_acc = 1.000 (3.318 sec/step)
step 50930 loss = 0.071, train_acc = 1.000 (3.317 sec/step)
step 50940 loss = 0.047, train_acc = 1.000 (3.378 sec/step)
step 50950 loss = 1.509, train_acc = 0.800 (3.362 sec/step)
step 50960 loss = 1.076, train_acc = 0.900 (3.345 sec/step)
step 50970 loss = 0.082, train_acc = 1.000 (3.388 sec/step)
step 50980 loss = 0.002, train_acc = 1.000 (3.331 sec/step)
step 50990 loss = 0.532, train_acc = 0.900 (3.341 sec/step)
step 51000 loss = 0.043, train_acc = 1.000 (3.374 sec/step)
step 51010 loss = 0.367, train_acc = 0.800 (3.359 sec/step)
step 51020 loss = 0.002, train_acc = 1.000 (3.286 sec/step)
step 51030 loss = 0.075, train_acc = 1.000 (3.349 sec/step)
step 51040 loss = 0.076, train_acc = 1.000 (3.374 sec/step)
step 51050 loss = 0.073, train_acc = 1.000 (3.272 sec/step)
step 51060 loss = 0.353, train_acc = 0.900 (3.306 sec/step)
step 51070 loss = 0.004, train_acc = 1.000 (3.324 sec/step)
step 51080 loss = 0.442, train_acc = 0.900 (3.308 sec/step)
step 51090 loss = 0.556, train_acc = 0.900 (3.311 sec/step)
step 51100 loss = 0.064, train_acc = 1.000 (3.356 sec/step)
step 51110 loss = 0.086, train_acc = 1.000 (3.287 sec/step)
step 51120 loss = 0.232, train_acc = 0.900 (3.364 sec/step)
step 51130 loss = 0.569, train_acc = 0.900 (3.324 sec/step)
step 51140 loss = 0.052, train_acc = 1.000 (3.381 sec/step)
step 51150 loss = 0.001, train_acc = 1.000 (3.321 sec/step)
step 51160 loss = 0.101, train_acc = 0.900 (3.337 sec/step)
step 51170 loss = 0.000, train_acc = 1.000 (3.378 sec/step)
step 51180 loss = 0.529, train_acc = 0.800 (3.342 sec/step)
step 51190 loss = 0.187, train_acc = 0.900 (3.303 sec/step)
step 51200 loss = 0.365, train_acc = 0.900 (3.442 sec/step)
step 51210 loss = 0.002, train_acc = 1.000 (3.288 sec/step)
step 51220 loss = 0.350, train_acc = 0.900 (3.336 sec/step)
step 51230 loss = 0.071, train_acc = 1.000 (3.332 sec/step)
step 51240 loss = 0.071, train_acc = 1.000 (3.376 sec/step)
step 51250 loss = 0.004, train_acc = 1.000 (3.319 sec/step)
step 51260 loss = 0.814, train_acc = 0.800 (3.363 sec/step)
step 51270 loss = 0.383, train_acc = 0.900 (3.312 sec/step)
step 51280 loss = 0.007, train_acc = 1.000 (3.356 sec/step)
step 51290 loss = 0.002, train_acc = 1.000 (3.380 sec/step)
VALIDATION acc = 0.560 (3.644 sec)
step 51300 loss = 0.397, train_acc = 0.900 (3.319 sec/step)
step 51310 loss = 0.023, train_acc = 1.000 (3.357 sec/step)
step 51320 loss = 0.460, train_acc = 0.900 (3.361 sec/step)
step 51330 loss = 0.078, train_acc = 1.000 (3.324 sec/step)
step 51340 loss = 0.101, train_acc = 1.000 (3.280 sec/step)
step 51350 loss = 0.804, train_acc = 0.800 (3.310 sec/step)
step 51360 loss = 0.124, train_acc = 0.900 (3.324 sec/step)
step 51370 loss = 0.009, train_acc = 1.000 (3.348 sec/step)
step 51380 loss = 0.047, train_acc = 1.000 (3.303 sec/step)
step 51390 loss = 0.085, train_acc = 0.900 (3.354 sec/step)
step 51400 loss = 0.063, train_acc = 1.000 (3.277 sec/step)
step 51410 loss = 1.496, train_acc = 0.900 (3.314 sec/step)
step 51420 loss = 0.084, train_acc = 1.000 (3.372 sec/step)
step 51430 loss = 0.003, train_acc = 1.000 (3.466 sec/step)
step 51440 loss = 0.050, train_acc = 1.000 (3.349 sec/step)
step 51450 loss = 2.182, train_acc = 0.700 (3.396 sec/step)
step 51460 loss = 0.036, train_acc = 1.000 (3.346 sec/step)
step 51470 loss = 0.007, train_acc = 1.000 (3.334 sec/step)
step 51480 loss = 0.000, train_acc = 1.000 (3.356 sec/step)
step 51490 loss = 0.001, train_acc = 1.000 (3.304 sec/step)
step 51500 loss = 0.513, train_acc = 0.900 (3.357 sec/step)
step 51510 loss = 0.074, train_acc = 1.000 (3.330 sec/step)
step 51520 loss = 0.293, train_acc = 0.900 (3.356 sec/step)
step 51530 loss = 0.256, train_acc = 0.900 (3.278 sec/step)
step 51540 loss = 0.140, train_acc = 1.000 (3.338 sec/step)
step 51550 loss = 0.093, train_acc = 1.000 (3.279 sec/step)
step 51560 loss = 0.063, train_acc = 1.000 (3.350 sec/step)
step 51570 loss = 0.004, train_acc = 1.000 (3.296 sec/step)
step 51580 loss = 1.831, train_acc = 0.800 (3.345 sec/step)
step 51590 loss = 0.106, train_acc = 1.000 (3.323 sec/step)
step 51600 loss = 0.242, train_acc = 1.000 (3.300 sec/step)
step 51610 loss = 0.220, train_acc = 0.900 (3.337 sec/step)
step 51620 loss = 0.000, train_acc = 1.000 (3.285 sec/step)
step 51630 loss = 0.003, train_acc = 1.000 (3.313 sec/step)
step 51640 loss = 0.003, train_acc = 1.000 (3.282 sec/step)
step 51650 loss = 0.045, train_acc = 1.000 (3.360 sec/step)
step 51660 loss = 0.083, train_acc = 1.000 (3.322 sec/step)
step 51670 loss = 0.027, train_acc = 1.000 (3.316 sec/step)
step 51680 loss = 0.210, train_acc = 0.900 (3.338 sec/step)
step 51690 loss = 0.608, train_acc = 0.800 (3.362 sec/step)
step 51700 loss = 0.283, train_acc = 0.900 (3.315 sec/step)
step 51710 loss = 0.248, train_acc = 0.900 (3.300 sec/step)
step 51720 loss = 0.553, train_acc = 0.800 (3.369 sec/step)
step 51730 loss = 0.154, train_acc = 0.900 (3.279 sec/step)
step 51740 loss = 0.515, train_acc = 0.900 (3.409 sec/step)
step 51750 loss = 0.029, train_acc = 1.000 (3.384 sec/step)
step 51760 loss = 2.004, train_acc = 0.800 (3.318 sec/step)
step 51770 loss = 0.012, train_acc = 1.000 (3.377 sec/step)
step 51780 loss = 0.191, train_acc = 0.900 (3.301 sec/step)
step 51790 loss = 0.176, train_acc = 0.900 (3.321 sec/step)
step 51800 loss = 0.036, train_acc = 1.000 (3.327 sec/step)
step 51810 loss = 0.369, train_acc = 0.800 (3.333 sec/step)
step 51820 loss = 0.166, train_acc = 0.900 (3.358 sec/step)
step 51830 loss = 0.018, train_acc = 1.000 (3.294 sec/step)
step 51840 loss = 0.193, train_acc = 0.900 (3.379 sec/step)
step 51850 loss = 0.019, train_acc = 1.000 (3.322 sec/step)
step 51860 loss = 0.167, train_acc = 0.900 (3.347 sec/step)
step 51870 loss = 0.263, train_acc = 0.900 (3.368 sec/step)
step 51880 loss = 0.139, train_acc = 1.000 (3.365 sec/step)
step 51890 loss = 0.406, train_acc = 0.900 (3.331 sec/step)
step 51900 loss = 0.662, train_acc = 0.900 (3.283 sec/step)
step 51910 loss = 0.020, train_acc = 1.000 (3.348 sec/step)
step 51920 loss = 0.473, train_acc = 0.800 (3.310 sec/step)
step 51930 loss = 0.074, train_acc = 1.000 (3.435 sec/step)
step 51940 loss = 0.177, train_acc = 1.000 (3.309 sec/step)
step 51950 loss = 0.032, train_acc = 1.000 (3.418 sec/step)
step 51960 loss = 0.715, train_acc = 0.800 (3.313 sec/step)
step 51970 loss = 0.051, train_acc = 1.000 (3.342 sec/step)
step 51980 loss = 0.089, train_acc = 1.000 (3.367 sec/step)
step 51990 loss = 0.822, train_acc = 0.900 (3.362 sec/step)
step 52000 loss = 0.722, train_acc = 0.900 (3.347 sec/step)
step 52010 loss = 0.225, train_acc = 0.900 (3.328 sec/step)
step 52020 loss = 0.043, train_acc = 1.000 (3.328 sec/step)
step 52030 loss = 0.588, train_acc = 0.800 (3.344 sec/step)
step 52040 loss = 0.026, train_acc = 1.000 (3.315 sec/step)
step 52050 loss = 0.042, train_acc = 1.000 (3.314 sec/step)
step 52060 loss = 0.207, train_acc = 0.900 (3.314 sec/step)
step 52070 loss = 0.386, train_acc = 0.900 (3.266 sec/step)
step 52080 loss = 0.273, train_acc = 0.900 (3.307 sec/step)
step 52090 loss = 0.209, train_acc = 0.900 (3.357 sec/step)
step 52100 loss = 0.114, train_acc = 0.900 (3.434 sec/step)
step 52110 loss = 0.053, train_acc = 1.000 (3.291 sec/step)
step 52120 loss = 0.013, train_acc = 1.000 (3.314 sec/step)
step 52130 loss = 0.537, train_acc = 0.800 (3.349 sec/step)
step 52140 loss = 0.007, train_acc = 1.000 (3.323 sec/step)
step 52150 loss = 0.001, train_acc = 1.000 (3.358 sec/step)
step 52160 loss = 0.070, train_acc = 1.000 (3.359 sec/step)
step 52170 loss = 0.326, train_acc = 0.900 (3.296 sec/step)
step 52180 loss = 0.027, train_acc = 1.000 (3.356 sec/step)
step 52190 loss = 0.002, train_acc = 1.000 (3.347 sec/step)
step 52200 loss = 0.043, train_acc = 1.000 (3.344 sec/step)
step 52210 loss = 0.600, train_acc = 0.800 (3.320 sec/step)
step 52220 loss = 0.031, train_acc = 1.000 (3.289 sec/step)
step 52230 loss = 0.001, train_acc = 1.000 (3.314 sec/step)
step 52240 loss = 0.307, train_acc = 0.900 (3.304 sec/step)
step 52250 loss = 0.629, train_acc = 0.900 (3.339 sec/step)
step 52260 loss = 0.008, train_acc = 1.000 (3.328 sec/step)
step 52270 loss = 0.007, train_acc = 1.000 (3.303 sec/step)
step 52280 loss = 0.024, train_acc = 1.000 (3.336 sec/step)
step 52290 loss = 0.656, train_acc = 0.700 (3.293 sec/step)
step 52300 loss = 0.013, train_acc = 1.000 (3.356 sec/step)
step 52310 loss = 0.080, train_acc = 1.000 (3.332 sec/step)
step 52320 loss = 0.187, train_acc = 0.900 (3.327 sec/step)
step 52330 loss = 0.012, train_acc = 1.000 (3.293 sec/step)
step 52340 loss = 0.044, train_acc = 1.000 (3.364 sec/step)
step 52350 loss = 0.811, train_acc = 0.700 (3.340 sec/step)
step 52360 loss = 0.105, train_acc = 1.000 (3.340 sec/step)
step 52370 loss = 0.133, train_acc = 0.900 (3.336 sec/step)
step 52380 loss = 0.084, train_acc = 1.000 (3.334 sec/step)
step 52390 loss = 0.338, train_acc = 0.900 (3.309 sec/step)
step 52400 loss = 0.784, train_acc = 0.900 (3.310 sec/step)
step 52410 loss = 0.026, train_acc = 1.000 (3.308 sec/step)
step 52420 loss = 0.792, train_acc = 0.900 (3.330 sec/step)
step 52430 loss = 0.368, train_acc = 0.900 (3.370 sec/step)
step 52440 loss = 2.462, train_acc = 0.700 (3.347 sec/step)
step 52450 loss = 0.204, train_acc = 0.900 (3.339 sec/step)
step 52460 loss = 0.327, train_acc = 0.900 (3.342 sec/step)
step 52470 loss = 0.005, train_acc = 1.000 (3.307 sec/step)
step 52480 loss = 0.092, train_acc = 0.900 (3.340 sec/step)
step 52490 loss = 0.018, train_acc = 1.000 (3.311 sec/step)
step 52500 loss = 0.037, train_acc = 1.000 (3.367 sec/step)
step 52510 loss = 0.100, train_acc = 1.000 (3.347 sec/step)
step 52520 loss = 0.336, train_acc = 0.800 (3.338 sec/step)
step 52530 loss = 0.620, train_acc = 0.900 (3.287 sec/step)
step 52540 loss = 0.003, train_acc = 1.000 (3.300 sec/step)
step 52550 loss = 0.127, train_acc = 0.900 (3.327 sec/step)
step 52560 loss = 0.025, train_acc = 1.000 (3.278 sec/step)
step 52570 loss = 1.291, train_acc = 0.700 (3.323 sec/step)
step 52580 loss = 0.003, train_acc = 1.000 (3.302 sec/step)
step 52590 loss = 0.006, train_acc = 1.000 (3.303 sec/step)
step 52600 loss = 0.156, train_acc = 0.900 (3.340 sec/step)
step 52610 loss = 0.230, train_acc = 0.800 (3.294 sec/step)
step 52620 loss = 0.007, train_acc = 1.000 (3.327 sec/step)
step 52630 loss = 0.048, train_acc = 1.000 (3.325 sec/step)
step 52640 loss = 0.695, train_acc = 0.800 (3.346 sec/step)
step 52650 loss = 0.550, train_acc = 0.900 (3.325 sec/step)
step 52660 loss = 0.257, train_acc = 0.800 (3.307 sec/step)
step 52670 loss = 0.389, train_acc = 0.800 (3.330 sec/step)
step 52680 loss = 0.080, train_acc = 0.900 (3.365 sec/step)
step 52690 loss = 0.399, train_acc = 0.800 (3.305 sec/step)
step 52700 loss = 0.007, train_acc = 1.000 (3.310 sec/step)
step 52710 loss = 0.115, train_acc = 0.900 (3.342 sec/step)
step 52720 loss = 0.436, train_acc = 0.800 (3.284 sec/step)
step 52730 loss = 0.606, train_acc = 0.800 (3.410 sec/step)
step 52740 loss = 0.248, train_acc = 0.900 (3.317 sec/step)
step 52750 loss = 0.028, train_acc = 1.000 (3.306 sec/step)
step 52760 loss = 0.004, train_acc = 1.000 (3.300 sec/step)
step 52770 loss = 0.008, train_acc = 1.000 (3.330 sec/step)
step 52780 loss = 0.919, train_acc = 0.900 (3.322 sec/step)
step 52790 loss = 0.152, train_acc = 0.900 (3.316 sec/step)
step 52800 loss = 0.011, train_acc = 1.000 (3.372 sec/step)
step 52810 loss = 0.009, train_acc = 1.000 (3.281 sec/step)
step 52820 loss = 0.434, train_acc = 0.900 (3.326 sec/step)
step 52830 loss = 0.416, train_acc = 0.900 (3.342 sec/step)
step 52840 loss = 0.026, train_acc = 1.000 (3.292 sec/step)
step 52850 loss = 0.283, train_acc = 0.900 (3.321 sec/step)
step 52860 loss = 0.120, train_acc = 0.900 (3.358 sec/step)
step 52870 loss = 0.026, train_acc = 1.000 (3.407 sec/step)
step 52880 loss = 1.019, train_acc = 0.900 (3.456 sec/step)
step 52890 loss = 0.009, train_acc = 1.000 (3.373 sec/step)
step 52900 loss = 0.823, train_acc = 0.700 (3.311 sec/step)
step 52910 loss = 0.244, train_acc = 0.800 (3.316 sec/step)
step 52920 loss = 0.094, train_acc = 0.900 (3.345 sec/step)
step 52930 loss = 0.301, train_acc = 0.800 (3.321 sec/step)
step 52940 loss = 0.115, train_acc = 1.000 (3.345 sec/step)
step 52950 loss = 0.001, train_acc = 1.000 (3.361 sec/step)
step 52960 loss = 0.020, train_acc = 1.000 (3.305 sec/step)
step 52970 loss = 0.132, train_acc = 0.900 (3.289 sec/step)
step 52980 loss = 0.179, train_acc = 0.900 (3.277 sec/step)
step 52990 loss = 0.043, train_acc = 1.000 (3.353 sec/step)
step 53000 loss = 0.052, train_acc = 1.000 (3.371 sec/step)
step 53010 loss = 0.355, train_acc = 0.900 (3.335 sec/step)
step 53020 loss = 0.041, train_acc = 1.000 (3.330 sec/step)
step 53030 loss = 0.080, train_acc = 1.000 (3.343 sec/step)
step 53040 loss = 0.113, train_acc = 0.900 (3.350 sec/step)
step 53050 loss = 0.009, train_acc = 1.000 (3.334 sec/step)
step 53060 loss = 0.011, train_acc = 1.000 (3.331 sec/step)
step 53070 loss = 0.002, train_acc = 1.000 (3.360 sec/step)
step 53080 loss = 0.229, train_acc = 0.900 (3.382 sec/step)
step 53090 loss = 0.233, train_acc = 0.900 (3.281 sec/step)
step 53100 loss = 0.568, train_acc = 0.800 (3.314 sec/step)
step 53110 loss = 0.311, train_acc = 0.800 (3.399 sec/step)
step 53120 loss = 0.008, train_acc = 1.000 (3.364 sec/step)
step 53130 loss = 0.043, train_acc = 1.000 (3.323 sec/step)
step 53140 loss = 0.476, train_acc = 0.700 (3.349 sec/step)
step 53150 loss = 0.032, train_acc = 1.000 (3.304 sec/step)
step 53160 loss = 0.002, train_acc = 1.000 (3.340 sec/step)
step 53170 loss = 0.022, train_acc = 1.000 (3.351 sec/step)
step 53180 loss = 0.356, train_acc = 0.900 (3.278 sec/step)
step 53190 loss = 0.003, train_acc = 1.000 (3.362 sec/step)
VALIDATION acc = 0.530 (3.617 sec)
step 53200 loss = 0.003, train_acc = 1.000 (3.308 sec/step)
step 53210 loss = 0.115, train_acc = 1.000 (3.348 sec/step)
step 53220 loss = 0.009, train_acc = 1.000 (3.352 sec/step)
step 53230 loss = 1.210, train_acc = 0.700 (3.268 sec/step)
step 53240 loss = 0.013, train_acc = 1.000 (3.315 sec/step)
step 53250 loss = 0.078, train_acc = 1.000 (3.311 sec/step)
step 53260 loss = 0.527, train_acc = 0.800 (3.353 sec/step)
step 53270 loss = 0.032, train_acc = 1.000 (3.314 sec/step)
step 53280 loss = 0.019, train_acc = 1.000 (3.428 sec/step)
step 53290 loss = 0.110, train_acc = 0.900 (3.319 sec/step)
step 53300 loss = 0.043, train_acc = 1.000 (3.317 sec/step)
step 53310 loss = 0.042, train_acc = 1.000 (3.306 sec/step)
step 53320 loss = 0.000, train_acc = 1.000 (3.324 sec/step)
step 53330 loss = 0.001, train_acc = 1.000 (3.412 sec/step)
step 53340 loss = 0.379, train_acc = 0.900 (3.301 sec/step)
step 53350 loss = 0.034, train_acc = 1.000 (3.292 sec/step)
step 53360 loss = 0.523, train_acc = 0.900 (3.286 sec/step)
step 53370 loss = 0.044, train_acc = 1.000 (3.330 sec/step)
step 53380 loss = 0.008, train_acc = 1.000 (3.360 sec/step)
step 53390 loss = 0.000, train_acc = 1.000 (3.316 sec/step)
step 53400 loss = 0.047, train_acc = 1.000 (3.351 sec/step)
step 53410 loss = 0.226, train_acc = 0.900 (3.323 sec/step)
step 53420 loss = 0.036, train_acc = 1.000 (3.317 sec/step)
step 53430 loss = 0.221, train_acc = 0.900 (3.323 sec/step)
step 53440 loss = 0.026, train_acc = 1.000 (3.369 sec/step)
step 53450 loss = 0.412, train_acc = 0.900 (3.366 sec/step)
step 53460 loss = 0.387, train_acc = 0.900 (3.294 sec/step)
step 53470 loss = 0.069, train_acc = 1.000 (3.335 sec/step)
step 53480 loss = 0.018, train_acc = 1.000 (3.419 sec/step)
step 53490 loss = 0.049, train_acc = 1.000 (3.349 sec/step)
step 53500 loss = 0.010, train_acc = 1.000 (3.375 sec/step)
step 53510 loss = 0.311, train_acc = 0.900 (3.400 sec/step)
step 53520 loss = 0.190, train_acc = 0.900 (3.353 sec/step)
step 53530 loss = 0.586, train_acc = 0.800 (3.405 sec/step)
step 53540 loss = 0.870, train_acc = 0.900 (3.346 sec/step)
step 53550 loss = 0.322, train_acc = 0.800 (3.374 sec/step)
step 53560 loss = 0.202, train_acc = 0.900 (3.331 sec/step)
step 53570 loss = 0.027, train_acc = 1.000 (3.290 sec/step)
step 53580 loss = 0.002, train_acc = 1.000 (3.290 sec/step)
step 53590 loss = 0.081, train_acc = 0.900 (3.319 sec/step)
step 53600 loss = 0.126, train_acc = 0.900 (3.333 sec/step)
step 53610 loss = 0.017, train_acc = 1.000 (3.297 sec/step)
step 53620 loss = 0.169, train_acc = 0.900 (3.331 sec/step)
step 53630 loss = 0.017, train_acc = 1.000 (3.327 sec/step)
step 53640 loss = 1.014, train_acc = 0.900 (3.331 sec/step)
step 53650 loss = 0.124, train_acc = 0.900 (3.317 sec/step)
step 53660 loss = 0.021, train_acc = 1.000 (3.345 sec/step)
step 53670 loss = 0.000, train_acc = 1.000 (3.351 sec/step)
step 53680 loss = 1.055, train_acc = 0.800 (3.346 sec/step)
step 53690 loss = 0.320, train_acc = 0.900 (3.339 sec/step)
step 53700 loss = 0.922, train_acc = 0.900 (3.287 sec/step)
step 53710 loss = 0.491, train_acc = 0.900 (3.325 sec/step)
step 53720 loss = 0.220, train_acc = 0.900 (3.322 sec/step)
step 53730 loss = 0.717, train_acc = 0.700 (3.352 sec/step)
step 53740 loss = 0.067, train_acc = 1.000 (3.299 sec/step)
step 53750 loss = 0.000, train_acc = 1.000 (3.319 sec/step)
step 53760 loss = 0.295, train_acc = 0.900 (3.402 sec/step)
step 53770 loss = 0.273, train_acc = 0.900 (3.283 sec/step)
step 53780 loss = 0.044, train_acc = 1.000 (3.337 sec/step)
step 53790 loss = 0.002, train_acc = 1.000 (3.426 sec/step)
step 53800 loss = 0.464, train_acc = 0.900 (3.293 sec/step)
step 53810 loss = 0.136, train_acc = 1.000 (3.287 sec/step)
step 53820 loss = 0.039, train_acc = 1.000 (3.371 sec/step)
step 53830 loss = 0.008, train_acc = 1.000 (3.429 sec/step)
step 53840 loss = 0.174, train_acc = 0.900 (3.346 sec/step)
step 53850 loss = 0.215, train_acc = 1.000 (3.333 sec/step)
step 53860 loss = 0.100, train_acc = 1.000 (3.295 sec/step)
step 53870 loss = 0.008, train_acc = 1.000 (3.363 sec/step)
step 53880 loss = 0.275, train_acc = 0.900 (3.374 sec/step)
step 53890 loss = 0.331, train_acc = 0.900 (3.364 sec/step)
step 53900 loss = 0.200, train_acc = 0.900 (3.298 sec/step)
step 53910 loss = 0.121, train_acc = 0.900 (3.320 sec/step)
step 53920 loss = 0.171, train_acc = 0.900 (3.345 sec/step)
step 53930 loss = 1.172, train_acc = 0.600 (3.353 sec/step)
step 53940 loss = 0.348, train_acc = 0.900 (3.304 sec/step)
step 53950 loss = 0.013, train_acc = 1.000 (3.373 sec/step)
step 53960 loss = 0.003, train_acc = 1.000 (3.363 sec/step)
step 53970 loss = 0.052, train_acc = 1.000 (3.322 sec/step)
step 53980 loss = 0.030, train_acc = 1.000 (3.325 sec/step)
step 53990 loss = 0.147, train_acc = 0.900 (3.285 sec/step)
step 54000 loss = 0.007, train_acc = 1.000 (3.353 sec/step)
step 54010 loss = 0.718, train_acc = 0.600 (3.314 sec/step)
step 54020 loss = 0.023, train_acc = 1.000 (3.320 sec/step)
step 54030 loss = 0.001, train_acc = 1.000 (3.325 sec/step)
step 54040 loss = 0.053, train_acc = 1.000 (3.297 sec/step)
step 54050 loss = 0.138, train_acc = 1.000 (3.324 sec/step)
step 54060 loss = 0.053, train_acc = 1.000 (3.333 sec/step)
step 54070 loss = 0.073, train_acc = 0.900 (3.275 sec/step)
step 54080 loss = 0.322, train_acc = 0.900 (3.335 sec/step)
step 54090 loss = 0.000, train_acc = 1.000 (3.319 sec/step)
step 54100 loss = 0.043, train_acc = 1.000 (3.327 sec/step)
step 54110 loss = 0.003, train_acc = 1.000 (3.374 sec/step)
step 54120 loss = 0.293, train_acc = 0.900 (3.292 sec/step)
step 54130 loss = 0.244, train_acc = 0.900 (3.276 sec/step)
step 54140 loss = 0.098, train_acc = 0.900 (3.379 sec/step)
step 54150 loss = 0.002, train_acc = 1.000 (3.296 sec/step)
step 54160 loss = 0.097, train_acc = 1.000 (3.346 sec/step)
step 54170 loss = 0.101, train_acc = 0.900 (3.353 sec/step)
step 54180 loss = 0.342, train_acc = 0.900 (3.309 sec/step)
step 54190 loss = 0.022, train_acc = 1.000 (3.305 sec/step)
step 54200 loss = 0.001, train_acc = 1.000 (3.317 sec/step)
step 54210 loss = 0.059, train_acc = 1.000 (3.329 sec/step)
step 54220 loss = 0.680, train_acc = 0.900 (3.317 sec/step)
step 54230 loss = 0.156, train_acc = 0.900 (3.351 sec/step)
step 54240 loss = 0.068, train_acc = 1.000 (3.289 sec/step)
step 54250 loss = 0.027, train_acc = 1.000 (3.297 sec/step)
step 54260 loss = 0.002, train_acc = 1.000 (3.359 sec/step)
step 54270 loss = 0.000, train_acc = 1.000 (3.479 sec/step)
step 54280 loss = 0.050, train_acc = 1.000 (3.345 sec/step)
step 54290 loss = 0.002, train_acc = 1.000 (3.299 sec/step)
step 54300 loss = 0.337, train_acc = 0.800 (3.360 sec/step)
step 54310 loss = 0.231, train_acc = 0.900 (3.324 sec/step)
step 54320 loss = 0.251, train_acc = 0.900 (3.340 sec/step)
step 54330 loss = 0.256, train_acc = 0.900 (3.438 sec/step)
step 54340 loss = 0.073, train_acc = 1.000 (3.295 sec/step)
step 54350 loss = 0.005, train_acc = 1.000 (3.332 sec/step)
step 54360 loss = 0.008, train_acc = 1.000 (3.317 sec/step)
step 54370 loss = 0.389, train_acc = 0.900 (3.332 sec/step)
step 54380 loss = 0.029, train_acc = 1.000 (3.431 sec/step)
step 54390 loss = 0.164, train_acc = 0.900 (3.368 sec/step)
step 54400 loss = 0.370, train_acc = 0.700 (3.340 sec/step)
step 54410 loss = 0.066, train_acc = 1.000 (3.358 sec/step)
step 54420 loss = 0.789, train_acc = 0.800 (3.342 sec/step)
step 54430 loss = 0.147, train_acc = 0.900 (3.387 sec/step)
step 54440 loss = 0.000, train_acc = 1.000 (3.328 sec/step)
step 54450 loss = 0.044, train_acc = 1.000 (3.333 sec/step)
step 54460 loss = 0.049, train_acc = 1.000 (3.374 sec/step)
step 54470 loss = 0.015, train_acc = 1.000 (3.312 sec/step)
step 54480 loss = 0.002, train_acc = 1.000 (3.345 sec/step)
step 54490 loss = 1.987, train_acc = 0.900 (3.429 sec/step)
step 54500 loss = 0.024, train_acc = 1.000 (3.365 sec/step)
step 54510 loss = 0.037, train_acc = 1.000 (3.384 sec/step)
step 54520 loss = 0.483, train_acc = 0.800 (3.294 sec/step)
step 54530 loss = 0.002, train_acc = 1.000 (3.360 sec/step)
step 54540 loss = 0.096, train_acc = 0.900 (3.312 sec/step)
step 54550 loss = 0.090, train_acc = 1.000 (3.293 sec/step)
step 54560 loss = 0.509, train_acc = 0.800 (3.328 sec/step)
step 54570 loss = 0.110, train_acc = 0.900 (3.357 sec/step)
step 54580 loss = 0.174, train_acc = 1.000 (3.316 sec/step)
step 54590 loss = 0.018, train_acc = 1.000 (3.348 sec/step)
step 54600 loss = 0.098, train_acc = 0.900 (3.317 sec/step)
step 54610 loss = 0.484, train_acc = 0.900 (3.345 sec/step)
step 54620 loss = 0.014, train_acc = 1.000 (3.328 sec/step)
step 54630 loss = 0.064, train_acc = 1.000 (3.312 sec/step)
step 54640 loss = 0.291, train_acc = 0.800 (3.313 sec/step)
step 54650 loss = 0.321, train_acc = 0.800 (3.286 sec/step)
step 54660 loss = 0.026, train_acc = 1.000 (3.396 sec/step)
step 54670 loss = 0.034, train_acc = 1.000 (3.382 sec/step)
step 54680 loss = 0.798, train_acc = 0.900 (3.312 sec/step)
step 54690 loss = 0.282, train_acc = 0.900 (3.310 sec/step)
step 54700 loss = 0.001, train_acc = 1.000 (3.366 sec/step)
step 54710 loss = 0.001, train_acc = 1.000 (3.310 sec/step)
step 54720 loss = 0.399, train_acc = 0.900 (3.292 sec/step)
step 54730 loss = 0.286, train_acc = 0.900 (3.334 sec/step)
step 54740 loss = 0.006, train_acc = 1.000 (3.315 sec/step)
step 54750 loss = 0.580, train_acc = 0.800 (3.368 sec/step)
step 54760 loss = 0.006, train_acc = 1.000 (3.351 sec/step)
step 54770 loss = 0.467, train_acc = 0.900 (3.285 sec/step)
step 54780 loss = 0.002, train_acc = 1.000 (3.303 sec/step)
step 54790 loss = 0.004, train_acc = 1.000 (3.340 sec/step)
step 54800 loss = 0.017, train_acc = 1.000 (3.327 sec/step)
step 54810 loss = 0.570, train_acc = 0.900 (3.350 sec/step)
step 54820 loss = 0.078, train_acc = 1.000 (3.317 sec/step)
step 54830 loss = 0.751, train_acc = 0.800 (3.313 sec/step)
step 54840 loss = 0.623, train_acc = 0.800 (3.335 sec/step)
step 54850 loss = 0.032, train_acc = 1.000 (3.362 sec/step)
step 54860 loss = 0.481, train_acc = 0.800 (3.345 sec/step)
step 54870 loss = 0.717, train_acc = 0.800 (3.378 sec/step)
step 54880 loss = 0.003, train_acc = 1.000 (3.378 sec/step)
step 54890 loss = 0.904, train_acc = 0.900 (3.394 sec/step)
step 54900 loss = 0.317, train_acc = 0.900 (3.316 sec/step)
step 54910 loss = 0.320, train_acc = 0.800 (3.333 sec/step)
step 54920 loss = 0.853, train_acc = 0.800 (3.318 sec/step)
step 54930 loss = 0.063, train_acc = 1.000 (3.380 sec/step)
step 54940 loss = 0.001, train_acc = 1.000 (3.352 sec/step)
step 54950 loss = 0.413, train_acc = 0.900 (3.351 sec/step)
step 54960 loss = 0.003, train_acc = 1.000 (3.308 sec/step)
step 54970 loss = 0.000, train_acc = 1.000 (3.295 sec/step)
step 54980 loss = 0.033, train_acc = 1.000 (3.358 sec/step)
step 54990 loss = 0.399, train_acc = 0.900 (3.431 sec/step)
step 55000 loss = 0.161, train_acc = 0.900 (3.329 sec/step)
step 55010 loss = 0.005, train_acc = 1.000 (3.288 sec/step)
step 55020 loss = 0.113, train_acc = 0.900 (3.335 sec/step)
step 55030 loss = 0.156, train_acc = 0.900 (3.334 sec/step)
step 55040 loss = 0.250, train_acc = 0.800 (3.374 sec/step)
step 55050 loss = 0.014, train_acc = 1.000 (3.277 sec/step)
step 55060 loss = 0.378, train_acc = 0.900 (3.339 sec/step)
step 55070 loss = 0.295, train_acc = 0.900 (3.304 sec/step)
step 55080 loss = 0.201, train_acc = 1.000 (3.324 sec/step)
step 55090 loss = 0.378, train_acc = 0.900 (3.402 sec/step)
VALIDATION acc = 0.538 (3.616 sec)
step 55100 loss = 0.843, train_acc = 0.800 (3.343 sec/step)
step 55110 loss = 0.023, train_acc = 1.000 (3.307 sec/step)
step 55120 loss = 1.256, train_acc = 0.800 (3.296 sec/step)
step 55130 loss = 0.548, train_acc = 0.900 (3.348 sec/step)
step 55140 loss = 0.608, train_acc = 0.900 (3.347 sec/step)
step 55150 loss = 0.006, train_acc = 1.000 (3.315 sec/step)
step 55160 loss = 0.000, train_acc = 1.000 (3.435 sec/step)
step 55170 loss = 0.086, train_acc = 0.900 (3.378 sec/step)
step 55180 loss = 0.040, train_acc = 1.000 (3.348 sec/step)
step 55190 loss = 0.281, train_acc = 0.900 (3.332 sec/step)
step 55200 loss = 0.031, train_acc = 1.000 (3.341 sec/step)
step 55210 loss = 0.032, train_acc = 1.000 (3.293 sec/step)
step 55220 loss = 0.563, train_acc = 0.700 (3.331 sec/step)
step 55230 loss = 0.326, train_acc = 0.900 (3.300 sec/step)
step 55240 loss = 0.004, train_acc = 1.000 (3.317 sec/step)
step 55250 loss = 0.006, train_acc = 1.000 (3.331 sec/step)
step 55260 loss = 0.003, train_acc = 1.000 (3.453 sec/step)
step 55270 loss = 0.027, train_acc = 1.000 (3.285 sec/step)
step 55280 loss = 0.339, train_acc = 0.900 (3.321 sec/step)
step 55290 loss = 0.034, train_acc = 1.000 (3.281 sec/step)
step 55300 loss = 0.575, train_acc = 0.800 (3.324 sec/step)
step 55310 loss = 0.002, train_acc = 1.000 (3.356 sec/step)
step 55320 loss = 0.042, train_acc = 1.000 (3.320 sec/step)
step 55330 loss = 0.231, train_acc = 0.900 (3.355 sec/step)
step 55340 loss = 0.002, train_acc = 1.000 (3.339 sec/step)
step 55350 loss = 0.000, train_acc = 1.000 (3.313 sec/step)
step 55360 loss = 0.006, train_acc = 1.000 (3.292 sec/step)
step 55370 loss = 0.017, train_acc = 1.000 (3.364 sec/step)
step 55380 loss = 0.112, train_acc = 1.000 (3.343 sec/step)
step 55390 loss = 0.137, train_acc = 1.000 (3.291 sec/step)
step 55400 loss = 0.000, train_acc = 1.000 (3.301 sec/step)
step 55410 loss = 0.262, train_acc = 0.900 (3.324 sec/step)
step 55420 loss = 0.002, train_acc = 1.000 (3.341 sec/step)
step 55430 loss = 0.073, train_acc = 1.000 (3.318 sec/step)
step 55440 loss = 0.029, train_acc = 1.000 (3.322 sec/step)
step 55450 loss = 0.042, train_acc = 1.000 (3.338 sec/step)
step 55460 loss = 0.009, train_acc = 1.000 (3.307 sec/step)
step 55470 loss = 0.000, train_acc = 1.000 (3.324 sec/step)
step 55480 loss = 0.001, train_acc = 1.000 (3.350 sec/step)
step 55490 loss = 0.001, train_acc = 1.000 (3.344 sec/step)
step 55500 loss = 0.455, train_acc = 0.900 (3.321 sec/step)
step 55510 loss = 0.406, train_acc = 0.900 (3.307 sec/step)
step 55520 loss = 0.117, train_acc = 0.900 (3.347 sec/step)
step 55530 loss = 0.262, train_acc = 0.900 (3.381 sec/step)
step 55540 loss = 3.158, train_acc = 0.900 (3.348 sec/step)
step 55550 loss = 0.019, train_acc = 1.000 (3.362 sec/step)
step 55560 loss = 2.476, train_acc = 0.800 (3.368 sec/step)
step 55570 loss = 0.002, train_acc = 1.000 (3.292 sec/step)
step 55580 loss = 0.014, train_acc = 1.000 (3.351 sec/step)
step 55590 loss = 0.112, train_acc = 1.000 (3.320 sec/step)
step 55600 loss = 0.109, train_acc = 0.900 (3.418 sec/step)
step 55610 loss = 0.663, train_acc = 0.900 (3.320 sec/step)
step 55620 loss = 0.047, train_acc = 1.000 (3.365 sec/step)
step 55630 loss = 0.347, train_acc = 0.800 (3.350 sec/step)
step 55640 loss = 0.472, train_acc = 0.900 (3.316 sec/step)
step 55650 loss = 0.583, train_acc = 0.800 (3.295 sec/step)
step 55660 loss = 0.025, train_acc = 1.000 (3.316 sec/step)
step 55670 loss = 0.000, train_acc = 1.000 (3.309 sec/step)
step 55680 loss = 0.426, train_acc = 0.700 (3.333 sec/step)
step 55690 loss = 0.088, train_acc = 1.000 (3.337 sec/step)
step 55700 loss = 1.171, train_acc = 0.700 (3.416 sec/step)
step 55710 loss = 0.018, train_acc = 1.000 (3.426 sec/step)
step 55720 loss = 0.235, train_acc = 1.000 (3.295 sec/step)
step 55730 loss = 0.442, train_acc = 0.900 (3.286 sec/step)
step 55740 loss = 0.016, train_acc = 1.000 (3.342 sec/step)
step 55750 loss = 1.202, train_acc = 0.800 (3.316 sec/step)
step 55760 loss = 0.021, train_acc = 1.000 (3.318 sec/step)
step 55770 loss = 0.000, train_acc = 1.000 (3.313 sec/step)
step 55780 loss = 0.002, train_acc = 1.000 (3.360 sec/step)
step 55790 loss = 0.027, train_acc = 1.000 (3.298 sec/step)
step 55800 loss = 0.087, train_acc = 0.900 (3.329 sec/step)
step 55810 loss = 0.135, train_acc = 1.000 (3.357 sec/step)
step 55820 loss = 0.045, train_acc = 1.000 (3.329 sec/step)
step 55830 loss = 0.068, train_acc = 1.000 (3.317 sec/step)
step 55840 loss = 0.000, train_acc = 1.000 (3.335 sec/step)
step 55850 loss = 0.005, train_acc = 1.000 (3.318 sec/step)
step 55860 loss = 0.021, train_acc = 1.000 (3.305 sec/step)
step 55870 loss = 0.088, train_acc = 1.000 (3.318 sec/step)
step 55880 loss = 0.021, train_acc = 1.000 (3.327 sec/step)
step 55890 loss = 0.164, train_acc = 0.900 (3.350 sec/step)
step 55900 loss = 0.124, train_acc = 1.000 (3.352 sec/step)
step 55910 loss = 0.049, train_acc = 1.000 (3.367 sec/step)
step 55920 loss = 0.128, train_acc = 1.000 (3.369 sec/step)
step 55930 loss = 0.054, train_acc = 1.000 (3.367 sec/step)
step 55940 loss = 0.218, train_acc = 0.800 (3.327 sec/step)
step 55950 loss = 0.094, train_acc = 1.000 (3.322 sec/step)
step 55960 loss = 0.143, train_acc = 1.000 (3.328 sec/step)
step 55970 loss = 0.002, train_acc = 1.000 (3.313 sec/step)
step 55980 loss = 0.223, train_acc = 0.900 (3.351 sec/step)
step 55990 loss = 0.156, train_acc = 0.900 (3.302 sec/step)
step 56000 loss = 0.381, train_acc = 0.800 (3.325 sec/step)
step 56010 loss = 0.263, train_acc = 0.900 (3.312 sec/step)
step 56020 loss = 0.054, train_acc = 1.000 (3.338 sec/step)
step 56030 loss = 0.000, train_acc = 1.000 (3.353 sec/step)
step 56040 loss = 0.001, train_acc = 1.000 (3.465 sec/step)
step 56050 loss = 0.285, train_acc = 0.900 (3.302 sec/step)
step 56060 loss = 0.019, train_acc = 1.000 (3.347 sec/step)
step 56070 loss = 0.033, train_acc = 1.000 (3.287 sec/step)
step 56080 loss = 0.003, train_acc = 1.000 (3.298 sec/step)
step 56090 loss = 0.045, train_acc = 1.000 (3.433 sec/step)
step 56100 loss = 0.002, train_acc = 1.000 (3.328 sec/step)
step 56110 loss = 0.120, train_acc = 0.900 (3.300 sec/step)
step 56120 loss = 0.001, train_acc = 1.000 (3.330 sec/step)
step 56130 loss = 0.025, train_acc = 1.000 (3.386 sec/step)
step 56140 loss = 0.245, train_acc = 0.900 (3.375 sec/step)
step 56150 loss = 0.102, train_acc = 0.900 (3.354 sec/step)
step 56160 loss = 0.069, train_acc = 1.000 (3.342 sec/step)
step 56170 loss = 0.138, train_acc = 1.000 (3.408 sec/step)
step 56180 loss = 0.445, train_acc = 0.800 (3.372 sec/step)
step 56190 loss = 0.095, train_acc = 1.000 (3.370 sec/step)
step 56200 loss = 0.003, train_acc = 1.000 (3.399 sec/step)
step 56210 loss = 0.303, train_acc = 0.900 (3.337 sec/step)
step 56220 loss = 0.019, train_acc = 1.000 (3.278 sec/step)
step 56230 loss = 0.153, train_acc = 1.000 (3.350 sec/step)
step 56240 loss = 0.677, train_acc = 0.800 (3.300 sec/step)
step 56250 loss = 0.012, train_acc = 1.000 (3.316 sec/step)
step 56260 loss = 0.006, train_acc = 1.000 (3.381 sec/step)
step 56270 loss = 0.487, train_acc = 0.900 (3.305 sec/step)
step 56280 loss = 0.016, train_acc = 1.000 (3.323 sec/step)
step 56290 loss = 0.397, train_acc = 0.800 (3.274 sec/step)
step 56300 loss = 0.110, train_acc = 0.900 (3.344 sec/step)
step 56310 loss = 0.893, train_acc = 0.900 (3.295 sec/step)
step 56320 loss = 0.034, train_acc = 1.000 (3.278 sec/step)
step 56330 loss = 0.026, train_acc = 1.000 (3.339 sec/step)
step 56340 loss = 0.036, train_acc = 1.000 (3.320 sec/step)
step 56350 loss = 0.329, train_acc = 0.900 (3.352 sec/step)
step 56360 loss = 0.091, train_acc = 1.000 (3.336 sec/step)
step 56370 loss = 0.048, train_acc = 1.000 (3.321 sec/step)
step 56380 loss = 0.232, train_acc = 0.900 (3.422 sec/step)
step 56390 loss = 0.005, train_acc = 1.000 (3.396 sec/step)
step 56400 loss = 0.067, train_acc = 1.000 (3.307 sec/step)
step 56410 loss = 1.117, train_acc = 0.800 (3.364 sec/step)
step 56420 loss = 0.064, train_acc = 1.000 (3.395 sec/step)
step 56430 loss = 0.578, train_acc = 0.900 (3.314 sec/step)
step 56440 loss = 0.008, train_acc = 1.000 (3.321 sec/step)
step 56450 loss = 0.025, train_acc = 1.000 (3.287 sec/step)
step 56460 loss = 0.201, train_acc = 0.900 (3.366 sec/step)
step 56470 loss = 0.045, train_acc = 1.000 (3.367 sec/step)
step 56480 loss = 0.017, train_acc = 1.000 (3.351 sec/step)
step 56490 loss = 0.209, train_acc = 0.900 (3.363 sec/step)
step 56500 loss = 0.043, train_acc = 1.000 (3.369 sec/step)
step 56510 loss = 0.019, train_acc = 1.000 (3.304 sec/step)
step 56520 loss = 0.754, train_acc = 0.800 (3.365 sec/step)
step 56530 loss = 0.083, train_acc = 1.000 (3.346 sec/step)
step 56540 loss = 0.103, train_acc = 1.000 (3.430 sec/step)
step 56550 loss = 0.264, train_acc = 0.900 (3.356 sec/step)
step 56560 loss = 0.544, train_acc = 0.900 (3.339 sec/step)
step 56570 loss = 0.195, train_acc = 0.800 (3.342 sec/step)
step 56580 loss = 0.553, train_acc = 0.800 (3.313 sec/step)
step 56590 loss = 0.239, train_acc = 0.900 (3.362 sec/step)
step 56600 loss = 0.371, train_acc = 0.800 (3.305 sec/step)
step 56610 loss = 0.072, train_acc = 1.000 (3.320 sec/step)
step 56620 loss = 0.091, train_acc = 1.000 (3.303 sec/step)
step 56630 loss = 0.019, train_acc = 1.000 (3.305 sec/step)
step 56640 loss = 0.129, train_acc = 0.900 (3.370 sec/step)
step 56650 loss = 0.149, train_acc = 0.900 (3.333 sec/step)
step 56660 loss = 0.097, train_acc = 0.900 (3.275 sec/step)
step 56670 loss = 0.001, train_acc = 1.000 (3.325 sec/step)
step 56680 loss = 0.023, train_acc = 1.000 (3.317 sec/step)
step 56690 loss = 0.029, train_acc = 1.000 (3.336 sec/step)
step 56700 loss = 0.166, train_acc = 0.900 (3.383 sec/step)
step 56710 loss = 2.615, train_acc = 0.900 (3.312 sec/step)
step 56720 loss = 0.040, train_acc = 1.000 (3.349 sec/step)
step 56730 loss = 0.483, train_acc = 0.900 (3.329 sec/step)
step 56740 loss = 0.014, train_acc = 1.000 (3.352 sec/step)
step 56750 loss = 1.337, train_acc = 0.800 (3.435 sec/step)
step 56760 loss = 0.093, train_acc = 1.000 (3.317 sec/step)
step 56770 loss = 0.006, train_acc = 1.000 (3.345 sec/step)
step 56780 loss = 0.152, train_acc = 0.900 (3.292 sec/step)
step 56790 loss = 0.720, train_acc = 0.900 (3.329 sec/step)
step 56800 loss = 0.015, train_acc = 1.000 (3.355 sec/step)
step 56810 loss = 0.027, train_acc = 1.000 (3.354 sec/step)
step 56820 loss = 0.085, train_acc = 1.000 (3.422 sec/step)
step 56830 loss = 0.247, train_acc = 0.900 (3.406 sec/step)
step 56840 loss = 1.283, train_acc = 0.800 (3.293 sec/step)
step 56850 loss = 0.020, train_acc = 1.000 (3.333 sec/step)
step 56860 loss = 0.054, train_acc = 1.000 (3.316 sec/step)
step 56870 loss = 0.011, train_acc = 1.000 (3.336 sec/step)
step 56880 loss = 0.127, train_acc = 0.900 (3.350 sec/step)
step 56890 loss = 0.001, train_acc = 1.000 (3.299 sec/step)
step 56900 loss = 0.035, train_acc = 1.000 (3.315 sec/step)
step 56910 loss = 0.112, train_acc = 0.900 (3.307 sec/step)
step 56920 loss = 0.002, train_acc = 1.000 (3.315 sec/step)
step 56930 loss = 0.018, train_acc = 1.000 (3.324 sec/step)
step 56940 loss = 0.072, train_acc = 1.000 (3.387 sec/step)
step 56950 loss = 0.078, train_acc = 1.000 (3.365 sec/step)
step 56960 loss = 0.156, train_acc = 0.900 (3.399 sec/step)
step 56970 loss = 0.000, train_acc = 1.000 (3.390 sec/step)
step 56980 loss = 0.001, train_acc = 1.000 (3.379 sec/step)
step 56990 loss = 0.104, train_acc = 0.900 (3.360 sec/step)
VALIDATION acc = 0.515 (3.616 sec)
step 57000 loss = 0.114, train_acc = 1.000 (3.286 sec/step)
step 57010 loss = 0.029, train_acc = 1.000 (3.302 sec/step)
step 57020 loss = 0.031, train_acc = 1.000 (3.330 sec/step)
step 57030 loss = 0.386, train_acc = 0.900 (3.316 sec/step)
step 57040 loss = 0.117, train_acc = 1.000 (3.381 sec/step)
step 57050 loss = 0.037, train_acc = 1.000 (3.453 sec/step)
step 57060 loss = 0.048, train_acc = 1.000 (3.345 sec/step)
step 57070 loss = 0.001, train_acc = 1.000 (3.314 sec/step)
step 57080 loss = 0.000, train_acc = 1.000 (3.328 sec/step)
step 57090 loss = 0.000, train_acc = 1.000 (3.372 sec/step)
step 57100 loss = 0.049, train_acc = 1.000 (3.357 sec/step)
step 57110 loss = 0.000, train_acc = 1.000 (3.324 sec/step)
step 57120 loss = 0.307, train_acc = 0.900 (3.387 sec/step)
step 57130 loss = 0.133, train_acc = 0.900 (3.355 sec/step)
step 57140 loss = 0.364, train_acc = 0.800 (3.350 sec/step)
step 57150 loss = 0.514, train_acc = 0.900 (3.362 sec/step)
step 57160 loss = 0.191, train_acc = 0.900 (3.284 sec/step)
step 57170 loss = 0.068, train_acc = 1.000 (3.302 sec/step)
step 57180 loss = 0.232, train_acc = 0.900 (3.329 sec/step)
step 57190 loss = 0.078, train_acc = 1.000 (3.389 sec/step)
step 57200 loss = 1.412, train_acc = 0.900 (3.327 sec/step)
step 57210 loss = 0.020, train_acc = 1.000 (3.315 sec/step)
step 57220 loss = 2.202, train_acc = 0.800 (3.369 sec/step)
step 57230 loss = 0.056, train_acc = 1.000 (3.350 sec/step)
step 57240 loss = 0.292, train_acc = 0.900 (3.360 sec/step)
step 57250 loss = 0.462, train_acc = 0.900 (3.335 sec/step)
step 57260 loss = 0.014, train_acc = 1.000 (3.320 sec/step)
step 57270 loss = 0.083, train_acc = 1.000 (3.349 sec/step)
step 57280 loss = 0.001, train_acc = 1.000 (3.307 sec/step)
step 57290 loss = 0.036, train_acc = 1.000 (3.323 sec/step)
step 57300 loss = 0.073, train_acc = 1.000 (3.416 sec/step)
step 57310 loss = 0.011, train_acc = 1.000 (3.297 sec/step)
step 57320 loss = 2.913, train_acc = 0.600 (3.317 sec/step)
step 57330 loss = 0.253, train_acc = 0.900 (3.330 sec/step)
step 57340 loss = 0.900, train_acc = 0.800 (3.334 sec/step)
step 57350 loss = 0.293, train_acc = 0.900 (3.371 sec/step)
step 57360 loss = 1.017, train_acc = 0.700 (3.321 sec/step)
step 57370 loss = 0.026, train_acc = 1.000 (3.366 sec/step)
step 57380 loss = 0.013, train_acc = 1.000 (3.385 sec/step)
step 57390 loss = 0.005, train_acc = 1.000 (3.357 sec/step)
step 57400 loss = 0.889, train_acc = 0.900 (3.314 sec/step)
step 57410 loss = 0.228, train_acc = 0.900 (3.361 sec/step)
step 57420 loss = 0.157, train_acc = 0.900 (3.345 sec/step)
step 57430 loss = 0.382, train_acc = 0.900 (3.357 sec/step)
step 57440 loss = 0.434, train_acc = 0.900 (3.367 sec/step)
step 57450 loss = 0.091, train_acc = 0.900 (3.313 sec/step)
step 57460 loss = 0.014, train_acc = 1.000 (3.351 sec/step)
step 57470 loss = 0.320, train_acc = 0.900 (3.289 sec/step)
step 57480 loss = 0.054, train_acc = 1.000 (3.305 sec/step)
step 57490 loss = 0.292, train_acc = 0.900 (3.293 sec/step)
step 57500 loss = 0.006, train_acc = 1.000 (3.332 sec/step)
step 57510 loss = 0.123, train_acc = 0.900 (3.375 sec/step)
step 57520 loss = 0.089, train_acc = 1.000 (3.332 sec/step)
step 57530 loss = 0.189, train_acc = 0.900 (3.362 sec/step)
step 57540 loss = 0.066, train_acc = 1.000 (3.327 sec/step)
step 57550 loss = 0.070, train_acc = 1.000 (3.343 sec/step)
step 57560 loss = 0.115, train_acc = 1.000 (3.295 sec/step)
step 57570 loss = 0.240, train_acc = 0.900 (3.344 sec/step)
step 57580 loss = 0.592, train_acc = 0.900 (3.394 sec/step)
step 57590 loss = 0.610, train_acc = 0.800 (3.367 sec/step)
step 57600 loss = 0.055, train_acc = 1.000 (3.375 sec/step)
step 57610 loss = 0.554, train_acc = 0.900 (3.334 sec/step)
step 57620 loss = 0.190, train_acc = 0.900 (3.325 sec/step)
step 57630 loss = 0.023, train_acc = 1.000 (3.443 sec/step)
step 57640 loss = 0.926, train_acc = 0.900 (3.284 sec/step)
step 57650 loss = 0.114, train_acc = 0.900 (3.371 sec/step)
step 57660 loss = 0.052, train_acc = 1.000 (3.349 sec/step)
step 57670 loss = 0.424, train_acc = 0.900 (3.404 sec/step)
step 57680 loss = 0.172, train_acc = 0.900 (3.327 sec/step)
step 57690 loss = 0.056, train_acc = 1.000 (3.303 sec/step)
step 57700 loss = 0.387, train_acc = 0.900 (3.383 sec/step)
step 57710 loss = 0.001, train_acc = 1.000 (3.310 sec/step)
step 57720 loss = 0.387, train_acc = 0.800 (3.328 sec/step)
step 57730 loss = 0.086, train_acc = 1.000 (3.354 sec/step)
step 57740 loss = 0.033, train_acc = 1.000 (3.325 sec/step)
step 57750 loss = 0.001, train_acc = 1.000 (3.321 sec/step)
step 57760 loss = 0.874, train_acc = 0.900 (3.353 sec/step)
step 57770 loss = 0.448, train_acc = 0.900 (3.328 sec/step)
step 57780 loss = 0.035, train_acc = 1.000 (3.343 sec/step)
step 57790 loss = 0.009, train_acc = 1.000 (3.386 sec/step)
step 57800 loss = 0.249, train_acc = 0.800 (3.335 sec/step)
step 57810 loss = 0.077, train_acc = 1.000 (3.333 sec/step)
step 57820 loss = 0.095, train_acc = 0.900 (3.414 sec/step)
step 57830 loss = 0.003, train_acc = 1.000 (3.318 sec/step)
step 57840 loss = 0.014, train_acc = 1.000 (3.352 sec/step)
step 57850 loss = 0.134, train_acc = 0.900 (3.366 sec/step)
step 57860 loss = 0.465, train_acc = 0.900 (3.354 sec/step)
step 57870 loss = 0.080, train_acc = 1.000 (3.348 sec/step)
step 57880 loss = 0.102, train_acc = 0.900 (3.307 sec/step)
step 57890 loss = 0.219, train_acc = 0.900 (3.391 sec/step)
step 57900 loss = 0.629, train_acc = 0.800 (3.378 sec/step)
step 57910 loss = 0.271, train_acc = 0.900 (3.355 sec/step)
step 57920 loss = 0.095, train_acc = 1.000 (3.289 sec/step)
step 57930 loss = 0.213, train_acc = 0.900 (3.292 sec/step)
step 57940 loss = 22.855, train_acc = 0.900 (3.337 sec/step)
step 57950 loss = 0.772, train_acc = 0.800 (3.319 sec/step)
step 57960 loss = 0.513, train_acc = 0.800 (3.291 sec/step)
step 57970 loss = 0.111, train_acc = 0.900 (3.356 sec/step)
step 57980 loss = 0.019, train_acc = 1.000 (3.335 sec/step)
step 57990 loss = 0.440, train_acc = 0.900 (3.304 sec/step)
step 58000 loss = 1.077, train_acc = 0.700 (3.342 sec/step)
step 58010 loss = 0.011, train_acc = 1.000 (3.340 sec/step)
step 58020 loss = 0.011, train_acc = 1.000 (3.377 sec/step)
step 58030 loss = 0.208, train_acc = 0.900 (3.290 sec/step)
step 58040 loss = 0.014, train_acc = 1.000 (3.335 sec/step)
step 58050 loss = 0.003, train_acc = 1.000 (3.467 sec/step)
step 58060 loss = 0.096, train_acc = 0.900 (3.341 sec/step)
step 58070 loss = 0.178, train_acc = 0.900 (3.326 sec/step)
step 58080 loss = 0.061, train_acc = 1.000 (3.335 sec/step)
step 58090 loss = 0.436, train_acc = 0.900 (3.358 sec/step)
step 58100 loss = 0.068, train_acc = 1.000 (3.321 sec/step)
step 58110 loss = 0.558, train_acc = 0.800 (3.364 sec/step)
step 58120 loss = 0.003, train_acc = 1.000 (3.292 sec/step)
step 58130 loss = 0.092, train_acc = 0.900 (3.341 sec/step)
step 58140 loss = 0.066, train_acc = 1.000 (3.286 sec/step)
step 58150 loss = 0.733, train_acc = 0.700 (3.333 sec/step)
step 58160 loss = 0.161, train_acc = 0.900 (3.319 sec/step)
step 58170 loss = 0.191, train_acc = 1.000 (3.317 sec/step)
step 58180 loss = 0.135, train_acc = 0.900 (3.342 sec/step)
step 58190 loss = 0.210, train_acc = 0.900 (3.386 sec/step)
step 58200 loss = 0.001, train_acc = 1.000 (3.292 sec/step)
step 58210 loss = 0.000, train_acc = 1.000 (3.319 sec/step)
step 58220 loss = 0.002, train_acc = 1.000 (3.299 sec/step)
step 58230 loss = 0.015, train_acc = 1.000 (3.335 sec/step)
step 58240 loss = 0.022, train_acc = 1.000 (3.370 sec/step)
step 58250 loss = 0.002, train_acc = 1.000 (3.314 sec/step)
step 58260 loss = 0.073, train_acc = 0.900 (3.294 sec/step)
step 58270 loss = 0.002, train_acc = 1.000 (3.294 sec/step)
step 58280 loss = 0.068, train_acc = 1.000 (3.335 sec/step)
step 58290 loss = 0.002, train_acc = 1.000 (3.400 sec/step)
step 58300 loss = 0.096, train_acc = 0.900 (3.365 sec/step)
step 58310 loss = 0.287, train_acc = 0.900 (3.355 sec/step)
step 58320 loss = 0.136, train_acc = 1.000 (3.319 sec/step)
step 58330 loss = 0.296, train_acc = 0.800 (3.373 sec/step)
step 58340 loss = 0.470, train_acc = 0.900 (3.319 sec/step)
step 58350 loss = 0.010, train_acc = 1.000 (3.336 sec/step)
step 58360 loss = 0.013, train_acc = 1.000 (3.339 sec/step)
step 58370 loss = 0.127, train_acc = 0.900 (3.338 sec/step)
step 58380 loss = 0.160, train_acc = 1.000 (3.339 sec/step)
step 58390 loss = 0.254, train_acc = 0.900 (3.367 sec/step)
step 58400 loss = 1.397, train_acc = 0.900 (3.330 sec/step)
step 58410 loss = 0.011, train_acc = 1.000 (3.347 sec/step)
step 58420 loss = 0.007, train_acc = 1.000 (3.311 sec/step)
step 58430 loss = 0.020, train_acc = 1.000 (3.400 sec/step)
step 58440 loss = 0.002, train_acc = 1.000 (3.432 sec/step)
step 58450 loss = 0.056, train_acc = 1.000 (3.341 sec/step)
step 58460 loss = 0.018, train_acc = 1.000 (3.332 sec/step)
step 58470 loss = 0.022, train_acc = 1.000 (3.368 sec/step)
step 58480 loss = 0.022, train_acc = 1.000 (3.421 sec/step)
step 58490 loss = 0.006, train_acc = 1.000 (3.370 sec/step)
step 58500 loss = 3.795, train_acc = 0.800 (3.322 sec/step)
step 58510 loss = 0.948, train_acc = 0.800 (3.364 sec/step)
step 58520 loss = 0.470, train_acc = 0.800 (3.387 sec/step)
step 58530 loss = 0.174, train_acc = 0.900 (3.376 sec/step)
step 58540 loss = 0.457, train_acc = 0.900 (3.352 sec/step)
step 58550 loss = 0.808, train_acc = 0.900 (3.377 sec/step)
step 58560 loss = 0.127, train_acc = 0.900 (3.289 sec/step)
step 58570 loss = 0.026, train_acc = 1.000 (3.327 sec/step)
step 58580 loss = 0.051, train_acc = 1.000 (3.386 sec/step)
step 58590 loss = 0.084, train_acc = 1.000 (3.330 sec/step)
step 58600 loss = 0.326, train_acc = 0.900 (3.320 sec/step)
step 58610 loss = 0.617, train_acc = 0.900 (3.503 sec/step)
step 58620 loss = 0.004, train_acc = 1.000 (3.327 sec/step)
step 58630 loss = 0.001, train_acc = 1.000 (3.319 sec/step)
step 58640 loss = 0.211, train_acc = 0.900 (3.329 sec/step)
step 58650 loss = 0.182, train_acc = 0.900 (3.381 sec/step)
step 58660 loss = 0.079, train_acc = 1.000 (3.347 sec/step)
step 58670 loss = 0.000, train_acc = 1.000 (3.349 sec/step)
step 58680 loss = 0.436, train_acc = 0.800 (3.312 sec/step)
step 58690 loss = 0.000, train_acc = 1.000 (3.349 sec/step)
step 58700 loss = 1.377, train_acc = 0.800 (3.350 sec/step)
step 58710 loss = 0.002, train_acc = 1.000 (3.363 sec/step)
step 58720 loss = 0.138, train_acc = 0.900 (3.370 sec/step)
step 58730 loss = 0.292, train_acc = 0.900 (3.340 sec/step)
step 58740 loss = 0.002, train_acc = 1.000 (3.362 sec/step)
step 58750 loss = 0.092, train_acc = 1.000 (3.333 sec/step)
step 58760 loss = 0.005, train_acc = 1.000 (3.327 sec/step)
step 58770 loss = 0.003, train_acc = 1.000 (3.328 sec/step)
step 58780 loss = 0.301, train_acc = 0.900 (3.370 sec/step)
step 58790 loss = 0.002, train_acc = 1.000 (3.364 sec/step)
step 58800 loss = 0.021, train_acc = 1.000 (3.306 sec/step)
step 58810 loss = 0.000, train_acc = 1.000 (3.380 sec/step)
step 58820 loss = 0.005, train_acc = 1.000 (3.366 sec/step)
step 58830 loss = 0.000, train_acc = 1.000 (3.356 sec/step)
step 58840 loss = 0.977, train_acc = 0.700 (3.272 sec/step)
step 58850 loss = 0.168, train_acc = 1.000 (3.330 sec/step)
step 58860 loss = 0.101, train_acc = 1.000 (3.320 sec/step)
step 58870 loss = 0.194, train_acc = 0.900 (3.315 sec/step)
step 58880 loss = 0.076, train_acc = 1.000 (3.370 sec/step)
step 58890 loss = 0.077, train_acc = 0.900 (3.281 sec/step)
VALIDATION acc = 0.548 (3.602 sec)
step 58900 loss = 0.004, train_acc = 1.000 (3.302 sec/step)
step 58910 loss = 0.606, train_acc = 0.700 (3.317 sec/step)
step 58920 loss = 0.319, train_acc = 0.900 (3.324 sec/step)
step 58930 loss = 0.016, train_acc = 1.000 (3.350 sec/step)
step 58940 loss = 0.114, train_acc = 0.900 (3.363 sec/step)
step 58950 loss = 0.001, train_acc = 1.000 (3.301 sec/step)
step 58960 loss = 0.766, train_acc = 0.800 (3.343 sec/step)
step 58970 loss = 0.516, train_acc = 0.900 (3.323 sec/step)
step 58980 loss = 0.417, train_acc = 0.900 (3.299 sec/step)
step 58990 loss = 0.016, train_acc = 1.000 (3.346 sec/step)
step 59000 loss = 0.163, train_acc = 0.900 (3.337 sec/step)
step 59010 loss = 0.002, train_acc = 1.000 (3.375 sec/step)
step 59020 loss = 0.075, train_acc = 1.000 (3.348 sec/step)
step 59030 loss = 0.025, train_acc = 1.000 (3.357 sec/step)
step 59040 loss = 0.048, train_acc = 1.000 (3.294 sec/step)
step 59050 loss = 0.111, train_acc = 1.000 (3.375 sec/step)
step 59060 loss = 0.317, train_acc = 0.900 (3.344 sec/step)
step 59070 loss = 0.008, train_acc = 1.000 (3.380 sec/step)
step 59080 loss = 0.056, train_acc = 1.000 (3.346 sec/step)
step 59090 loss = 0.344, train_acc = 0.900 (3.319 sec/step)
step 59100 loss = 0.010, train_acc = 1.000 (3.320 sec/step)
step 59110 loss = 0.106, train_acc = 1.000 (3.354 sec/step)
step 59120 loss = 0.153, train_acc = 0.900 (3.328 sec/step)
step 59130 loss = 0.029, train_acc = 1.000 (3.323 sec/step)
step 59140 loss = 0.001, train_acc = 1.000 (3.360 sec/step)
step 59150 loss = 0.062, train_acc = 1.000 (3.378 sec/step)
step 59160 loss = 0.141, train_acc = 0.900 (3.325 sec/step)
step 59170 loss = 0.141, train_acc = 1.000 (3.387 sec/step)
step 59180 loss = 0.128, train_acc = 1.000 (3.389 sec/step)
step 59190 loss = 0.008, train_acc = 1.000 (3.317 sec/step)
step 59200 loss = 0.001, train_acc = 1.000 (3.316 sec/step)
step 59210 loss = 1.259, train_acc = 0.700 (3.345 sec/step)
step 59220 loss = 0.086, train_acc = 1.000 (3.360 sec/step)
step 59230 loss = 0.003, train_acc = 1.000 (3.333 sec/step)
step 59240 loss = 0.027, train_acc = 1.000 (3.328 sec/step)
step 59250 loss = 0.071, train_acc = 1.000 (3.335 sec/step)
step 59260 loss = 0.021, train_acc = 1.000 (3.386 sec/step)
step 59270 loss = 0.035, train_acc = 1.000 (3.396 sec/step)
step 59280 loss = 0.003, train_acc = 1.000 (3.381 sec/step)
step 59290 loss = 0.000, train_acc = 1.000 (3.312 sec/step)
step 59300 loss = 0.077, train_acc = 0.900 (3.364 sec/step)
step 59310 loss = 0.098, train_acc = 0.900 (3.300 sec/step)
step 59320 loss = 1.005, train_acc = 0.800 (3.365 sec/step)
step 59330 loss = 0.281, train_acc = 0.900 (3.391 sec/step)
step 59340 loss = 0.064, train_acc = 1.000 (3.342 sec/step)
step 59350 loss = 0.827, train_acc = 0.900 (3.322 sec/step)
step 59360 loss = 0.000, train_acc = 1.000 (3.363 sec/step)
step 59370 loss = 0.011, train_acc = 1.000 (3.365 sec/step)
step 59380 loss = 0.754, train_acc = 0.900 (3.359 sec/step)
step 59390 loss = 0.075, train_acc = 1.000 (3.297 sec/step)
step 59400 loss = 0.001, train_acc = 1.000 (3.317 sec/step)
step 59410 loss = 0.138, train_acc = 0.900 (3.374 sec/step)
step 59420 loss = 0.122, train_acc = 1.000 (3.345 sec/step)
step 59430 loss = 0.012, train_acc = 1.000 (3.335 sec/step)
step 59440 loss = 0.633, train_acc = 0.900 (3.407 sec/step)
step 59450 loss = 0.002, train_acc = 1.000 (3.395 sec/step)
step 59460 loss = 0.378, train_acc = 0.900 (3.333 sec/step)
step 59470 loss = 0.011, train_acc = 1.000 (3.376 sec/step)
step 59480 loss = 0.156, train_acc = 0.900 (3.312 sec/step)
step 59490 loss = 1.326, train_acc = 0.700 (3.318 sec/step)
step 59500 loss = 1.687, train_acc = 0.700 (3.318 sec/step)
step 59510 loss = 0.005, train_acc = 1.000 (3.329 sec/step)
step 59520 loss = 0.565, train_acc = 0.800 (3.474 sec/step)
step 59530 loss = 0.001, train_acc = 1.000 (3.359 sec/step)
step 59540 loss = 0.005, train_acc = 1.000 (3.355 sec/step)
step 59550 loss = 1.581, train_acc = 0.900 (3.353 sec/step)
step 59560 loss = 0.395, train_acc = 0.900 (3.316 sec/step)
step 59570 loss = 0.271, train_acc = 0.900 (3.329 sec/step)
step 59580 loss = 0.434, train_acc = 0.800 (3.310 sec/step)
step 59590 loss = 0.044, train_acc = 1.000 (3.407 sec/step)
step 59600 loss = 0.416, train_acc = 0.800 (3.330 sec/step)
step 59610 loss = 0.027, train_acc = 1.000 (3.301 sec/step)
step 59620 loss = 0.346, train_acc = 0.800 (3.352 sec/step)
step 59630 loss = 0.438, train_acc = 0.700 (3.320 sec/step)
step 59640 loss = 0.011, train_acc = 1.000 (3.365 sec/step)
step 59650 loss = 0.558, train_acc = 0.900 (3.397 sec/step)
step 59660 loss = 0.044, train_acc = 1.000 (3.397 sec/step)
step 59670 loss = 0.008, train_acc = 1.000 (3.351 sec/step)
step 59680 loss = 0.003, train_acc = 1.000 (3.327 sec/step)
step 59690 loss = 0.028, train_acc = 1.000 (3.338 sec/step)
step 59700 loss = 0.004, train_acc = 1.000 (3.356 sec/step)
step 59710 loss = 0.090, train_acc = 1.000 (3.317 sec/step)
step 59720 loss = 0.953, train_acc = 0.700 (3.341 sec/step)
step 59730 loss = 0.251, train_acc = 0.900 (3.333 sec/step)
step 59740 loss = 0.049, train_acc = 1.000 (3.298 sec/step)
step 59750 loss = 0.419, train_acc = 0.800 (3.335 sec/step)
step 59760 loss = 0.392, train_acc = 0.800 (3.364 sec/step)
step 59770 loss = 0.652, train_acc = 0.800 (3.380 sec/step)
step 59780 loss = 0.172, train_acc = 0.900 (3.335 sec/step)
step 59790 loss = 0.087, train_acc = 0.900 (3.328 sec/step)
step 59800 loss = 0.041, train_acc = 1.000 (3.327 sec/step)
step 59810 loss = 0.085, train_acc = 1.000 (3.322 sec/step)
step 59820 loss = 0.004, train_acc = 1.000 (3.387 sec/step)
step 59830 loss = 0.040, train_acc = 1.000 (3.391 sec/step)
step 59840 loss = 0.475, train_acc = 0.900 (3.314 sec/step)
step 59850 loss = 0.062, train_acc = 1.000 (3.311 sec/step)
step 59860 loss = 0.389, train_acc = 0.900 (3.347 sec/step)
step 59870 loss = 0.037, train_acc = 1.000 (3.285 sec/step)
step 59880 loss = 0.103, train_acc = 1.000 (3.362 sec/step)
step 59890 loss = 0.357, train_acc = 0.800 (3.349 sec/step)
step 59900 loss = 0.003, train_acc = 1.000 (3.459 sec/step)
step 59910 loss = 0.001, train_acc = 1.000 (3.358 sec/step)
step 59920 loss = 0.338, train_acc = 0.900 (3.341 sec/step)
step 59930 loss = 0.134, train_acc = 0.900 (3.353 sec/step)
step 59940 loss = 0.012, train_acc = 1.000 (3.352 sec/step)
step 59950 loss = 0.373, train_acc = 0.900 (3.321 sec/step)
step 59960 loss = 0.228, train_acc = 0.900 (3.332 sec/step)
step 59970 loss = 0.359, train_acc = 0.900 (3.306 sec/step)
step 59980 loss = 0.003, train_acc = 1.000 (3.390 sec/step)
step 59990 loss = 0.098, train_acc = 0.900 (3.383 sec/step)
step 60000 loss = 0.022, train_acc = 1.000 (3.365 sec/step)
step 60010 loss = 0.004, train_acc = 1.000 (3.310 sec/step)
step 60020 loss = 0.000, train_acc = 1.000 (3.333 sec/step)
step 60030 loss = 0.352, train_acc = 0.900 (3.347 sec/step)
step 60040 loss = 0.022, train_acc = 1.000 (3.388 sec/step)
step 60050 loss = 0.156, train_acc = 0.900 (3.377 sec/step)
step 60060 loss = 0.027, train_acc = 1.000 (3.297 sec/step)
step 60070 loss = 0.406, train_acc = 0.900 (3.307 sec/step)
step 60080 loss = 0.012, train_acc = 1.000 (3.328 sec/step)
step 60090 loss = 0.415, train_acc = 0.800 (3.340 sec/step)
step 60100 loss = 0.022, train_acc = 1.000 (3.321 sec/step)
step 60110 loss = 0.028, train_acc = 1.000 (3.399 sec/step)
step 60120 loss = 0.002, train_acc = 1.000 (3.317 sec/step)
step 60130 loss = 0.000, train_acc = 1.000 (3.321 sec/step)
step 60140 loss = 0.000, train_acc = 1.000 (3.396 sec/step)
step 60150 loss = 0.026, train_acc = 1.000 (3.304 sec/step)
step 60160 loss = 0.015, train_acc = 1.000 (3.353 sec/step)
step 60170 loss = 0.446, train_acc = 0.900 (3.379 sec/step)
step 60180 loss = 0.187, train_acc = 0.900 (3.320 sec/step)
step 60190 loss = 0.000, train_acc = 1.000 (3.305 sec/step)
step 60200 loss = 0.072, train_acc = 1.000 (3.346 sec/step)
step 60210 loss = 0.184, train_acc = 0.900 (3.326 sec/step)
step 60220 loss = 0.012, train_acc = 1.000 (3.417 sec/step)
step 60230 loss = 0.011, train_acc = 1.000 (3.325 sec/step)
step 60240 loss = 0.126, train_acc = 0.900 (3.323 sec/step)
step 60250 loss = 0.901, train_acc = 0.800 (3.306 sec/step)
step 60260 loss = 0.022, train_acc = 1.000 (3.420 sec/step)
step 60270 loss = 0.235, train_acc = 0.900 (3.286 sec/step)
step 60280 loss = 0.019, train_acc = 1.000 (3.302 sec/step)
step 60290 loss = 0.172, train_acc = 0.900 (3.290 sec/step)
step 60300 loss = 0.525, train_acc = 0.900 (3.287 sec/step)
step 60310 loss = 0.702, train_acc = 0.900 (3.280 sec/step)
step 60320 loss = 0.004, train_acc = 1.000 (3.413 sec/step)
step 60330 loss = 0.002, train_acc = 1.000 (3.358 sec/step)
step 60340 loss = 0.530, train_acc = 0.800 (3.372 sec/step)
step 60350 loss = 0.011, train_acc = 1.000 (3.327 sec/step)
step 60360 loss = 0.062, train_acc = 1.000 (3.329 sec/step)
step 60370 loss = 0.017, train_acc = 1.000 (3.433 sec/step)
step 60380 loss = 0.806, train_acc = 0.900 (3.303 sec/step)
step 60390 loss = 0.216, train_acc = 0.900 (3.308 sec/step)
step 60400 loss = 0.057, train_acc = 1.000 (3.383 sec/step)
step 60410 loss = 0.037, train_acc = 1.000 (3.288 sec/step)
step 60420 loss = 0.048, train_acc = 1.000 (3.365 sec/step)
step 60430 loss = 0.015, train_acc = 1.000 (3.316 sec/step)
step 60440 loss = 0.568, train_acc = 0.900 (3.305 sec/step)
step 60450 loss = 0.438, train_acc = 0.900 (3.367 sec/step)
step 60460 loss = 0.021, train_acc = 1.000 (3.364 sec/step)
step 60470 loss = 0.003, train_acc = 1.000 (3.359 sec/step)
step 60480 loss = 0.001, train_acc = 1.000 (3.344 sec/step)
step 60490 loss = 0.152, train_acc = 0.800 (3.306 sec/step)
step 60500 loss = 0.991, train_acc = 0.700 (3.368 sec/step)
step 60510 loss = 0.145, train_acc = 1.000 (3.325 sec/step)
step 60520 loss = 0.013, train_acc = 1.000 (3.328 sec/step)
step 60530 loss = 0.023, train_acc = 1.000 (3.299 sec/step)
step 60540 loss = 0.004, train_acc = 1.000 (3.384 sec/step)
step 60550 loss = 0.288, train_acc = 0.900 (3.439 sec/step)
step 60560 loss = 0.088, train_acc = 1.000 (3.324 sec/step)
step 60570 loss = 0.027, train_acc = 1.000 (3.321 sec/step)
step 60580 loss = 0.018, train_acc = 1.000 (3.327 sec/step)
step 60590 loss = 0.001, train_acc = 1.000 (3.390 sec/step)
step 60600 loss = 0.000, train_acc = 1.000 (3.307 sec/step)
step 60610 loss = 0.218, train_acc = 0.900 (3.286 sec/step)
step 60620 loss = 0.088, train_acc = 0.900 (3.314 sec/step)
step 60630 loss = 0.155, train_acc = 0.900 (3.318 sec/step)
step 60640 loss = 0.036, train_acc = 1.000 (3.290 sec/step)
step 60650 loss = 0.023, train_acc = 1.000 (3.325 sec/step)
step 60660 loss = 0.172, train_acc = 1.000 (3.342 sec/step)
step 60670 loss = 0.002, train_acc = 1.000 (3.359 sec/step)
step 60680 loss = 0.709, train_acc = 0.900 (3.315 sec/step)
step 60690 loss = 0.080, train_acc = 1.000 (3.295 sec/step)
step 60700 loss = 0.019, train_acc = 1.000 (3.330 sec/step)
step 60710 loss = 0.037, train_acc = 1.000 (3.365 sec/step)
step 60720 loss = 0.274, train_acc = 0.900 (3.420 sec/step)
step 60730 loss = 0.001, train_acc = 1.000 (3.325 sec/step)
step 60740 loss = 0.213, train_acc = 0.900 (3.338 sec/step)
step 60750 loss = 0.228, train_acc = 0.900 (3.367 sec/step)
step 60760 loss = 0.002, train_acc = 1.000 (3.321 sec/step)
step 60770 loss = 0.489, train_acc = 0.800 (3.323 sec/step)
step 60780 loss = 0.003, train_acc = 1.000 (3.436 sec/step)
step 60790 loss = 0.037, train_acc = 1.000 (3.333 sec/step)
VALIDATION acc = 0.536 (3.648 sec)
step 60800 loss = 0.478, train_acc = 0.900 (3.355 sec/step)
step 60810 loss = 0.040, train_acc = 1.000 (3.366 sec/step)
step 60820 loss = 0.227, train_acc = 0.900 (3.282 sec/step)
step 60830 loss = 0.129, train_acc = 1.000 (3.345 sec/step)
step 60840 loss = 0.008, train_acc = 1.000 (3.309 sec/step)
step 60850 loss = 0.290, train_acc = 0.900 (3.334 sec/step)
step 60860 loss = 0.051, train_acc = 1.000 (3.346 sec/step)
step 60870 loss = 0.276, train_acc = 0.800 (3.360 sec/step)
step 60880 loss = 0.320, train_acc = 0.800 (3.305 sec/step)
step 60890 loss = 0.720, train_acc = 0.800 (3.324 sec/step)
step 60900 loss = 0.092, train_acc = 1.000 (3.362 sec/step)
step 60910 loss = 0.001, train_acc = 1.000 (3.394 sec/step)
step 60920 loss = 0.000, train_acc = 1.000 (3.362 sec/step)
step 60930 loss = 0.022, train_acc = 1.000 (3.361 sec/step)
step 60940 loss = 0.004, train_acc = 1.000 (3.291 sec/step)
step 60950 loss = 0.025, train_acc = 1.000 (3.393 sec/step)
step 60960 loss = 0.391, train_acc = 0.900 (3.365 sec/step)
step 60970 loss = 0.202, train_acc = 0.900 (3.287 sec/step)
step 60980 loss = 0.023, train_acc = 1.000 (3.365 sec/step)
step 60990 loss = 0.000, train_acc = 1.000 (3.335 sec/step)
step 61000 loss = 0.673, train_acc = 0.700 (3.359 sec/step)
step 61010 loss = 0.014, train_acc = 1.000 (3.345 sec/step)
step 61020 loss = 1.154, train_acc = 0.800 (3.381 sec/step)
step 61030 loss = 0.173, train_acc = 0.900 (3.306 sec/step)
step 61040 loss = 0.278, train_acc = 0.900 (3.370 sec/step)
step 61050 loss = 0.022, train_acc = 1.000 (3.346 sec/step)
step 61060 loss = 0.001, train_acc = 1.000 (3.332 sec/step)
step 61070 loss = 0.017, train_acc = 1.000 (3.282 sec/step)
step 61080 loss = 0.397, train_acc = 0.900 (3.377 sec/step)
step 61090 loss = 0.204, train_acc = 0.900 (3.314 sec/step)
step 61100 loss = 0.108, train_acc = 1.000 (3.302 sec/step)
step 61110 loss = 0.016, train_acc = 1.000 (3.368 sec/step)
step 61120 loss = 0.948, train_acc = 0.900 (3.309 sec/step)
step 61130 loss = 0.337, train_acc = 0.900 (3.339 sec/step)
step 61140 loss = 0.120, train_acc = 0.900 (3.365 sec/step)
step 61150 loss = 0.255, train_acc = 0.900 (3.345 sec/step)
step 61160 loss = 0.006, train_acc = 1.000 (3.317 sec/step)
step 61170 loss = 0.011, train_acc = 1.000 (3.309 sec/step)
step 61180 loss = 0.000, train_acc = 1.000 (3.311 sec/step)
step 61190 loss = 0.000, train_acc = 1.000 (3.440 sec/step)
step 61200 loss = 0.049, train_acc = 1.000 (3.320 sec/step)
step 61210 loss = 0.629, train_acc = 0.900 (3.323 sec/step)
step 61220 loss = 0.188, train_acc = 0.900 (3.329 sec/step)
step 61230 loss = 0.007, train_acc = 1.000 (3.370 sec/step)
step 61240 loss = 0.568, train_acc = 0.900 (3.409 sec/step)
step 61250 loss = 0.300, train_acc = 0.900 (3.337 sec/step)
step 61260 loss = 0.406, train_acc = 0.900 (3.373 sec/step)
step 61270 loss = 0.195, train_acc = 0.900 (3.318 sec/step)
step 61280 loss = 0.017, train_acc = 1.000 (3.321 sec/step)
step 61290 loss = 0.071, train_acc = 1.000 (3.371 sec/step)
step 61300 loss = 0.507, train_acc = 0.900 (3.296 sec/step)
step 61310 loss = 0.001, train_acc = 1.000 (3.334 sec/step)
step 61320 loss = 0.035, train_acc = 1.000 (3.385 sec/step)
step 61330 loss = 0.375, train_acc = 0.900 (3.297 sec/step)
step 61340 loss = 0.421, train_acc = 0.900 (3.326 sec/step)
step 61350 loss = 0.011, train_acc = 1.000 (3.342 sec/step)
step 61360 loss = 0.041, train_acc = 1.000 (3.324 sec/step)
step 61370 loss = 0.036, train_acc = 1.000 (3.322 sec/step)
step 61380 loss = 0.072, train_acc = 1.000 (3.323 sec/step)
step 61390 loss = 0.001, train_acc = 1.000 (3.329 sec/step)
step 61400 loss = 0.026, train_acc = 1.000 (3.333 sec/step)
step 61410 loss = 0.459, train_acc = 0.900 (3.307 sec/step)
step 61420 loss = 0.125, train_acc = 1.000 (3.359 sec/step)
step 61430 loss = 3.224, train_acc = 0.400 (3.398 sec/step)
step 61440 loss = 0.107, train_acc = 1.000 (3.299 sec/step)
step 61450 loss = 0.395, train_acc = 0.900 (3.302 sec/step)
step 61460 loss = 0.060, train_acc = 1.000 (3.372 sec/step)
step 61470 loss = 0.330, train_acc = 0.900 (3.311 sec/step)
step 61480 loss = 0.315, train_acc = 0.900 (3.351 sec/step)
step 61490 loss = 0.415, train_acc = 0.700 (3.367 sec/step)
step 61500 loss = 0.526, train_acc = 0.700 (3.289 sec/step)
step 61510 loss = 0.185, train_acc = 0.900 (3.336 sec/step)
step 61520 loss = 0.001, train_acc = 1.000 (3.359 sec/step)
step 61530 loss = 0.397, train_acc = 0.900 (3.350 sec/step)
step 61540 loss = 0.430, train_acc = 0.900 (3.293 sec/step)
step 61550 loss = 0.177, train_acc = 0.900 (3.380 sec/step)
step 61560 loss = 0.365, train_acc = 0.800 (3.373 sec/step)
step 61570 loss = 0.304, train_acc = 0.900 (3.362 sec/step)
step 61580 loss = 0.010, train_acc = 1.000 (3.413 sec/step)
step 61590 loss = 0.106, train_acc = 1.000 (3.360 sec/step)
step 61600 loss = 0.326, train_acc = 0.900 (3.368 sec/step)
step 61610 loss = 0.583, train_acc = 0.900 (3.354 sec/step)
step 61620 loss = 0.040, train_acc = 1.000 (3.341 sec/step)
step 61630 loss = 0.163, train_acc = 1.000 (3.326 sec/step)
step 61640 loss = 0.207, train_acc = 0.900 (3.314 sec/step)
step 61650 loss = 0.157, train_acc = 1.000 (3.313 sec/step)
step 61660 loss = 0.090, train_acc = 1.000 (3.294 sec/step)
step 61670 loss = 0.038, train_acc = 1.000 (3.396 sec/step)
step 61680 loss = 0.095, train_acc = 0.900 (3.395 sec/step)
step 61690 loss = 0.006, train_acc = 1.000 (3.378 sec/step)
step 61700 loss = 0.046, train_acc = 1.000 (3.325 sec/step)
step 61710 loss = 0.016, train_acc = 1.000 (3.356 sec/step)
step 61720 loss = 0.009, train_acc = 1.000 (3.350 sec/step)
step 61730 loss = 0.046, train_acc = 1.000 (3.367 sec/step)
step 61740 loss = 0.160, train_acc = 0.900 (3.361 sec/step)
step 61750 loss = 0.534, train_acc = 0.900 (3.307 sec/step)
step 61760 loss = 0.003, train_acc = 1.000 (3.331 sec/step)
step 61770 loss = 0.048, train_acc = 1.000 (3.308 sec/step)
step 61780 loss = 0.011, train_acc = 1.000 (3.402 sec/step)
step 61790 loss = 0.054, train_acc = 1.000 (3.345 sec/step)
step 61800 loss = 0.761, train_acc = 0.900 (3.303 sec/step)
step 61810 loss = 0.438, train_acc = 0.900 (3.395 sec/step)
step 61820 loss = 0.019, train_acc = 1.000 (3.337 sec/step)
step 61830 loss = 0.007, train_acc = 1.000 (3.297 sec/step)
step 61840 loss = 0.455, train_acc = 0.800 (3.318 sec/step)
step 61850 loss = 0.645, train_acc = 0.800 (3.383 sec/step)
step 61860 loss = 0.276, train_acc = 0.900 (3.361 sec/step)
step 61870 loss = 0.000, train_acc = 1.000 (3.387 sec/step)
step 61880 loss = 0.375, train_acc = 0.900 (3.327 sec/step)
step 61890 loss = 0.014, train_acc = 1.000 (3.374 sec/step)
step 61900 loss = 0.001, train_acc = 1.000 (3.326 sec/step)
step 61910 loss = 0.009, train_acc = 1.000 (3.321 sec/step)
step 61920 loss = 0.297, train_acc = 0.900 (3.400 sec/step)
step 61930 loss = 0.029, train_acc = 1.000 (3.295 sec/step)
step 61940 loss = 0.282, train_acc = 0.900 (3.339 sec/step)
step 61950 loss = 1.076, train_acc = 0.700 (3.329 sec/step)
step 61960 loss = 1.149, train_acc = 0.900 (3.328 sec/step)
step 61970 loss = 0.060, train_acc = 1.000 (3.379 sec/step)
step 61980 loss = 0.037, train_acc = 1.000 (3.352 sec/step)
step 61990 loss = 0.126, train_acc = 0.900 (3.341 sec/step)
step 62000 loss = 0.405, train_acc = 0.900 (3.313 sec/step)
step 62010 loss = 0.518, train_acc = 0.900 (3.351 sec/step)
step 62020 loss = 0.001, train_acc = 1.000 (3.282 sec/step)
step 62030 loss = 0.013, train_acc = 1.000 (3.349 sec/step)
step 62040 loss = 0.225, train_acc = 1.000 (3.401 sec/step)
step 62050 loss = 0.002, train_acc = 1.000 (3.300 sec/step)
step 62060 loss = 0.147, train_acc = 0.900 (3.351 sec/step)
step 62070 loss = 0.121, train_acc = 0.900 (3.299 sec/step)
step 62080 loss = 0.787, train_acc = 0.900 (3.348 sec/step)
step 62090 loss = 0.017, train_acc = 1.000 (3.371 sec/step)
step 62100 loss = 0.000, train_acc = 1.000 (3.348 sec/step)
step 62110 loss = 0.011, train_acc = 1.000 (3.364 sec/step)
step 62120 loss = 0.002, train_acc = 1.000 (3.370 sec/step)
step 62130 loss = 0.103, train_acc = 0.900 (3.368 sec/step)
step 62140 loss = 0.057, train_acc = 1.000 (3.363 sec/step)
step 62150 loss = 0.023, train_acc = 1.000 (3.325 sec/step)
step 62160 loss = 0.105, train_acc = 1.000 (3.339 sec/step)
step 62170 loss = 0.009, train_acc = 1.000 (3.371 sec/step)
step 62180 loss = 0.025, train_acc = 1.000 (3.329 sec/step)
step 62190 loss = 0.134, train_acc = 0.900 (3.331 sec/step)
step 62200 loss = 0.460, train_acc = 0.800 (3.305 sec/step)
step 62210 loss = 0.117, train_acc = 0.900 (3.327 sec/step)
step 62220 loss = 0.010, train_acc = 1.000 (3.368 sec/step)
step 62230 loss = 0.108, train_acc = 1.000 (3.337 sec/step)
step 62240 loss = 0.004, train_acc = 1.000 (3.302 sec/step)
step 62250 loss = 0.000, train_acc = 1.000 (3.433 sec/step)
step 62260 loss = 0.196, train_acc = 0.900 (3.303 sec/step)
step 62270 loss = 0.001, train_acc = 1.000 (3.400 sec/step)
step 62280 loss = 0.124, train_acc = 1.000 (3.387 sec/step)
step 62290 loss = 0.482, train_acc = 0.800 (3.392 sec/step)
step 62300 loss = 0.004, train_acc = 1.000 (3.296 sec/step)
step 62310 loss = 0.012, train_acc = 1.000 (3.292 sec/step)
step 62320 loss = 2.936, train_acc = 0.700 (3.322 sec/step)
step 62330 loss = 0.108, train_acc = 0.900 (3.318 sec/step)
step 62340 loss = 0.099, train_acc = 1.000 (3.330 sec/step)
step 62350 loss = 0.502, train_acc = 0.800 (3.374 sec/step)
step 62360 loss = 0.261, train_acc = 0.900 (3.394 sec/step)
step 62370 loss = 1.421, train_acc = 0.800 (3.298 sec/step)
step 62380 loss = 0.008, train_acc = 1.000 (3.335 sec/step)
step 62390 loss = 0.107, train_acc = 1.000 (3.481 sec/step)
step 62400 loss = 0.012, train_acc = 1.000 (3.401 sec/step)
step 62410 loss = 0.119, train_acc = 1.000 (3.361 sec/step)
step 62420 loss = 0.032, train_acc = 1.000 (3.367 sec/step)
step 62430 loss = 0.275, train_acc = 0.900 (3.348 sec/step)
step 62440 loss = 0.783, train_acc = 0.800 (3.344 sec/step)
step 62450 loss = 0.259, train_acc = 0.900 (3.429 sec/step)
step 62460 loss = 0.010, train_acc = 1.000 (3.329 sec/step)
step 62470 loss = 0.171, train_acc = 0.900 (3.353 sec/step)
step 62480 loss = 0.065, train_acc = 1.000 (3.352 sec/step)
step 62490 loss = 0.238, train_acc = 0.900 (3.335 sec/step)
step 62500 loss = 0.033, train_acc = 1.000 (3.451 sec/step)
step 62510 loss = 0.110, train_acc = 0.900 (3.322 sec/step)
step 62520 loss = 0.075, train_acc = 1.000 (3.374 sec/step)
step 62530 loss = 0.386, train_acc = 0.900 (3.329 sec/step)
step 62540 loss = 0.048, train_acc = 1.000 (3.344 sec/step)
step 62550 loss = 0.107, train_acc = 0.900 (3.386 sec/step)
step 62560 loss = 0.104, train_acc = 1.000 (3.336 sec/step)
step 62570 loss = 0.005, train_acc = 1.000 (3.307 sec/step)
step 62580 loss = 0.240, train_acc = 0.800 (3.304 sec/step)
step 62590 loss = 0.010, train_acc = 1.000 (3.319 sec/step)
step 62600 loss = 0.114, train_acc = 1.000 (3.375 sec/step)
step 62610 loss = 0.019, train_acc = 1.000 (3.332 sec/step)
step 62620 loss = 1.106, train_acc = 0.800 (3.363 sec/step)
step 62630 loss = 0.047, train_acc = 1.000 (3.383 sec/step)
step 62640 loss = 0.154, train_acc = 1.000 (3.370 sec/step)
step 62650 loss = 0.009, train_acc = 1.000 (3.316 sec/step)
step 62660 loss = 0.217, train_acc = 0.900 (3.337 sec/step)
step 62670 loss = 0.013, train_acc = 1.000 (3.318 sec/step)
step 62680 loss = 0.004, train_acc = 1.000 (3.333 sec/step)
step 62690 loss = 1.417, train_acc = 0.500 (3.293 sec/step)
VALIDATION acc = 0.532 (3.630 sec)
step 62700 loss = 0.341, train_acc = 0.900 (3.294 sec/step)
step 62710 loss = 0.173, train_acc = 0.900 (3.383 sec/step)
step 62720 loss = 0.000, train_acc = 1.000 (3.322 sec/step)
step 62730 loss = 0.027, train_acc = 1.000 (3.329 sec/step)
step 62740 loss = 0.027, train_acc = 1.000 (3.327 sec/step)
step 62750 loss = 0.108, train_acc = 1.000 (3.326 sec/step)
step 62760 loss = 0.013, train_acc = 1.000 (3.481 sec/step)
step 62770 loss = 57.153, train_acc = 0.800 (3.299 sec/step)
step 62780 loss = 0.101, train_acc = 1.000 (3.380 sec/step)
step 62790 loss = 1.384, train_acc = 0.900 (3.343 sec/step)
step 62800 loss = 0.322, train_acc = 0.900 (3.345 sec/step)
step 62810 loss = 0.143, train_acc = 0.900 (3.339 sec/step)
step 62820 loss = 0.038, train_acc = 1.000 (3.321 sec/step)
step 62830 loss = 0.087, train_acc = 0.900 (3.352 sec/step)
step 62840 loss = 0.997, train_acc = 0.700 (3.330 sec/step)
step 62850 loss = 0.882, train_acc = 0.900 (3.301 sec/step)
step 62860 loss = 0.360, train_acc = 0.900 (3.385 sec/step)
step 62870 loss = 0.017, train_acc = 1.000 (3.327 sec/step)
step 62880 loss = 1.133, train_acc = 0.900 (3.363 sec/step)
step 62890 loss = 0.996, train_acc = 0.800 (3.344 sec/step)
step 62900 loss = 1.042, train_acc = 0.800 (3.332 sec/step)
step 62910 loss = 0.048, train_acc = 1.000 (3.315 sec/step)
step 62920 loss = 0.058, train_acc = 1.000 (3.353 sec/step)
step 62930 loss = 0.210, train_acc = 0.900 (3.339 sec/step)
step 62940 loss = 0.376, train_acc = 0.900 (3.350 sec/step)
step 62950 loss = 0.331, train_acc = 0.900 (3.301 sec/step)
step 62960 loss = 0.002, train_acc = 1.000 (3.429 sec/step)
step 62970 loss = 0.000, train_acc = 1.000 (3.363 sec/step)
step 62980 loss = 0.083, train_acc = 1.000 (3.354 sec/step)
step 62990 loss = 0.002, train_acc = 1.000 (3.387 sec/step)
step 63000 loss = 0.001, train_acc = 1.000 (3.358 sec/step)
step 63010 loss = 1.813, train_acc = 0.800 (3.343 sec/step)
step 63020 loss = 0.385, train_acc = 0.900 (3.304 sec/step)
step 63030 loss = 0.019, train_acc = 1.000 (3.369 sec/step)
step 63040 loss = 0.083, train_acc = 1.000 (3.309 sec/step)
step 63050 loss = 0.028, train_acc = 1.000 (3.326 sec/step)
step 63060 loss = 0.080, train_acc = 1.000 (3.305 sec/step)
step 63070 loss = 0.341, train_acc = 0.900 (3.298 sec/step)
step 63080 loss = 0.002, train_acc = 1.000 (3.396 sec/step)
step 63090 loss = 0.282, train_acc = 0.900 (3.308 sec/step)
step 63100 loss = 1.305, train_acc = 0.800 (3.322 sec/step)
step 63110 loss = 0.446, train_acc = 0.900 (3.369 sec/step)
step 63120 loss = 0.002, train_acc = 1.000 (3.319 sec/step)
step 63130 loss = 0.158, train_acc = 1.000 (3.332 sec/step)
step 63140 loss = 0.497, train_acc = 0.900 (3.328 sec/step)
step 63150 loss = 0.004, train_acc = 1.000 (3.358 sec/step)
step 63160 loss = 0.003, train_acc = 1.000 (3.381 sec/step)
step 63170 loss = 0.006, train_acc = 1.000 (3.388 sec/step)
step 63180 loss = 0.171, train_acc = 0.900 (3.341 sec/step)
step 63190 loss = 0.062, train_acc = 1.000 (3.331 sec/step)
step 63200 loss = 0.568, train_acc = 0.800 (3.379 sec/step)
step 63210 loss = 0.001, train_acc = 1.000 (3.351 sec/step)
step 63220 loss = 0.047, train_acc = 1.000 (3.354 sec/step)
step 63230 loss = 0.356, train_acc = 0.900 (3.334 sec/step)
step 63240 loss = 0.013, train_acc = 1.000 (3.377 sec/step)
step 63250 loss = 0.009, train_acc = 1.000 (3.296 sec/step)
step 63260 loss = 0.001, train_acc = 1.000 (3.321 sec/step)
step 63270 loss = 0.083, train_acc = 0.900 (3.344 sec/step)
step 63280 loss = 0.022, train_acc = 1.000 (3.305 sec/step)
step 63290 loss = 0.050, train_acc = 1.000 (3.301 sec/step)
step 63300 loss = 0.289, train_acc = 0.900 (3.333 sec/step)
step 63310 loss = 0.042, train_acc = 1.000 (3.361 sec/step)
step 63320 loss = 0.004, train_acc = 1.000 (3.339 sec/step)
step 63330 loss = 0.293, train_acc = 0.900 (3.326 sec/step)
step 63340 loss = 0.040, train_acc = 1.000 (3.352 sec/step)
step 63350 loss = 1.088, train_acc = 0.900 (3.352 sec/step)
step 63360 loss = 1.159, train_acc = 0.800 (3.368 sec/step)
step 63370 loss = 1.595, train_acc = 0.800 (3.305 sec/step)
step 63380 loss = 0.000, train_acc = 1.000 (3.408 sec/step)
step 63390 loss = 0.481, train_acc = 0.800 (3.427 sec/step)
step 63400 loss = 0.873, train_acc = 0.900 (3.309 sec/step)
step 63410 loss = 0.389, train_acc = 0.800 (3.318 sec/step)
step 63420 loss = 0.003, train_acc = 1.000 (3.392 sec/step)
step 63430 loss = 0.373, train_acc = 0.900 (3.344 sec/step)
step 63440 loss = 0.005, train_acc = 1.000 (3.361 sec/step)
step 63450 loss = 0.077, train_acc = 1.000 (3.317 sec/step)
step 63460 loss = 0.041, train_acc = 1.000 (3.337 sec/step)
step 63470 loss = 0.434, train_acc = 0.900 (3.341 sec/step)
step 63480 loss = 0.794, train_acc = 0.600 (3.368 sec/step)
step 63490 loss = 0.162, train_acc = 0.900 (3.337 sec/step)
step 63500 loss = 0.737, train_acc = 0.900 (3.302 sec/step)
step 63510 loss = 0.177, train_acc = 1.000 (3.366 sec/step)
step 63520 loss = 0.114, train_acc = 0.900 (3.312 sec/step)
step 63530 loss = 0.006, train_acc = 1.000 (3.339 sec/step)
step 63540 loss = 0.018, train_acc = 1.000 (3.316 sec/step)
step 63550 loss = 0.067, train_acc = 1.000 (3.336 sec/step)
step 63560 loss = 0.043, train_acc = 1.000 (3.408 sec/step)
step 63570 loss = 0.113, train_acc = 0.900 (3.393 sec/step)
step 63580 loss = 0.053, train_acc = 1.000 (3.314 sec/step)
step 63590 loss = 0.190, train_acc = 0.900 (3.395 sec/step)
step 63600 loss = 0.074, train_acc = 1.000 (3.470 sec/step)
step 63610 loss = 0.408, train_acc = 0.800 (3.346 sec/step)
step 63620 loss = 0.106, train_acc = 1.000 (3.391 sec/step)
step 63630 loss = 0.061, train_acc = 1.000 (3.362 sec/step)
step 63640 loss = 0.651, train_acc = 0.900 (3.356 sec/step)
step 63650 loss = 0.605, train_acc = 0.900 (3.346 sec/step)
step 63660 loss = 0.002, train_acc = 1.000 (3.344 sec/step)
step 63670 loss = 0.224, train_acc = 0.900 (3.368 sec/step)
step 63680 loss = 0.009, train_acc = 1.000 (3.406 sec/step)
step 63690 loss = 0.176, train_acc = 0.900 (3.374 sec/step)
step 63700 loss = 0.093, train_acc = 1.000 (3.397 sec/step)
step 63710 loss = 0.518, train_acc = 0.800 (3.336 sec/step)
step 63720 loss = 0.058, train_acc = 1.000 (3.325 sec/step)
step 63730 loss = 0.067, train_acc = 1.000 (3.315 sec/step)
step 63740 loss = 0.028, train_acc = 1.000 (3.312 sec/step)
step 63750 loss = 0.001, train_acc = 1.000 (3.372 sec/step)
step 63760 loss = 0.002, train_acc = 1.000 (3.305 sec/step)
step 63770 loss = 1.677, train_acc = 0.900 (3.306 sec/step)
step 63780 loss = 0.316, train_acc = 0.900 (3.325 sec/step)
step 63790 loss = 0.123, train_acc = 0.900 (3.331 sec/step)
step 63800 loss = 0.108, train_acc = 1.000 (3.336 sec/step)
step 63810 loss = 0.024, train_acc = 1.000 (3.347 sec/step)
step 63820 loss = 0.111, train_acc = 1.000 (3.307 sec/step)
step 63830 loss = 0.055, train_acc = 1.000 (3.386 sec/step)
step 63840 loss = 0.941, train_acc = 0.900 (3.341 sec/step)
step 63850 loss = 0.017, train_acc = 1.000 (3.327 sec/step)
step 63860 loss = 0.046, train_acc = 1.000 (3.383 sec/step)
step 63870 loss = 0.010, train_acc = 1.000 (3.302 sec/step)
step 63880 loss = 0.006, train_acc = 1.000 (3.297 sec/step)
step 63890 loss = 0.023, train_acc = 1.000 (3.375 sec/step)
step 63900 loss = 0.788, train_acc = 0.800 (3.329 sec/step)
step 63910 loss = 0.594, train_acc = 0.900 (3.325 sec/step)
step 63920 loss = 0.336, train_acc = 0.900 (3.327 sec/step)
step 63930 loss = 0.113, train_acc = 0.900 (3.337 sec/step)
step 63940 loss = 0.008, train_acc = 1.000 (3.364 sec/step)
step 63950 loss = 0.134, train_acc = 1.000 (3.525 sec/step)
step 63960 loss = 0.103, train_acc = 1.000 (3.320 sec/step)
step 63970 loss = 0.561, train_acc = 0.800 (3.296 sec/step)
step 63980 loss = 0.208, train_acc = 0.800 (3.333 sec/step)
step 63990 loss = 0.000, train_acc = 1.000 (3.366 sec/step)
step 64000 loss = 0.152, train_acc = 0.900 (3.348 sec/step)
step 64010 loss = 0.436, train_acc = 0.800 (3.362 sec/step)
step 64020 loss = 0.539, train_acc = 0.800 (3.331 sec/step)
step 64030 loss = 0.085, train_acc = 1.000 (3.486 sec/step)
step 64040 loss = 0.006, train_acc = 1.000 (3.377 sec/step)
step 64050 loss = 0.141, train_acc = 1.000 (3.371 sec/step)
step 64060 loss = 0.013, train_acc = 1.000 (3.365 sec/step)
step 64070 loss = 0.174, train_acc = 0.900 (3.375 sec/step)
step 64080 loss = 0.024, train_acc = 1.000 (3.378 sec/step)
step 64090 loss = 0.882, train_acc = 0.700 (3.292 sec/step)
step 64100 loss = 0.037, train_acc = 1.000 (3.374 sec/step)
step 64110 loss = 0.007, train_acc = 1.000 (3.303 sec/step)
step 64120 loss = 0.046, train_acc = 1.000 (3.314 sec/step)
step 64130 loss = 0.636, train_acc = 0.900 (3.345 sec/step)
step 64140 loss = 0.003, train_acc = 1.000 (3.331 sec/step)
step 64150 loss = 0.007, train_acc = 1.000 (3.339 sec/step)
step 64160 loss = 0.012, train_acc = 1.000 (3.346 sec/step)
step 64170 loss = 0.395, train_acc = 0.800 (3.357 sec/step)
step 64180 loss = 0.231, train_acc = 1.000 (3.305 sec/step)
step 64190 loss = 0.008, train_acc = 1.000 (3.336 sec/step)
step 64200 loss = 0.305, train_acc = 0.900 (3.315 sec/step)
step 64210 loss = 0.303, train_acc = 0.900 (3.311 sec/step)
step 64220 loss = 0.324, train_acc = 0.900 (3.367 sec/step)
step 64230 loss = 0.072, train_acc = 1.000 (3.381 sec/step)
step 64240 loss = 0.160, train_acc = 0.900 (3.376 sec/step)
step 64250 loss = 0.002, train_acc = 1.000 (3.381 sec/step)
step 64260 loss = 0.008, train_acc = 1.000 (3.372 sec/step)
step 64270 loss = 0.128, train_acc = 0.900 (3.358 sec/step)
step 64280 loss = 0.010, train_acc = 1.000 (3.352 sec/step)
step 64290 loss = 0.370, train_acc = 0.900 (3.320 sec/step)
step 64300 loss = 0.012, train_acc = 1.000 (3.407 sec/step)
step 64310 loss = 0.412, train_acc = 0.800 (3.320 sec/step)
step 64320 loss = 0.010, train_acc = 1.000 (3.319 sec/step)
step 64330 loss = 0.461, train_acc = 0.800 (3.331 sec/step)
step 64340 loss = 0.429, train_acc = 0.800 (3.324 sec/step)
step 64350 loss = 0.015, train_acc = 1.000 (3.363 sec/step)
step 64360 loss = 0.242, train_acc = 0.800 (3.315 sec/step)
step 64370 loss = 0.279, train_acc = 0.900 (3.354 sec/step)
step 64380 loss = 0.228, train_acc = 0.900 (3.384 sec/step)
step 64390 loss = 0.005, train_acc = 1.000 (3.409 sec/step)
step 64400 loss = 0.054, train_acc = 1.000 (3.370 sec/step)
step 64410 loss = 0.090, train_acc = 0.900 (3.357 sec/step)
step 64420 loss = 0.029, train_acc = 1.000 (3.367 sec/step)
step 64430 loss = 0.144, train_acc = 0.900 (3.324 sec/step)
step 64440 loss = 0.246, train_acc = 0.800 (3.387 sec/step)
step 64450 loss = 0.033, train_acc = 1.000 (3.295 sec/step)
step 64460 loss = 0.024, train_acc = 1.000 (3.341 sec/step)
step 64470 loss = 0.001, train_acc = 1.000 (3.385 sec/step)
step 64480 loss = 0.013, train_acc = 1.000 (3.299 sec/step)
step 64490 loss = 0.000, train_acc = 1.000 (3.385 sec/step)
step 64500 loss = 0.001, train_acc = 1.000 (3.346 sec/step)
step 64510 loss = 0.026, train_acc = 1.000 (3.332 sec/step)
step 64520 loss = 0.910, train_acc = 0.800 (3.309 sec/step)
step 64530 loss = 1.037, train_acc = 0.700 (3.321 sec/step)
step 64540 loss = 0.187, train_acc = 1.000 (3.360 sec/step)
step 64550 loss = 0.020, train_acc = 1.000 (3.387 sec/step)
step 64560 loss = 0.045, train_acc = 1.000 (3.391 sec/step)
step 64570 loss = 0.248, train_acc = 0.900 (3.305 sec/step)
step 64580 loss = 0.357, train_acc = 0.900 (3.398 sec/step)
step 64590 loss = 0.008, train_acc = 1.000 (3.384 sec/step)
VALIDATION acc = 0.565 (3.652 sec)
New Best Accuracy 0.565 > Old Best 0.563. Saving...
The checkpoint has been created.
step 64600 loss = 1.461, train_acc = 0.800 (3.366 sec/step)
step 64610 loss = 0.018, train_acc = 1.000 (3.394 sec/step)
step 64620 loss = 0.458, train_acc = 0.800 (3.351 sec/step)
step 64630 loss = 0.754, train_acc = 0.900 (3.353 sec/step)
step 64640 loss = 0.007, train_acc = 1.000 (3.329 sec/step)
step 64650 loss = 0.247, train_acc = 0.900 (3.343 sec/step)
step 64660 loss = 0.001, train_acc = 1.000 (3.308 sec/step)
step 64670 loss = 0.060, train_acc = 1.000 (3.351 sec/step)
step 64680 loss = 0.201, train_acc = 0.900 (3.376 sec/step)
step 64690 loss = 0.532, train_acc = 0.900 (3.286 sec/step)
step 64700 loss = 0.003, train_acc = 1.000 (3.373 sec/step)
step 64710 loss = 0.000, train_acc = 1.000 (3.360 sec/step)
step 64720 loss = 2.202, train_acc = 0.900 (3.358 sec/step)
step 64730 loss = 0.201, train_acc = 0.900 (3.308 sec/step)
step 64740 loss = 0.030, train_acc = 1.000 (3.293 sec/step)
step 64750 loss = 0.633, train_acc = 0.900 (3.370 sec/step)
step 64760 loss = 0.627, train_acc = 0.900 (3.348 sec/step)
step 64770 loss = 0.113, train_acc = 1.000 (3.380 sec/step)
step 64780 loss = 0.077, train_acc = 1.000 (3.343 sec/step)
step 64790 loss = 0.037, train_acc = 1.000 (3.307 sec/step)
step 64800 loss = 0.141, train_acc = 1.000 (3.328 sec/step)
step 64810 loss = 0.030, train_acc = 1.000 (3.292 sec/step)
step 64820 loss = 0.031, train_acc = 1.000 (3.328 sec/step)
step 64830 loss = 0.010, train_acc = 1.000 (3.301 sec/step)
step 64840 loss = 0.422, train_acc = 0.900 (3.350 sec/step)
step 64850 loss = 0.712, train_acc = 0.800 (3.366 sec/step)
step 64860 loss = 0.008, train_acc = 1.000 (3.368 sec/step)
step 64870 loss = 0.007, train_acc = 1.000 (3.321 sec/step)
step 64880 loss = 0.000, train_acc = 1.000 (3.351 sec/step)
step 64890 loss = 0.400, train_acc = 0.900 (3.326 sec/step)
step 64900 loss = 0.100, train_acc = 0.900 (3.305 sec/step)
step 64910 loss = 0.214, train_acc = 0.900 (3.353 sec/step)
step 64920 loss = 0.101, train_acc = 0.900 (3.356 sec/step)
step 64930 loss = 0.019, train_acc = 1.000 (3.376 sec/step)
step 64940 loss = 0.077, train_acc = 1.000 (3.325 sec/step)
step 64950 loss = 0.354, train_acc = 0.900 (3.354 sec/step)
step 64960 loss = 0.534, train_acc = 0.800 (3.418 sec/step)
step 64970 loss = 0.348, train_acc = 0.900 (3.354 sec/step)
step 64980 loss = 0.640, train_acc = 0.900 (3.342 sec/step)
step 64990 loss = 0.570, train_acc = 0.900 (3.333 sec/step)
step 65000 loss = 0.061, train_acc = 1.000 (3.302 sec/step)
step 65010 loss = 0.590, train_acc = 0.900 (3.316 sec/step)
step 65020 loss = 0.254, train_acc = 0.900 (3.359 sec/step)
step 65030 loss = 0.083, train_acc = 1.000 (3.377 sec/step)
step 65040 loss = 0.330, train_acc = 0.900 (3.339 sec/step)
step 65050 loss = 0.107, train_acc = 0.900 (3.299 sec/step)
step 65060 loss = 0.007, train_acc = 1.000 (3.392 sec/step)
step 65070 loss = 0.003, train_acc = 1.000 (3.313 sec/step)
step 65080 loss = 0.003, train_acc = 1.000 (3.304 sec/step)
step 65090 loss = 0.396, train_acc = 0.800 (3.325 sec/step)
step 65100 loss = 0.014, train_acc = 1.000 (3.324 sec/step)
step 65110 loss = 0.134, train_acc = 0.900 (3.318 sec/step)
step 65120 loss = 0.113, train_acc = 0.900 (3.315 sec/step)
step 65130 loss = 0.323, train_acc = 0.900 (3.334 sec/step)
step 65140 loss = 0.021, train_acc = 1.000 (3.356 sec/step)
step 65150 loss = 0.000, train_acc = 1.000 (3.311 sec/step)
step 65160 loss = 0.000, train_acc = 1.000 (3.321 sec/step)
step 65170 loss = 0.014, train_acc = 1.000 (3.316 sec/step)
step 65180 loss = 0.374, train_acc = 0.900 (3.367 sec/step)
step 65190 loss = 0.003, train_acc = 1.000 (3.339 sec/step)
step 65200 loss = 0.057, train_acc = 1.000 (3.400 sec/step)
step 65210 loss = 0.145, train_acc = 0.900 (3.295 sec/step)
step 65220 loss = 0.188, train_acc = 1.000 (3.325 sec/step)
step 65230 loss = 0.245, train_acc = 0.900 (3.314 sec/step)
step 65240 loss = 0.054, train_acc = 1.000 (3.315 sec/step)
step 65250 loss = 0.003, train_acc = 1.000 (3.369 sec/step)
step 65260 loss = 1.461, train_acc = 0.700 (3.331 sec/step)
step 65270 loss = 0.029, train_acc = 1.000 (3.367 sec/step)
step 65280 loss = 0.885, train_acc = 0.900 (3.384 sec/step)
step 65290 loss = 0.038, train_acc = 1.000 (3.333 sec/step)
step 65300 loss = 0.003, train_acc = 1.000 (3.327 sec/step)
step 65310 loss = 0.097, train_acc = 0.900 (3.418 sec/step)
step 65320 loss = 1.101, train_acc = 0.700 (3.329 sec/step)
step 65330 loss = 0.004, train_acc = 1.000 (3.360 sec/step)
step 65340 loss = 0.016, train_acc = 1.000 (3.374 sec/step)
step 65350 loss = 0.003, train_acc = 1.000 (3.374 sec/step)
step 65360 loss = 0.231, train_acc = 0.900 (3.376 sec/step)
step 65370 loss = 0.338, train_acc = 0.800 (3.338 sec/step)
step 65380 loss = 0.006, train_acc = 1.000 (3.357 sec/step)
step 65390 loss = 0.024, train_acc = 1.000 (3.363 sec/step)
step 65400 loss = 0.235, train_acc = 0.900 (3.327 sec/step)
step 65410 loss = 0.000, train_acc = 1.000 (3.363 sec/step)
step 65420 loss = 0.896, train_acc = 0.900 (3.326 sec/step)
step 65430 loss = 0.140, train_acc = 0.900 (3.334 sec/step)
step 65440 loss = 0.002, train_acc = 1.000 (3.368 sec/step)
step 65450 loss = 0.325, train_acc = 0.900 (3.316 sec/step)
step 65460 loss = 0.003, train_acc = 1.000 (3.350 sec/step)
step 65470 loss = 0.133, train_acc = 0.900 (3.350 sec/step)
step 65480 loss = 0.003, train_acc = 1.000 (3.377 sec/step)
step 65490 loss = 0.517, train_acc = 0.800 (3.310 sec/step)
step 65500 loss = 0.002, train_acc = 1.000 (3.331 sec/step)
step 65510 loss = 0.024, train_acc = 1.000 (3.316 sec/step)
step 65520 loss = 0.119, train_acc = 0.900 (3.303 sec/step)
step 65530 loss = 0.322, train_acc = 0.900 (3.321 sec/step)
step 65540 loss = 0.288, train_acc = 0.900 (3.285 sec/step)
step 65550 loss = 0.418, train_acc = 0.900 (3.314 sec/step)
step 65560 loss = 0.000, train_acc = 1.000 (3.287 sec/step)
step 65570 loss = 0.004, train_acc = 1.000 (3.354 sec/step)
step 65580 loss = 0.064, train_acc = 1.000 (3.323 sec/step)
step 65590 loss = 0.036, train_acc = 1.000 (3.315 sec/step)
step 65600 loss = 0.734, train_acc = 0.900 (3.325 sec/step)
step 65610 loss = 0.094, train_acc = 1.000 (3.335 sec/step)
step 65620 loss = 0.007, train_acc = 1.000 (3.381 sec/step)
step 65630 loss = 0.193, train_acc = 0.900 (3.316 sec/step)
step 65640 loss = 0.013, train_acc = 1.000 (3.362 sec/step)
step 65650 loss = 0.599, train_acc = 0.800 (3.319 sec/step)
step 65660 loss = 0.397, train_acc = 0.900 (3.386 sec/step)
step 65670 loss = 0.057, train_acc = 1.000 (3.366 sec/step)
step 65680 loss = 0.008, train_acc = 1.000 (3.309 sec/step)
step 65690 loss = 3.145, train_acc = 0.900 (3.349 sec/step)
step 65700 loss = 0.059, train_acc = 1.000 (3.310 sec/step)
step 65710 loss = 0.024, train_acc = 1.000 (3.396 sec/step)
step 65720 loss = 0.011, train_acc = 1.000 (3.366 sec/step)
step 65730 loss = 0.072, train_acc = 1.000 (3.304 sec/step)
step 65740 loss = 0.885, train_acc = 0.800 (3.329 sec/step)
step 65750 loss = 0.323, train_acc = 0.900 (3.302 sec/step)
step 65760 loss = 0.453, train_acc = 0.900 (3.317 sec/step)
step 65770 loss = 0.018, train_acc = 1.000 (3.313 sec/step)
step 65780 loss = 0.032, train_acc = 1.000 (3.350 sec/step)
step 65790 loss = 0.786, train_acc = 0.900 (3.348 sec/step)
step 65800 loss = 0.032, train_acc = 1.000 (3.350 sec/step)
step 65810 loss = 0.022, train_acc = 1.000 (3.395 sec/step)
step 65820 loss = 0.019, train_acc = 1.000 (3.348 sec/step)
step 65830 loss = 0.001, train_acc = 1.000 (3.367 sec/step)
step 65840 loss = 0.238, train_acc = 0.900 (3.303 sec/step)
step 65850 loss = 0.159, train_acc = 0.900 (3.471 sec/step)
step 65860 loss = 0.129, train_acc = 1.000 (3.299 sec/step)
step 65870 loss = 0.357, train_acc = 0.800 (3.338 sec/step)
step 65880 loss = 0.002, train_acc = 1.000 (3.288 sec/step)
step 65890 loss = 0.039, train_acc = 1.000 (3.369 sec/step)
step 65900 loss = 0.000, train_acc = 1.000 (3.316 sec/step)
step 65910 loss = 0.032, train_acc = 1.000 (3.354 sec/step)
step 65920 loss = 0.017, train_acc = 1.000 (3.316 sec/step)
step 65930 loss = 0.304, train_acc = 0.900 (3.300 sec/step)
step 65940 loss = 0.225, train_acc = 0.900 (3.307 sec/step)
step 65950 loss = 0.011, train_acc = 1.000 (3.325 sec/step)
step 65960 loss = 0.410, train_acc = 0.800 (3.380 sec/step)
step 65970 loss = 0.001, train_acc = 1.000 (3.319 sec/step)
step 65980 loss = 0.497, train_acc = 0.800 (3.320 sec/step)
step 65990 loss = 0.770, train_acc = 0.800 (3.321 sec/step)
step 66000 loss = 0.002, train_acc = 1.000 (3.352 sec/step)
step 66010 loss = 1.430, train_acc = 0.900 (3.299 sec/step)
step 66020 loss = 0.492, train_acc = 0.900 (3.360 sec/step)
step 66030 loss = 0.058, train_acc = 1.000 (3.346 sec/step)
step 66040 loss = 0.062, train_acc = 1.000 (3.304 sec/step)
step 66050 loss = 0.145, train_acc = 0.900 (3.353 sec/step)
step 66060 loss = 0.007, train_acc = 1.000 (3.305 sec/step)
step 66070 loss = 0.970, train_acc = 0.900 (3.364 sec/step)
step 66080 loss = 0.092, train_acc = 1.000 (3.314 sec/step)
step 66090 loss = 0.003, train_acc = 1.000 (3.338 sec/step)
step 66100 loss = 0.000, train_acc = 1.000 (3.345 sec/step)
step 66110 loss = 0.024, train_acc = 1.000 (3.351 sec/step)
step 66120 loss = 0.089, train_acc = 1.000 (3.344 sec/step)
step 66130 loss = 0.410, train_acc = 0.900 (3.363 sec/step)
step 66140 loss = 0.055, train_acc = 1.000 (3.309 sec/step)
step 66150 loss = 2.566, train_acc = 0.800 (3.354 sec/step)
step 66160 loss = 0.003, train_acc = 1.000 (3.328 sec/step)
step 66170 loss = 0.016, train_acc = 1.000 (3.376 sec/step)
step 66180 loss = 0.210, train_acc = 0.900 (3.300 sec/step)
step 66190 loss = 0.021, train_acc = 1.000 (3.385 sec/step)
step 66200 loss = 1.411, train_acc = 0.800 (3.391 sec/step)
step 66210 loss = 0.083, train_acc = 1.000 (3.369 sec/step)
step 66220 loss = 0.001, train_acc = 1.000 (3.443 sec/step)
step 66230 loss = 0.021, train_acc = 1.000 (3.316 sec/step)
step 66240 loss = 0.109, train_acc = 0.900 (3.326 sec/step)
step 66250 loss = 0.071, train_acc = 1.000 (3.309 sec/step)
step 66260 loss = 0.107, train_acc = 1.000 (3.320 sec/step)
step 66270 loss = 2.036, train_acc = 0.700 (3.337 sec/step)
step 66280 loss = 0.055, train_acc = 1.000 (3.355 sec/step)
step 66290 loss = 0.032, train_acc = 1.000 (3.373 sec/step)
step 66300 loss = 0.000, train_acc = 1.000 (3.336 sec/step)
step 66310 loss = 0.000, train_acc = 1.000 (3.320 sec/step)
step 66320 loss = 0.808, train_acc = 0.800 (3.340 sec/step)
step 66330 loss = 0.002, train_acc = 1.000 (3.387 sec/step)
step 66340 loss = 0.104, train_acc = 1.000 (3.370 sec/step)
step 66350 loss = 0.288, train_acc = 0.900 (3.321 sec/step)
step 66360 loss = 0.326, train_acc = 0.900 (3.315 sec/step)
step 66370 loss = 0.375, train_acc = 0.900 (3.309 sec/step)
step 66380 loss = 0.108, train_acc = 1.000 (3.346 sec/step)
step 66390 loss = 0.126, train_acc = 1.000 (3.347 sec/step)
step 66400 loss = 0.024, train_acc = 1.000 (3.323 sec/step)
step 66410 loss = 0.024, train_acc = 1.000 (3.339 sec/step)
step 66420 loss = 0.001, train_acc = 1.000 (3.382 sec/step)
step 66430 loss = 0.027, train_acc = 1.000 (3.349 sec/step)
step 66440 loss = 0.032, train_acc = 1.000 (3.411 sec/step)
step 66450 loss = 1.278, train_acc = 0.900 (3.335 sec/step)
step 66460 loss = 0.264, train_acc = 0.900 (3.368 sec/step)
step 66470 loss = 0.008, train_acc = 1.000 (3.322 sec/step)
step 66480 loss = 0.453, train_acc = 0.900 (3.339 sec/step)
step 66490 loss = 0.259, train_acc = 0.900 (3.305 sec/step)
VALIDATION acc = 0.549 (3.668 sec)
step 66500 loss = 0.153, train_acc = 0.900 (3.321 sec/step)
step 66510 loss = 0.005, train_acc = 1.000 (3.325 sec/step)
step 66520 loss = 0.061, train_acc = 1.000 (3.333 sec/step)
step 66530 loss = 0.149, train_acc = 0.900 (3.313 sec/step)
step 66540 loss = 0.026, train_acc = 1.000 (3.392 sec/step)
step 66550 loss = 0.180, train_acc = 0.900 (3.356 sec/step)
step 66560 loss = 0.547, train_acc = 0.800 (3.412 sec/step)
step 66570 loss = 0.042, train_acc = 1.000 (3.382 sec/step)
step 66580 loss = 0.001, train_acc = 1.000 (3.328 sec/step)
step 66590 loss = 0.103, train_acc = 1.000 (3.339 sec/step)
step 66600 loss = 0.103, train_acc = 0.900 (3.335 sec/step)
step 66610 loss = 0.570, train_acc = 0.900 (3.391 sec/step)
step 66620 loss = 0.334, train_acc = 0.900 (3.346 sec/step)
step 66630 loss = 0.014, train_acc = 1.000 (3.356 sec/step)
step 66640 loss = 0.188, train_acc = 0.900 (3.325 sec/step)
step 66650 loss = 0.100, train_acc = 1.000 (3.307 sec/step)
step 66660 loss = 0.102, train_acc = 1.000 (3.306 sec/step)
step 66670 loss = 0.076, train_acc = 1.000 (3.363 sec/step)
step 66680 loss = 0.011, train_acc = 1.000 (3.352 sec/step)
step 66690 loss = 0.004, train_acc = 1.000 (3.378 sec/step)
step 66700 loss = 0.050, train_acc = 1.000 (3.341 sec/step)
step 66710 loss = 0.387, train_acc = 0.900 (3.353 sec/step)
step 66720 loss = 0.018, train_acc = 1.000 (3.386 sec/step)
step 66730 loss = 0.281, train_acc = 0.900 (3.314 sec/step)
step 66740 loss = 0.462, train_acc = 0.800 (3.315 sec/step)
step 66750 loss = 0.002, train_acc = 1.000 (3.297 sec/step)
step 66760 loss = 0.006, train_acc = 1.000 (3.322 sec/step)
step 66770 loss = 0.097, train_acc = 0.900 (3.341 sec/step)
step 66780 loss = 0.000, train_acc = 1.000 (3.382 sec/step)
step 66790 loss = 0.000, train_acc = 1.000 (3.339 sec/step)
step 66800 loss = 0.202, train_acc = 0.900 (3.345 sec/step)
step 66810 loss = 0.395, train_acc = 0.900 (3.383 sec/step)
step 66820 loss = 0.070, train_acc = 1.000 (3.431 sec/step)
step 66830 loss = 0.030, train_acc = 1.000 (3.319 sec/step)
step 66840 loss = 0.048, train_acc = 1.000 (3.303 sec/step)
step 66850 loss = 0.572, train_acc = 0.900 (3.342 sec/step)
step 66860 loss = 0.575, train_acc = 0.900 (3.334 sec/step)
step 66870 loss = 0.028, train_acc = 1.000 (3.327 sec/step)
step 66880 loss = 0.040, train_acc = 1.000 (3.329 sec/step)
step 66890 loss = 0.001, train_acc = 1.000 (3.298 sec/step)
step 66900 loss = 0.017, train_acc = 1.000 (3.388 sec/step)
step 66910 loss = 0.003, train_acc = 1.000 (3.351 sec/step)
step 66920 loss = 1.072, train_acc = 0.900 (3.377 sec/step)
step 66930 loss = 0.037, train_acc = 1.000 (3.364 sec/step)
step 66940 loss = 0.005, train_acc = 1.000 (3.314 sec/step)
step 66950 loss = 0.282, train_acc = 0.800 (3.331 sec/step)
step 66960 loss = 0.362, train_acc = 0.900 (3.382 sec/step)
step 66970 loss = 0.000, train_acc = 1.000 (3.339 sec/step)
step 66980 loss = 0.002, train_acc = 1.000 (3.366 sec/step)
step 66990 loss = 1.038, train_acc = 0.900 (3.337 sec/step)
step 67000 loss = 0.161, train_acc = 0.900 (3.395 sec/step)
step 67010 loss = 0.020, train_acc = 1.000 (3.371 sec/step)
step 67020 loss = 0.000, train_acc = 1.000 (3.334 sec/step)
step 67030 loss = 0.233, train_acc = 0.900 (3.363 sec/step)
step 67040 loss = 1.429, train_acc = 0.900 (3.348 sec/step)
step 67050 loss = 0.024, train_acc = 1.000 (3.365 sec/step)
step 67060 loss = 0.000, train_acc = 1.000 (3.364 sec/step)
step 67070 loss = 0.621, train_acc = 0.900 (3.340 sec/step)
step 67080 loss = 0.365, train_acc = 0.900 (3.356 sec/step)
step 67090 loss = 0.055, train_acc = 1.000 (3.365 sec/step)
step 67100 loss = 0.030, train_acc = 1.000 (3.327 sec/step)
step 67110 loss = 0.010, train_acc = 1.000 (3.365 sec/step)
step 67120 loss = 0.018, train_acc = 1.000 (3.340 sec/step)
step 67130 loss = 0.019, train_acc = 1.000 (3.348 sec/step)
step 67140 loss = 0.045, train_acc = 1.000 (3.335 sec/step)
step 67150 loss = 0.010, train_acc = 1.000 (3.353 sec/step)
step 67160 loss = 0.110, train_acc = 0.900 (3.367 sec/step)
step 67170 loss = 0.010, train_acc = 1.000 (3.296 sec/step)
step 67180 loss = 0.024, train_acc = 1.000 (3.286 sec/step)
step 67190 loss = 0.011, train_acc = 1.000 (3.373 sec/step)
step 67200 loss = 0.147, train_acc = 0.900 (3.374 sec/step)
step 67210 loss = 0.048, train_acc = 1.000 (3.347 sec/step)
step 67220 loss = 0.012, train_acc = 1.000 (3.379 sec/step)
step 67230 loss = 0.008, train_acc = 1.000 (3.367 sec/step)
step 67240 loss = 0.737, train_acc = 0.900 (3.285 sec/step)
step 67250 loss = 0.019, train_acc = 1.000 (3.310 sec/step)
step 67260 loss = 0.767, train_acc = 0.900 (3.438 sec/step)
step 67270 loss = 0.008, train_acc = 1.000 (3.378 sec/step)
step 67280 loss = 0.003, train_acc = 1.000 (3.366 sec/step)
step 67290 loss = 0.206, train_acc = 0.900 (3.387 sec/step)
step 67300 loss = 0.168, train_acc = 0.900 (3.401 sec/step)
step 67310 loss = 0.039, train_acc = 1.000 (3.346 sec/step)
step 67320 loss = 0.000, train_acc = 1.000 (3.381 sec/step)
step 67330 loss = 0.014, train_acc = 1.000 (3.325 sec/step)
step 67340 loss = 0.002, train_acc = 1.000 (3.336 sec/step)
step 67350 loss = 0.027, train_acc = 1.000 (3.343 sec/step)
step 67360 loss = 0.027, train_acc = 1.000 (3.341 sec/step)
step 67370 loss = 0.360, train_acc = 0.900 (3.400 sec/step)
step 67380 loss = 0.008, train_acc = 1.000 (3.347 sec/step)
step 67390 loss = 0.006, train_acc = 1.000 (3.354 sec/step)
step 67400 loss = 0.441, train_acc = 0.900 (3.331 sec/step)
step 67410 loss = 0.297, train_acc = 0.900 (3.358 sec/step)
step 67420 loss = 0.046, train_acc = 1.000 (3.365 sec/step)
step 67430 loss = 0.008, train_acc = 1.000 (3.364 sec/step)
step 67440 loss = 0.003, train_acc = 1.000 (3.347 sec/step)
step 67450 loss = 0.079, train_acc = 1.000 (3.389 sec/step)
step 67460 loss = 0.008, train_acc = 1.000 (3.307 sec/step)
step 67470 loss = 0.002, train_acc = 1.000 (3.363 sec/step)
step 67480 loss = 0.289, train_acc = 0.900 (3.353 sec/step)
step 67490 loss = 0.232, train_acc = 0.900 (3.378 sec/step)
step 67500 loss = 0.000, train_acc = 1.000 (3.374 sec/step)
step 67510 loss = 0.031, train_acc = 1.000 (3.329 sec/step)
step 67520 loss = 0.748, train_acc = 0.800 (3.336 sec/step)
step 67530 loss = 0.019, train_acc = 1.000 (3.296 sec/step)
step 67540 loss = 1.572, train_acc = 0.900 (3.338 sec/step)
step 67550 loss = 0.001, train_acc = 1.000 (3.290 sec/step)
step 67560 loss = 0.093, train_acc = 1.000 (3.351 sec/step)
step 67570 loss = 0.023, train_acc = 1.000 (3.299 sec/step)
step 67580 loss = 0.011, train_acc = 1.000 (3.332 sec/step)
step 67590 loss = 0.006, train_acc = 1.000 (3.331 sec/step)
step 67600 loss = 0.037, train_acc = 1.000 (3.325 sec/step)
step 67610 loss = 0.410, train_acc = 0.900 (3.375 sec/step)
step 67620 loss = 0.004, train_acc = 1.000 (3.373 sec/step)
step 67630 loss = 0.047, train_acc = 1.000 (3.327 sec/step)
step 67640 loss = 0.048, train_acc = 1.000 (3.322 sec/step)
step 67650 loss = 0.001, train_acc = 1.000 (3.287 sec/step)
step 67660 loss = 0.057, train_acc = 1.000 (3.324 sec/step)
step 67670 loss = 0.337, train_acc = 0.900 (3.333 sec/step)
step 67680 loss = 0.035, train_acc = 1.000 (3.339 sec/step)
step 67690 loss = 0.145, train_acc = 0.900 (3.390 sec/step)
step 67700 loss = 1.018, train_acc = 0.800 (3.372 sec/step)
step 67710 loss = 0.040, train_acc = 1.000 (3.387 sec/step)
step 67720 loss = 0.895, train_acc = 0.900 (3.385 sec/step)
step 67730 loss = 0.268, train_acc = 0.900 (3.426 sec/step)
step 67740 loss = 0.258, train_acc = 0.900 (3.343 sec/step)
step 67750 loss = 0.067, train_acc = 1.000 (3.393 sec/step)
step 67760 loss = 0.071, train_acc = 1.000 (3.348 sec/step)
step 67770 loss = 0.196, train_acc = 0.900 (3.326 sec/step)
step 67780 loss = 0.382, train_acc = 0.900 (3.390 sec/step)
step 67790 loss = 0.257, train_acc = 0.900 (3.317 sec/step)
step 67800 loss = 0.816, train_acc = 0.900 (3.340 sec/step)
step 67810 loss = 0.141, train_acc = 0.900 (3.342 sec/step)
step 67820 loss = 0.237, train_acc = 0.900 (3.343 sec/step)
step 67830 loss = 0.013, train_acc = 1.000 (3.331 sec/step)
step 67840 loss = 0.080, train_acc = 0.900 (3.375 sec/step)
step 67850 loss = 0.133, train_acc = 0.900 (3.328 sec/step)
step 67860 loss = 0.322, train_acc = 0.800 (3.362 sec/step)
step 67870 loss = 0.028, train_acc = 1.000 (3.304 sec/step)
step 67880 loss = 0.019, train_acc = 1.000 (3.361 sec/step)
step 67890 loss = 0.010, train_acc = 1.000 (3.360 sec/step)
step 67900 loss = 0.091, train_acc = 1.000 (3.336 sec/step)
step 67910 loss = 0.010, train_acc = 1.000 (3.331 sec/step)
step 67920 loss = 0.075, train_acc = 1.000 (3.339 sec/step)
step 67930 loss = 0.028, train_acc = 1.000 (3.327 sec/step)
step 67940 loss = 0.006, train_acc = 1.000 (3.371 sec/step)
step 67950 loss = 0.386, train_acc = 0.900 (3.295 sec/step)
step 67960 loss = 0.002, train_acc = 1.000 (3.328 sec/step)
step 67970 loss = 0.559, train_acc = 0.900 (3.329 sec/step)
step 67980 loss = 0.225, train_acc = 1.000 (3.366 sec/step)
step 67990 loss = 0.327, train_acc = 0.800 (3.352 sec/step)
step 68000 loss = 0.246, train_acc = 0.900 (3.339 sec/step)
step 68010 loss = 0.036, train_acc = 1.000 (3.345 sec/step)
step 68020 loss = 0.023, train_acc = 1.000 (3.307 sec/step)
step 68030 loss = 1.235, train_acc = 0.600 (3.335 sec/step)
step 68040 loss = 0.008, train_acc = 1.000 (3.307 sec/step)
step 68050 loss = 0.155, train_acc = 1.000 (3.359 sec/step)
step 68060 loss = 0.257, train_acc = 0.900 (3.327 sec/step)
step 68070 loss = 0.003, train_acc = 1.000 (3.302 sec/step)
step 68080 loss = 0.017, train_acc = 1.000 (3.339 sec/step)
step 68090 loss = 0.000, train_acc = 1.000 (3.347 sec/step)
step 68100 loss = 0.002, train_acc = 1.000 (3.462 sec/step)
step 68110 loss = 0.077, train_acc = 1.000 (3.343 sec/step)
step 68120 loss = 0.071, train_acc = 1.000 (3.382 sec/step)
step 68130 loss = 0.207, train_acc = 0.900 (3.355 sec/step)
step 68140 loss = 0.837, train_acc = 0.900 (3.310 sec/step)
step 68150 loss = 0.010, train_acc = 1.000 (3.402 sec/step)
step 68160 loss = 1.068, train_acc = 0.800 (3.362 sec/step)
step 68170 loss = 0.157, train_acc = 1.000 (3.331 sec/step)
step 68180 loss = 0.000, train_acc = 1.000 (3.419 sec/step)
step 68190 loss = 0.407, train_acc = 0.800 (3.323 sec/step)
step 68200 loss = 0.129, train_acc = 1.000 (3.360 sec/step)
step 68210 loss = 0.117, train_acc = 0.900 (3.322 sec/step)
step 68220 loss = 0.063, train_acc = 1.000 (3.326 sec/step)
step 68230 loss = 0.006, train_acc = 1.000 (3.330 sec/step)
step 68240 loss = 0.250, train_acc = 0.900 (3.352 sec/step)
step 68250 loss = 0.259, train_acc = 0.900 (3.365 sec/step)
step 68260 loss = 0.044, train_acc = 1.000 (3.393 sec/step)
step 68270 loss = 0.000, train_acc = 1.000 (3.318 sec/step)
step 68280 loss = 0.096, train_acc = 0.900 (3.363 sec/step)
step 68290 loss = 0.313, train_acc = 0.900 (3.378 sec/step)
step 68300 loss = 0.047, train_acc = 1.000 (3.317 sec/step)
step 68310 loss = 0.542, train_acc = 0.800 (3.302 sec/step)
step 68320 loss = 0.663, train_acc = 0.800 (3.316 sec/step)
step 68330 loss = 0.212, train_acc = 0.900 (3.345 sec/step)
step 68340 loss = 0.768, train_acc = 0.900 (3.383 sec/step)
step 68350 loss = 0.009, train_acc = 1.000 (3.308 sec/step)
step 68360 loss = 0.002, train_acc = 1.000 (3.375 sec/step)
step 68370 loss = 0.014, train_acc = 1.000 (3.468 sec/step)
step 68380 loss = 0.000, train_acc = 1.000 (3.296 sec/step)
step 68390 loss = 0.141, train_acc = 0.900 (3.335 sec/step)
VALIDATION acc = 0.535 (3.631 sec)
step 68400 loss = 0.004, train_acc = 1.000 (3.368 sec/step)
step 68410 loss = 0.045, train_acc = 1.000 (3.346 sec/step)
step 68420 loss = 0.022, train_acc = 1.000 (3.330 sec/step)
step 68430 loss = 0.007, train_acc = 1.000 (3.420 sec/step)
step 68440 loss = 0.039, train_acc = 1.000 (3.304 sec/step)
step 68450 loss = 0.002, train_acc = 1.000 (3.335 sec/step)
step 68460 loss = 0.013, train_acc = 1.000 (3.328 sec/step)
step 68470 loss = 0.019, train_acc = 1.000 (3.376 sec/step)
step 68480 loss = 0.001, train_acc = 1.000 (3.347 sec/step)
step 68490 loss = 0.000, train_acc = 1.000 (3.331 sec/step)
step 68500 loss = 0.082, train_acc = 0.900 (3.359 sec/step)
step 68510 loss = 2.563, train_acc = 0.800 (3.309 sec/step)
step 68520 loss = 0.533, train_acc = 0.800 (3.376 sec/step)
step 68530 loss = 0.000, train_acc = 1.000 (3.355 sec/step)
step 68540 loss = 0.043, train_acc = 1.000 (3.361 sec/step)
step 68550 loss = 0.003, train_acc = 1.000 (3.335 sec/step)
step 68560 loss = 0.006, train_acc = 1.000 (3.406 sec/step)
step 68570 loss = 0.001, train_acc = 1.000 (3.322 sec/step)
step 68580 loss = 0.125, train_acc = 0.900 (3.331 sec/step)
step 68590 loss = 0.379, train_acc = 0.900 (3.345 sec/step)
step 68600 loss = 0.158, train_acc = 0.900 (3.353 sec/step)
step 68610 loss = 0.146, train_acc = 1.000 (3.432 sec/step)
step 68620 loss = 0.013, train_acc = 1.000 (3.322 sec/step)
step 68630 loss = 0.006, train_acc = 1.000 (3.367 sec/step)
step 68640 loss = 0.487, train_acc = 0.800 (3.328 sec/step)
step 68650 loss = 0.216, train_acc = 0.900 (3.347 sec/step)
step 68660 loss = 0.810, train_acc = 0.600 (3.355 sec/step)
step 68670 loss = 1.631, train_acc = 0.600 (3.342 sec/step)
step 68680 loss = 0.062, train_acc = 1.000 (3.345 sec/step)
step 68690 loss = 1.012, train_acc = 0.600 (3.324 sec/step)
step 68700 loss = 0.832, train_acc = 0.800 (3.326 sec/step)
step 68710 loss = 0.406, train_acc = 0.900 (3.307 sec/step)
step 68720 loss = 0.037, train_acc = 1.000 (3.346 sec/step)
step 68730 loss = 0.056, train_acc = 1.000 (3.317 sec/step)
step 68740 loss = 0.012, train_acc = 1.000 (3.396 sec/step)
step 68750 loss = 0.003, train_acc = 1.000 (3.323 sec/step)
step 68760 loss = 0.104, train_acc = 0.900 (3.320 sec/step)
step 68770 loss = 0.352, train_acc = 0.900 (3.341 sec/step)
step 68780 loss = 1.068, train_acc = 0.800 (3.358 sec/step)
step 68790 loss = 0.004, train_acc = 1.000 (3.338 sec/step)
step 68800 loss = 1.441, train_acc = 0.600 (3.328 sec/step)
step 68810 loss = 0.009, train_acc = 1.000 (3.385 sec/step)
step 68820 loss = 0.799, train_acc = 0.900 (3.487 sec/step)
step 68830 loss = 0.011, train_acc = 1.000 (3.329 sec/step)
step 68840 loss = 1.080, train_acc = 0.800 (3.364 sec/step)
step 68850 loss = 0.604, train_acc = 0.700 (3.374 sec/step)
step 68860 loss = 0.089, train_acc = 1.000 (3.351 sec/step)
step 68870 loss = 0.001, train_acc = 1.000 (3.329 sec/step)
step 68880 loss = 0.084, train_acc = 1.000 (3.384 sec/step)
step 68890 loss = 0.026, train_acc = 1.000 (3.354 sec/step)
step 68900 loss = 0.005, train_acc = 1.000 (3.362 sec/step)
step 68910 loss = 0.000, train_acc = 1.000 (3.364 sec/step)
step 68920 loss = 0.386, train_acc = 0.900 (3.358 sec/step)
step 68930 loss = 0.539, train_acc = 0.700 (3.375 sec/step)
step 68940 loss = 1.127, train_acc = 0.700 (3.311 sec/step)
step 68950 loss = 0.002, train_acc = 1.000 (3.307 sec/step)
step 68960 loss = 0.321, train_acc = 0.800 (3.346 sec/step)
step 68970 loss = 0.631, train_acc = 0.800 (3.355 sec/step)
step 68980 loss = 0.357, train_acc = 0.900 (3.325 sec/step)
step 68990 loss = 0.330, train_acc = 0.900 (3.291 sec/step)
step 69000 loss = 0.136, train_acc = 0.900 (3.411 sec/step)
step 69010 loss = 0.017, train_acc = 1.000 (3.310 sec/step)
step 69020 loss = 0.012, train_acc = 1.000 (3.313 sec/step)
step 69030 loss = 0.489, train_acc = 0.800 (3.335 sec/step)
step 69040 loss = 0.109, train_acc = 1.000 (3.345 sec/step)
step 69050 loss = 0.916, train_acc = 0.800 (3.349 sec/step)
step 69060 loss = 0.025, train_acc = 1.000 (3.362 sec/step)
step 69070 loss = 0.188, train_acc = 0.900 (3.380 sec/step)
step 69080 loss = 0.087, train_acc = 1.000 (3.381 sec/step)
step 69090 loss = 0.061, train_acc = 1.000 (3.335 sec/step)
step 69100 loss = 0.077, train_acc = 1.000 (3.351 sec/step)
step 69110 loss = 0.004, train_acc = 1.000 (3.306 sec/step)
step 69120 loss = 0.073, train_acc = 1.000 (3.334 sec/step)
step 69130 loss = 0.001, train_acc = 1.000 (3.332 sec/step)
step 69140 loss = 0.006, train_acc = 1.000 (3.328 sec/step)
step 69150 loss = 0.076, train_acc = 1.000 (3.352 sec/step)
step 69160 loss = 0.002, train_acc = 1.000 (3.341 sec/step)
step 69170 loss = 0.056, train_acc = 1.000 (3.379 sec/step)
step 69180 loss = 0.337, train_acc = 0.900 (3.366 sec/step)
step 69190 loss = 0.065, train_acc = 1.000 (3.382 sec/step)
step 69200 loss = 0.240, train_acc = 0.900 (3.322 sec/step)
step 69210 loss = 0.004, train_acc = 1.000 (3.370 sec/step)
step 69220 loss = 0.120, train_acc = 1.000 (3.306 sec/step)
step 69230 loss = 0.087, train_acc = 1.000 (3.357 sec/step)
step 69240 loss = 0.311, train_acc = 0.900 (3.404 sec/step)
step 69250 loss = 0.008, train_acc = 1.000 (3.351 sec/step)
step 69260 loss = 0.087, train_acc = 0.900 (3.416 sec/step)
step 69270 loss = 0.166, train_acc = 0.900 (3.366 sec/step)
step 69280 loss = 0.264, train_acc = 0.900 (3.329 sec/step)
step 69290 loss = 0.009, train_acc = 1.000 (3.370 sec/step)
step 69300 loss = 0.037, train_acc = 1.000 (3.351 sec/step)
step 69310 loss = 0.012, train_acc = 1.000 (3.336 sec/step)
step 69320 loss = 0.341, train_acc = 0.900 (3.297 sec/step)
step 69330 loss = 0.034, train_acc = 1.000 (3.334 sec/step)
step 69340 loss = 0.000, train_acc = 1.000 (3.348 sec/step)
step 69350 loss = 0.561, train_acc = 0.900 (3.318 sec/step)
step 69360 loss = 0.057, train_acc = 1.000 (3.472 sec/step)
step 69370 loss = 0.068, train_acc = 1.000 (3.294 sec/step)
step 69380 loss = 0.003, train_acc = 1.000 (3.323 sec/step)
step 69390 loss = 0.043, train_acc = 1.000 (3.380 sec/step)
step 69400 loss = 0.000, train_acc = 1.000 (3.338 sec/step)
step 69410 loss = 0.856, train_acc = 0.800 (3.380 sec/step)
step 69420 loss = 0.002, train_acc = 1.000 (3.329 sec/step)
step 69430 loss = 0.036, train_acc = 1.000 (3.350 sec/step)
step 69440 loss = 0.095, train_acc = 1.000 (3.331 sec/step)
step 69450 loss = 0.000, train_acc = 1.000 (3.369 sec/step)
step 69460 loss = 0.095, train_acc = 1.000 (3.298 sec/step)
step 69470 loss = 0.013, train_acc = 1.000 (3.377 sec/step)
step 69480 loss = 0.216, train_acc = 1.000 (3.343 sec/step)
step 69490 loss = 0.009, train_acc = 1.000 (3.290 sec/step)
step 69500 loss = 0.007, train_acc = 1.000 (3.324 sec/step)
step 69510 loss = 0.000, train_acc = 1.000 (3.393 sec/step)
step 69520 loss = 0.171, train_acc = 0.900 (3.340 sec/step)
step 69530 loss = 0.007, train_acc = 1.000 (3.399 sec/step)
step 69540 loss = 0.335, train_acc = 0.900 (3.335 sec/step)
step 69550 loss = 0.003, train_acc = 1.000 (3.383 sec/step)
step 69560 loss = 0.062, train_acc = 1.000 (3.407 sec/step)
step 69570 loss = 1.152, train_acc = 0.800 (3.299 sec/step)
step 69580 loss = 0.001, train_acc = 1.000 (3.333 sec/step)
step 69590 loss = 0.453, train_acc = 0.900 (3.323 sec/step)
step 69600 loss = 0.001, train_acc = 1.000 (3.353 sec/step)
step 69610 loss = 0.050, train_acc = 1.000 (3.336 sec/step)
step 69620 loss = 0.008, train_acc = 1.000 (3.372 sec/step)
step 69630 loss = 0.003, train_acc = 1.000 (3.377 sec/step)
step 69640 loss = 0.137, train_acc = 0.900 (3.382 sec/step)
step 69650 loss = 0.041, train_acc = 1.000 (3.318 sec/step)
step 69660 loss = 0.234, train_acc = 0.900 (3.308 sec/step)
step 69670 loss = 0.137, train_acc = 1.000 (3.356 sec/step)
step 69680 loss = 0.095, train_acc = 1.000 (3.425 sec/step)
step 69690 loss = 0.003, train_acc = 1.000 (3.365 sec/step)
step 69700 loss = 0.025, train_acc = 1.000 (3.332 sec/step)
step 69710 loss = 0.013, train_acc = 1.000 (3.356 sec/step)
step 69720 loss = 0.031, train_acc = 1.000 (3.403 sec/step)
step 69730 loss = 0.467, train_acc = 0.800 (3.370 sec/step)
step 69740 loss = 0.003, train_acc = 1.000 (3.347 sec/step)
step 69750 loss = 0.666, train_acc = 0.900 (3.334 sec/step)
step 69760 loss = 0.042, train_acc = 1.000 (3.322 sec/step)
step 69770 loss = 1.016, train_acc = 0.900 (3.358 sec/step)
step 69780 loss = 0.095, train_acc = 1.000 (3.302 sec/step)
step 69790 loss = 0.057, train_acc = 1.000 (3.325 sec/step)
step 69800 loss = 0.797, train_acc = 0.700 (3.362 sec/step)
step 69810 loss = 0.239, train_acc = 0.900 (3.343 sec/step)
step 69820 loss = 0.107, train_acc = 0.900 (3.290 sec/step)
step 69830 loss = 0.448, train_acc = 0.900 (3.348 sec/step)
step 69840 loss = 0.176, train_acc = 0.900 (3.361 sec/step)
step 69850 loss = 0.045, train_acc = 1.000 (3.371 sec/step)
step 69860 loss = 0.771, train_acc = 0.900 (3.369 sec/step)
step 69870 loss = 0.376, train_acc = 0.900 (3.325 sec/step)
step 69880 loss = 0.083, train_acc = 1.000 (3.391 sec/step)
step 69890 loss = 0.007, train_acc = 1.000 (3.314 sec/step)
step 69900 loss = 0.722, train_acc = 0.800 (3.378 sec/step)
step 69910 loss = 0.846, train_acc = 0.900 (3.354 sec/step)
step 69920 loss = 0.007, train_acc = 1.000 (3.317 sec/step)
step 69930 loss = 0.004, train_acc = 1.000 (3.335 sec/step)
step 69940 loss = 0.249, train_acc = 0.900 (3.316 sec/step)
step 69950 loss = 0.066, train_acc = 1.000 (3.333 sec/step)
step 69960 loss = 0.000, train_acc = 1.000 (3.314 sec/step)
step 69970 loss = 0.360, train_acc = 0.900 (3.353 sec/step)
step 69980 loss = 0.173, train_acc = 0.900 (3.366 sec/step)
step 69990 loss = 0.726, train_acc = 0.900 (3.298 sec/step)
step 70000 loss = 0.007, train_acc = 1.000 (3.339 sec/step)
step 70010 loss = 0.334, train_acc = 0.900 (3.407 sec/step)
step 70020 loss = 0.000, train_acc = 1.000 (3.400 sec/step)
step 70030 loss = 0.296, train_acc = 0.900 (3.351 sec/step)
step 70040 loss = 0.480, train_acc = 0.900 (3.333 sec/step)
step 70050 loss = 0.202, train_acc = 0.900 (3.328 sec/step)
step 70060 loss = 0.613, train_acc = 0.800 (3.320 sec/step)
step 70070 loss = 0.003, train_acc = 1.000 (3.361 sec/step)
step 70080 loss = 0.045, train_acc = 1.000 (3.416 sec/step)
step 70090 loss = 0.066, train_acc = 1.000 (3.303 sec/step)
step 70100 loss = 0.004, train_acc = 1.000 (3.367 sec/step)
step 70110 loss = 0.107, train_acc = 0.900 (3.341 sec/step)
step 70120 loss = 0.055, train_acc = 1.000 (3.347 sec/step)
step 70130 loss = 0.652, train_acc = 0.900 (3.364 sec/step)
step 70140 loss = 1.502, train_acc = 0.800 (3.333 sec/step)
step 70150 loss = 0.071, train_acc = 1.000 (3.316 sec/step)
step 70160 loss = 0.019, train_acc = 1.000 (3.303 sec/step)
step 70170 loss = 0.108, train_acc = 0.900 (3.338 sec/step)
step 70180 loss = 0.000, train_acc = 1.000 (3.342 sec/step)
step 70190 loss = 0.513, train_acc = 0.900 (3.314 sec/step)
step 70200 loss = 0.048, train_acc = 1.000 (3.288 sec/step)
step 70210 loss = 0.052, train_acc = 1.000 (3.366 sec/step)
step 70220 loss = 0.025, train_acc = 1.000 (3.355 sec/step)
step 70230 loss = 0.078, train_acc = 1.000 (3.406 sec/step)
step 70240 loss = 0.254, train_acc = 0.800 (3.318 sec/step)
step 70250 loss = 0.000, train_acc = 1.000 (3.295 sec/step)
step 70260 loss = 1.741, train_acc = 0.900 (3.324 sec/step)
step 70270 loss = 0.033, train_acc = 1.000 (3.377 sec/step)
step 70280 loss = 1.482, train_acc = 0.800 (3.357 sec/step)
step 70290 loss = 0.578, train_acc = 0.800 (3.295 sec/step)
VALIDATION acc = 0.508 (3.602 sec)
step 70300 loss = 0.260, train_acc = 0.900 (3.337 sec/step)
step 70310 loss = 0.279, train_acc = 0.900 (3.340 sec/step)
step 70320 loss = 0.211, train_acc = 0.900 (3.328 sec/step)
step 70330 loss = 1.099, train_acc = 0.600 (3.376 sec/step)
step 70340 loss = 0.008, train_acc = 1.000 (3.343 sec/step)
step 70350 loss = 0.314, train_acc = 0.900 (3.369 sec/step)
step 70360 loss = 0.001, train_acc = 1.000 (3.367 sec/step)
step 70370 loss = 0.003, train_acc = 1.000 (3.395 sec/step)
step 70380 loss = 0.002, train_acc = 1.000 (3.394 sec/step)
step 70390 loss = 0.132, train_acc = 0.900 (3.358 sec/step)
step 70400 loss = 0.000, train_acc = 1.000 (3.337 sec/step)
step 70410 loss = 0.000, train_acc = 1.000 (3.356 sec/step)
step 70420 loss = 0.010, train_acc = 1.000 (3.330 sec/step)
step 70430 loss = 0.000, train_acc = 1.000 (3.408 sec/step)
step 70440 loss = 0.004, train_acc = 1.000 (3.388 sec/step)
step 70450 loss = 0.322, train_acc = 0.900 (3.446 sec/step)
step 70460 loss = 0.068, train_acc = 1.000 (3.335 sec/step)
step 70470 loss = 0.600, train_acc = 0.900 (3.304 sec/step)
step 70480 loss = 0.876, train_acc = 0.800 (3.307 sec/step)
step 70490 loss = 0.291, train_acc = 0.900 (3.335 sec/step)
step 70500 loss = 0.559, train_acc = 0.800 (3.321 sec/step)
step 70510 loss = 0.087, train_acc = 1.000 (3.348 sec/step)
step 70520 loss = 0.535, train_acc = 0.800 (3.352 sec/step)
step 70530 loss = 0.182, train_acc = 0.900 (3.325 sec/step)
step 70540 loss = 0.040, train_acc = 1.000 (3.407 sec/step)
step 70550 loss = 0.180, train_acc = 0.900 (3.382 sec/step)
step 70560 loss = 0.223, train_acc = 1.000 (3.325 sec/step)
step 70570 loss = 0.104, train_acc = 0.900 (3.417 sec/step)
step 70580 loss = 0.053, train_acc = 1.000 (3.336 sec/step)
step 70590 loss = 0.969, train_acc = 0.800 (3.324 sec/step)
step 70600 loss = 0.055, train_acc = 1.000 (3.358 sec/step)
step 70610 loss = 0.113, train_acc = 1.000 (3.405 sec/step)
step 70620 loss = 0.010, train_acc = 1.000 (3.453 sec/step)
step 70630 loss = 1.448, train_acc = 0.900 (3.388 sec/step)
step 70640 loss = 0.108, train_acc = 1.000 (3.355 sec/step)
step 70650 loss = 0.049, train_acc = 1.000 (3.366 sec/step)
step 70660 loss = 0.315, train_acc = 0.900 (3.401 sec/step)
step 70670 loss = 0.078, train_acc = 0.900 (3.359 sec/step)
step 70680 loss = 0.015, train_acc = 1.000 (3.322 sec/step)
step 70690 loss = 0.000, train_acc = 1.000 (3.352 sec/step)
step 70700 loss = 1.544, train_acc = 0.800 (3.376 sec/step)
step 70710 loss = 0.112, train_acc = 1.000 (3.351 sec/step)
step 70720 loss = 0.305, train_acc = 0.900 (3.355 sec/step)
step 70730 loss = 0.538, train_acc = 0.800 (3.394 sec/step)
step 70740 loss = 0.136, train_acc = 1.000 (3.340 sec/step)
step 70750 loss = 0.025, train_acc = 1.000 (3.308 sec/step)
step 70760 loss = 0.365, train_acc = 0.800 (3.304 sec/step)
step 70770 loss = 0.206, train_acc = 0.900 (3.299 sec/step)
step 70780 loss = 0.003, train_acc = 1.000 (3.375 sec/step)
step 70790 loss = 0.474, train_acc = 0.900 (3.310 sec/step)
step 70800 loss = 0.020, train_acc = 1.000 (3.346 sec/step)
step 70810 loss = 0.080, train_acc = 1.000 (3.349 sec/step)
step 70820 loss = 0.143, train_acc = 0.900 (3.366 sec/step)
step 70830 loss = 0.097, train_acc = 1.000 (3.335 sec/step)
step 70840 loss = 0.066, train_acc = 1.000 (3.325 sec/step)
step 70850 loss = 0.009, train_acc = 1.000 (3.369 sec/step)
step 70860 loss = 0.013, train_acc = 1.000 (3.367 sec/step)
step 70870 loss = 0.001, train_acc = 1.000 (3.381 sec/step)
step 70880 loss = 0.147, train_acc = 0.900 (3.372 sec/step)
step 70890 loss = 0.220, train_acc = 0.900 (3.344 sec/step)
step 70900 loss = 0.660, train_acc = 0.900 (3.360 sec/step)
step 70910 loss = 0.162, train_acc = 0.900 (3.332 sec/step)
step 70920 loss = 0.055, train_acc = 1.000 (3.377 sec/step)
step 70930 loss = 2.714, train_acc = 0.800 (3.373 sec/step)
step 70940 loss = 0.084, train_acc = 1.000 (3.357 sec/step)
step 70950 loss = 1.315, train_acc = 0.800 (3.325 sec/step)
step 70960 loss = 0.446, train_acc = 0.900 (3.316 sec/step)
step 70970 loss = 0.932, train_acc = 0.900 (3.302 sec/step)
step 70980 loss = 0.014, train_acc = 1.000 (3.354 sec/step)
step 70990 loss = 0.293, train_acc = 0.900 (3.320 sec/step)
step 71000 loss = 0.279, train_acc = 1.000 (3.334 sec/step)
step 71010 loss = 0.483, train_acc = 0.900 (3.335 sec/step)
step 71020 loss = 0.384, train_acc = 0.900 (3.366 sec/step)
step 71030 loss = 0.387, train_acc = 0.900 (3.391 sec/step)
step 71040 loss = 0.008, train_acc = 1.000 (3.370 sec/step)
step 71050 loss = 0.104, train_acc = 1.000 (3.299 sec/step)
step 71060 loss = 0.111, train_acc = 0.900 (3.391 sec/step)
step 71070 loss = 0.000, train_acc = 1.000 (3.344 sec/step)
step 71080 loss = 0.893, train_acc = 0.900 (3.336 sec/step)
step 71090 loss = 0.001, train_acc = 1.000 (3.365 sec/step)
step 71100 loss = 0.004, train_acc = 1.000 (3.361 sec/step)
step 71110 loss = 0.306, train_acc = 0.900 (3.339 sec/step)
step 71120 loss = 0.139, train_acc = 0.900 (3.350 sec/step)
step 71130 loss = 0.313, train_acc = 0.800 (3.372 sec/step)
step 71140 loss = 0.362, train_acc = 0.900 (3.332 sec/step)
step 71150 loss = 0.338, train_acc = 1.000 (3.403 sec/step)
step 71160 loss = 0.200, train_acc = 0.900 (3.340 sec/step)
step 71170 loss = 0.076, train_acc = 1.000 (3.387 sec/step)
step 71180 loss = 0.061, train_acc = 1.000 (3.362 sec/step)
step 71190 loss = 0.057, train_acc = 1.000 (3.401 sec/step)
step 71200 loss = 0.248, train_acc = 0.900 (3.317 sec/step)
step 71210 loss = 0.005, train_acc = 1.000 (3.325 sec/step)
step 71220 loss = 0.000, train_acc = 1.000 (3.320 sec/step)
step 71230 loss = 0.008, train_acc = 1.000 (3.368 sec/step)
step 71240 loss = 0.164, train_acc = 0.900 (3.345 sec/step)
step 71250 loss = 0.009, train_acc = 1.000 (3.324 sec/step)
step 71260 loss = 0.384, train_acc = 0.900 (3.326 sec/step)
step 71270 loss = 0.064, train_acc = 1.000 (3.333 sec/step)
step 71280 loss = 0.000, train_acc = 1.000 (3.395 sec/step)
step 71290 loss = 0.042, train_acc = 1.000 (3.320 sec/step)
step 71300 loss = 0.078, train_acc = 1.000 (3.321 sec/step)
step 71310 loss = 0.289, train_acc = 0.900 (3.324 sec/step)
step 71320 loss = 0.839, train_acc = 0.900 (3.337 sec/step)
step 71330 loss = 0.002, train_acc = 1.000 (3.411 sec/step)
step 71340 loss = 0.145, train_acc = 0.900 (3.371 sec/step)
step 71350 loss = 0.120, train_acc = 0.900 (3.309 sec/step)
step 71360 loss = 0.362, train_acc = 0.800 (3.358 sec/step)
step 71370 loss = 0.003, train_acc = 1.000 (3.338 sec/step)
step 71380 loss = 0.006, train_acc = 1.000 (3.311 sec/step)
step 71390 loss = 0.010, train_acc = 1.000 (3.362 sec/step)
step 71400 loss = 1.456, train_acc = 0.800 (3.330 sec/step)
step 71410 loss = 0.003, train_acc = 1.000 (3.376 sec/step)
step 71420 loss = 0.000, train_acc = 1.000 (3.316 sec/step)
step 71430 loss = 0.511, train_acc = 0.800 (3.321 sec/step)
step 71440 loss = 0.001, train_acc = 1.000 (3.335 sec/step)
step 71450 loss = 0.949, train_acc = 0.900 (3.404 sec/step)
step 71460 loss = 0.002, train_acc = 1.000 (3.321 sec/step)
step 71470 loss = 0.273, train_acc = 0.900 (3.499 sec/step)
step 71480 loss = 0.000, train_acc = 1.000 (3.366 sec/step)
step 71490 loss = 0.022, train_acc = 1.000 (3.379 sec/step)
step 71500 loss = 0.704, train_acc = 0.800 (3.359 sec/step)
step 71510 loss = 0.032, train_acc = 1.000 (3.323 sec/step)
step 71520 loss = 0.040, train_acc = 1.000 (3.369 sec/step)
step 71530 loss = 0.042, train_acc = 1.000 (3.334 sec/step)
step 71540 loss = 1.366, train_acc = 0.900 (3.359 sec/step)
step 71550 loss = 0.266, train_acc = 0.900 (3.334 sec/step)
step 71560 loss = 1.424, train_acc = 0.800 (3.371 sec/step)
step 71570 loss = 0.029, train_acc = 1.000 (3.353 sec/step)
step 71580 loss = 0.164, train_acc = 0.900 (3.293 sec/step)
step 71590 loss = 0.104, train_acc = 0.900 (3.390 sec/step)
step 71600 loss = 0.003, train_acc = 1.000 (3.361 sec/step)
step 71610 loss = 0.281, train_acc = 0.800 (3.298 sec/step)
step 71620 loss = 0.537, train_acc = 0.700 (3.369 sec/step)
step 71630 loss = 0.167, train_acc = 0.900 (3.346 sec/step)
step 71640 loss = 0.045, train_acc = 1.000 (3.374 sec/step)
step 71650 loss = 1.603, train_acc = 0.800 (3.383 sec/step)
step 71660 loss = 0.002, train_acc = 1.000 (3.362 sec/step)
step 71670 loss = 0.005, train_acc = 1.000 (3.319 sec/step)
step 71680 loss = 0.015, train_acc = 1.000 (3.397 sec/step)
step 71690 loss = 0.081, train_acc = 0.900 (3.383 sec/step)
step 71700 loss = 0.001, train_acc = 1.000 (3.320 sec/step)
step 71710 loss = 0.207, train_acc = 0.900 (3.377 sec/step)
step 71720 loss = 0.236, train_acc = 0.900 (3.366 sec/step)
step 71730 loss = 0.001, train_acc = 1.000 (3.305 sec/step)
step 71740 loss = 0.256, train_acc = 0.900 (3.315 sec/step)
step 71750 loss = 0.048, train_acc = 1.000 (3.374 sec/step)
step 71760 loss = 0.256, train_acc = 0.900 (3.350 sec/step)
step 71770 loss = 0.167, train_acc = 0.900 (3.367 sec/step)
step 71780 loss = 0.198, train_acc = 0.900 (3.333 sec/step)
step 71790 loss = 0.063, train_acc = 1.000 (3.341 sec/step)
step 71800 loss = 0.010, train_acc = 1.000 (3.347 sec/step)
step 71810 loss = 1.281, train_acc = 0.800 (3.302 sec/step)
step 71820 loss = 0.360, train_acc = 0.900 (3.334 sec/step)
step 71830 loss = 0.009, train_acc = 1.000 (3.302 sec/step)
step 71840 loss = 0.299, train_acc = 0.900 (3.360 sec/step)
step 71850 loss = 0.088, train_acc = 1.000 (3.356 sec/step)
step 71860 loss = 0.015, train_acc = 1.000 (3.341 sec/step)
step 71870 loss = 2.245, train_acc = 0.900 (3.340 sec/step)
step 71880 loss = 0.053, train_acc = 1.000 (3.334 sec/step)
step 71890 loss = 0.066, train_acc = 1.000 (3.331 sec/step)
step 71900 loss = 0.845, train_acc = 0.900 (3.416 sec/step)
step 71910 loss = 0.259, train_acc = 0.900 (3.312 sec/step)
step 71920 loss = 0.060, train_acc = 1.000 (3.344 sec/step)
step 71930 loss = 1.144, train_acc = 0.800 (3.314 sec/step)
step 71940 loss = 0.041, train_acc = 1.000 (3.354 sec/step)
step 71950 loss = 0.005, train_acc = 1.000 (3.368 sec/step)
step 71960 loss = 0.524, train_acc = 0.900 (3.319 sec/step)
step 71970 loss = 0.001, train_acc = 1.000 (3.377 sec/step)
step 71980 loss = 0.020, train_acc = 1.000 (3.365 sec/step)
step 71990 loss = 0.252, train_acc = 0.800 (3.334 sec/step)
step 72000 loss = 0.051, train_acc = 1.000 (3.379 sec/step)
step 72010 loss = 0.416, train_acc = 0.800 (3.378 sec/step)
step 72020 loss = 0.003, train_acc = 1.000 (3.299 sec/step)
step 72030 loss = 0.136, train_acc = 0.900 (3.319 sec/step)
step 72040 loss = 0.076, train_acc = 1.000 (3.341 sec/step)
step 72050 loss = 0.004, train_acc = 1.000 (3.403 sec/step)
step 72060 loss = 0.003, train_acc = 1.000 (3.356 sec/step)
step 72070 loss = 0.016, train_acc = 1.000 (3.370 sec/step)
step 72080 loss = 0.154, train_acc = 0.900 (3.402 sec/step)
step 72090 loss = 0.366, train_acc = 0.900 (3.364 sec/step)
step 72100 loss = 0.226, train_acc = 0.900 (3.306 sec/step)
step 72110 loss = 0.001, train_acc = 1.000 (3.334 sec/step)
step 72120 loss = 0.410, train_acc = 0.900 (3.474 sec/step)
step 72130 loss = 0.020, train_acc = 1.000 (3.333 sec/step)
step 72140 loss = 0.004, train_acc = 1.000 (3.367 sec/step)
step 72150 loss = 0.026, train_acc = 1.000 (3.304 sec/step)
step 72160 loss = 0.020, train_acc = 1.000 (3.394 sec/step)
step 72170 loss = 0.041, train_acc = 1.000 (3.333 sec/step)
step 72180 loss = 0.014, train_acc = 1.000 (3.349 sec/step)
step 72190 loss = 0.119, train_acc = 0.900 (3.308 sec/step)
VALIDATION acc = 0.537 (3.616 sec)
step 72200 loss = 0.045, train_acc = 1.000 (3.335 sec/step)
step 72210 loss = 0.088, train_acc = 1.000 (3.391 sec/step)
step 72220 loss = 0.050, train_acc = 1.000 (3.359 sec/step)
step 72230 loss = 0.001, train_acc = 1.000 (3.330 sec/step)
step 72240 loss = 0.000, train_acc = 1.000 (3.313 sec/step)
step 72250 loss = 0.031, train_acc = 1.000 (3.332 sec/step)
step 72260 loss = 0.010, train_acc = 1.000 (3.354 sec/step)
step 72270 loss = 0.002, train_acc = 1.000 (3.350 sec/step)
step 72280 loss = 0.061, train_acc = 1.000 (3.318 sec/step)
step 72290 loss = 0.095, train_acc = 1.000 (3.362 sec/step)
step 72300 loss = 0.006, train_acc = 1.000 (3.294 sec/step)
step 72310 loss = 0.034, train_acc = 1.000 (3.331 sec/step)
step 72320 loss = 0.601, train_acc = 0.900 (3.347 sec/step)
step 72330 loss = 0.532, train_acc = 0.800 (3.331 sec/step)
step 72340 loss = 0.002, train_acc = 1.000 (3.310 sec/step)
step 72350 loss = 0.290, train_acc = 0.900 (3.311 sec/step)
step 72360 loss = 0.041, train_acc = 1.000 (3.341 sec/step)
step 72370 loss = 0.297, train_acc = 0.900 (3.393 sec/step)
step 72380 loss = 0.503, train_acc = 0.900 (3.374 sec/step)
step 72390 loss = 0.057, train_acc = 1.000 (3.424 sec/step)
step 72400 loss = 0.377, train_acc = 0.800 (3.333 sec/step)
step 72410 loss = 0.155, train_acc = 0.900 (3.402 sec/step)
step 72420 loss = 0.075, train_acc = 1.000 (3.287 sec/step)
step 72430 loss = 0.000, train_acc = 1.000 (3.411 sec/step)
step 72440 loss = 0.000, train_acc = 1.000 (3.367 sec/step)
step 72450 loss = 0.300, train_acc = 0.900 (3.389 sec/step)
step 72460 loss = 0.997, train_acc = 0.700 (3.375 sec/step)
step 72470 loss = 0.298, train_acc = 0.900 (3.339 sec/step)
step 72480 loss = 0.004, train_acc = 1.000 (3.296 sec/step)
step 72490 loss = 0.011, train_acc = 1.000 (3.323 sec/step)
step 72500 loss = 0.020, train_acc = 1.000 (3.399 sec/step)
step 72510 loss = 0.019, train_acc = 1.000 (3.409 sec/step)
step 72520 loss = 0.106, train_acc = 1.000 (3.389 sec/step)
step 72530 loss = 0.003, train_acc = 1.000 (3.335 sec/step)
step 72540 loss = 0.000, train_acc = 1.000 (3.343 sec/step)
step 72550 loss = 0.000, train_acc = 1.000 (3.309 sec/step)
step 72560 loss = 0.043, train_acc = 1.000 (3.370 sec/step)
step 72570 loss = 0.456, train_acc = 0.900 (3.382 sec/step)
step 72580 loss = 0.464, train_acc = 0.900 (3.313 sec/step)
step 72590 loss = 0.016, train_acc = 1.000 (3.347 sec/step)
step 72600 loss = 0.135, train_acc = 0.900 (3.394 sec/step)
step 72610 loss = 0.038, train_acc = 1.000 (3.369 sec/step)
step 72620 loss = 0.230, train_acc = 0.900 (3.325 sec/step)
step 72630 loss = 0.573, train_acc = 0.900 (3.315 sec/step)
step 72640 loss = 0.072, train_acc = 1.000 (3.349 sec/step)
step 72650 loss = 0.000, train_acc = 1.000 (3.389 sec/step)
step 72660 loss = 0.051, train_acc = 1.000 (3.342 sec/step)
step 72670 loss = 0.032, train_acc = 1.000 (3.357 sec/step)
step 72680 loss = 0.111, train_acc = 0.900 (3.306 sec/step)
step 72690 loss = 0.131, train_acc = 0.900 (3.414 sec/step)
step 72700 loss = 0.001, train_acc = 1.000 (3.366 sec/step)
step 72710 loss = 0.004, train_acc = 1.000 (3.362 sec/step)
step 72720 loss = 0.148, train_acc = 0.900 (3.391 sec/step)
step 72730 loss = 0.026, train_acc = 1.000 (3.330 sec/step)
step 72740 loss = 0.126, train_acc = 0.900 (3.298 sec/step)
step 72750 loss = 0.015, train_acc = 1.000 (3.393 sec/step)
step 72760 loss = 0.279, train_acc = 0.900 (3.393 sec/step)
step 72770 loss = 0.021, train_acc = 1.000 (3.351 sec/step)
step 72780 loss = 0.438, train_acc = 0.900 (3.377 sec/step)
step 72790 loss = 0.494, train_acc = 0.800 (3.338 sec/step)
step 72800 loss = 0.405, train_acc = 0.900 (3.380 sec/step)
step 72810 loss = 0.004, train_acc = 1.000 (3.350 sec/step)
step 72820 loss = 0.000, train_acc = 1.000 (3.394 sec/step)
step 72830 loss = 0.546, train_acc = 0.900 (3.375 sec/step)
step 72840 loss = 0.059, train_acc = 1.000 (3.353 sec/step)
step 72850 loss = 0.451, train_acc = 0.900 (3.383 sec/step)
step 72860 loss = 0.088, train_acc = 0.900 (3.338 sec/step)
step 72870 loss = 0.263, train_acc = 1.000 (3.346 sec/step)
step 72880 loss = 0.487, train_acc = 0.900 (3.304 sec/step)
step 72890 loss = 0.253, train_acc = 0.900 (3.380 sec/step)
step 72900 loss = 0.004, train_acc = 1.000 (3.330 sec/step)
step 72910 loss = 0.032, train_acc = 1.000 (3.374 sec/step)
step 72920 loss = 0.136, train_acc = 1.000 (3.333 sec/step)
step 72930 loss = 0.015, train_acc = 1.000 (3.358 sec/step)
step 72940 loss = 0.001, train_acc = 1.000 (3.317 sec/step)
step 72950 loss = 0.066, train_acc = 1.000 (3.345 sec/step)
step 72960 loss = 0.852, train_acc = 0.800 (3.390 sec/step)
step 72970 loss = 0.017, train_acc = 1.000 (3.335 sec/step)
step 72980 loss = 0.267, train_acc = 0.900 (3.375 sec/step)
step 72990 loss = 0.003, train_acc = 1.000 (3.371 sec/step)
step 73000 loss = 0.056, train_acc = 1.000 (3.316 sec/step)
step 73010 loss = 0.797, train_acc = 0.900 (3.328 sec/step)
step 73020 loss = 0.095, train_acc = 1.000 (3.363 sec/step)
step 73030 loss = 0.145, train_acc = 0.900 (3.367 sec/step)
step 73040 loss = 2.310, train_acc = 0.800 (3.309 sec/step)
step 73050 loss = 0.415, train_acc = 0.800 (3.369 sec/step)
step 73060 loss = 0.085, train_acc = 1.000 (3.294 sec/step)
step 73070 loss = 0.027, train_acc = 1.000 (3.325 sec/step)
step 73080 loss = 0.017, train_acc = 1.000 (3.401 sec/step)
step 73090 loss = 0.097, train_acc = 1.000 (3.291 sec/step)
step 73100 loss = 0.193, train_acc = 0.900 (3.361 sec/step)
step 73110 loss = 0.079, train_acc = 1.000 (3.338 sec/step)
step 73120 loss = 0.023, train_acc = 1.000 (3.362 sec/step)
step 73130 loss = 0.225, train_acc = 0.900 (3.342 sec/step)
step 73140 loss = 0.004, train_acc = 1.000 (3.330 sec/step)
step 73150 loss = 0.000, train_acc = 1.000 (3.346 sec/step)
step 73160 loss = 0.001, train_acc = 1.000 (3.311 sec/step)
step 73170 loss = 0.476, train_acc = 0.800 (3.327 sec/step)
step 73180 loss = 0.396, train_acc = 0.900 (3.364 sec/step)
step 73190 loss = 0.845, train_acc = 0.900 (3.368 sec/step)
step 73200 loss = 0.053, train_acc = 1.000 (3.365 sec/step)
step 73210 loss = 0.131, train_acc = 0.900 (3.366 sec/step)
step 73220 loss = 0.001, train_acc = 1.000 (3.320 sec/step)
step 73230 loss = 0.003, train_acc = 1.000 (3.367 sec/step)
step 73240 loss = 0.102, train_acc = 1.000 (3.337 sec/step)
step 73250 loss = 0.119, train_acc = 0.900 (3.313 sec/step)
step 73260 loss = 0.370, train_acc = 0.800 (3.308 sec/step)
step 73270 loss = 0.126, train_acc = 0.900 (3.330 sec/step)
step 73280 loss = 1.347, train_acc = 0.800 (3.324 sec/step)
step 73290 loss = 0.105, train_acc = 0.900 (3.366 sec/step)
step 73300 loss = 0.043, train_acc = 1.000 (3.365 sec/step)
step 73310 loss = 0.469, train_acc = 0.900 (3.316 sec/step)
step 73320 loss = 0.130, train_acc = 0.900 (3.313 sec/step)
step 73330 loss = 0.024, train_acc = 1.000 (3.339 sec/step)
step 73340 loss = 0.153, train_acc = 0.900 (3.322 sec/step)
step 73350 loss = 0.081, train_acc = 0.900 (3.344 sec/step)
step 73360 loss = 0.268, train_acc = 0.900 (3.307 sec/step)
step 73370 loss = 0.122, train_acc = 0.900 (3.360 sec/step)
step 73380 loss = 0.022, train_acc = 1.000 (3.467 sec/step)
step 73390 loss = 0.002, train_acc = 1.000 (3.331 sec/step)
step 73400 loss = 1.210, train_acc = 0.900 (3.358 sec/step)
step 73410 loss = 0.438, train_acc = 0.900 (3.331 sec/step)
step 73420 loss = 0.381, train_acc = 0.900 (3.381 sec/step)
step 73430 loss = 0.068, train_acc = 1.000 (3.386 sec/step)
step 73440 loss = 0.082, train_acc = 0.900 (3.322 sec/step)
step 73450 loss = 0.198, train_acc = 0.900 (3.339 sec/step)
step 73460 loss = 0.000, train_acc = 1.000 (3.365 sec/step)
step 73470 loss = 0.505, train_acc = 0.800 (3.378 sec/step)
step 73480 loss = 0.129, train_acc = 1.000 (3.302 sec/step)
step 73490 loss = 1.487, train_acc = 0.700 (3.301 sec/step)
step 73500 loss = 0.944, train_acc = 0.800 (3.356 sec/step)
step 73510 loss = 0.113, train_acc = 1.000 (3.364 sec/step)
step 73520 loss = 0.001, train_acc = 1.000 (3.322 sec/step)
step 73530 loss = 0.110, train_acc = 1.000 (3.353 sec/step)
step 73540 loss = 0.281, train_acc = 0.900 (3.341 sec/step)
step 73550 loss = 0.681, train_acc = 0.800 (3.308 sec/step)
step 73560 loss = 0.016, train_acc = 1.000 (3.333 sec/step)
step 73570 loss = 0.145, train_acc = 0.900 (3.361 sec/step)
step 73580 loss = 0.168, train_acc = 0.900 (3.288 sec/step)
step 73590 loss = 0.834, train_acc = 0.700 (3.345 sec/step)
step 73600 loss = 0.021, train_acc = 1.000 (3.309 sec/step)
step 73610 loss = 0.530, train_acc = 0.900 (3.314 sec/step)
step 73620 loss = 0.189, train_acc = 0.900 (3.378 sec/step)
step 73630 loss = 0.017, train_acc = 1.000 (3.334 sec/step)
step 73640 loss = 0.009, train_acc = 1.000 (3.354 sec/step)
step 73650 loss = 0.003, train_acc = 1.000 (3.303 sec/step)
step 73660 loss = 0.005, train_acc = 1.000 (3.338 sec/step)
step 73670 loss = 0.533, train_acc = 0.900 (3.382 sec/step)
step 73680 loss = 0.409, train_acc = 0.800 (3.327 sec/step)
step 73690 loss = 0.000, train_acc = 1.000 (3.317 sec/step)
step 73700 loss = 0.010, train_acc = 1.000 (3.359 sec/step)
step 73710 loss = 0.010, train_acc = 1.000 (3.361 sec/step)
step 73720 loss = 0.053, train_acc = 1.000 (3.370 sec/step)
step 73730 loss = 0.073, train_acc = 1.000 (3.392 sec/step)
step 73740 loss = 0.069, train_acc = 1.000 (3.349 sec/step)
step 73750 loss = 0.072, train_acc = 1.000 (3.356 sec/step)
step 73760 loss = 0.011, train_acc = 1.000 (3.365 sec/step)
step 73770 loss = 0.169, train_acc = 0.900 (3.329 sec/step)
step 73780 loss = 0.049, train_acc = 1.000 (3.319 sec/step)
step 73790 loss = 0.003, train_acc = 1.000 (3.365 sec/step)
step 73800 loss = 0.040, train_acc = 1.000 (3.279 sec/step)
step 73810 loss = 0.002, train_acc = 1.000 (3.352 sec/step)
step 73820 loss = 0.000, train_acc = 1.000 (3.357 sec/step)
step 73830 loss = 0.086, train_acc = 1.000 (3.346 sec/step)
step 73840 loss = 1.437, train_acc = 0.900 (3.369 sec/step)
step 73850 loss = 0.612, train_acc = 0.800 (3.285 sec/step)
step 73860 loss = 0.553, train_acc = 0.800 (3.297 sec/step)
step 73870 loss = 0.000, train_acc = 1.000 (3.374 sec/step)
step 73880 loss = 0.000, train_acc = 1.000 (3.326 sec/step)
step 73890 loss = 0.004, train_acc = 1.000 (3.365 sec/step)
step 73900 loss = 0.348, train_acc = 0.900 (3.375 sec/step)
step 73910 loss = 0.000, train_acc = 1.000 (3.406 sec/step)
step 73920 loss = 0.009, train_acc = 1.000 (3.324 sec/step)
step 73930 loss = 0.153, train_acc = 0.900 (3.315 sec/step)
step 73940 loss = 0.006, train_acc = 1.000 (3.376 sec/step)
step 73950 loss = 0.279, train_acc = 0.900 (3.356 sec/step)
step 73960 loss = 0.042, train_acc = 1.000 (3.359 sec/step)
step 73970 loss = 0.000, train_acc = 1.000 (3.478 sec/step)
step 73980 loss = 0.568, train_acc = 0.900 (3.320 sec/step)
step 73990 loss = 0.036, train_acc = 1.000 (3.320 sec/step)
step 74000 loss = 0.001, train_acc = 1.000 (3.383 sec/step)
step 74010 loss = 0.009, train_acc = 1.000 (3.365 sec/step)
step 74020 loss = 0.033, train_acc = 1.000 (3.318 sec/step)
step 74030 loss = 0.001, train_acc = 1.000 (3.337 sec/step)
step 74040 loss = 0.169, train_acc = 0.900 (3.365 sec/step)
step 74050 loss = 0.521, train_acc = 0.900 (3.323 sec/step)
step 74060 loss = 0.034, train_acc = 1.000 (3.389 sec/step)
step 74070 loss = 0.036, train_acc = 1.000 (3.370 sec/step)
step 74080 loss = 0.230, train_acc = 0.900 (3.337 sec/step)
step 74090 loss = 0.594, train_acc = 0.800 (3.366 sec/step)
VALIDATION acc = 0.567 (3.636 sec)
New Best Accuracy 0.567 > Old Best 0.565. Saving...
The checkpoint has been created.
step 74100 loss = 0.001, train_acc = 1.000 (3.373 sec/step)
step 74110 loss = 0.001, train_acc = 1.000 (3.382 sec/step)
step 74120 loss = 0.001, train_acc = 1.000 (3.396 sec/step)
step 74130 loss = 0.585, train_acc = 0.800 (3.354 sec/step)
step 74140 loss = 0.004, train_acc = 1.000 (3.389 sec/step)
step 74150 loss = 0.239, train_acc = 0.800 (3.380 sec/step)
step 74160 loss = 0.272, train_acc = 0.900 (3.352 sec/step)
step 74170 loss = 0.051, train_acc = 1.000 (3.303 sec/step)
step 74180 loss = 0.000, train_acc = 1.000 (3.327 sec/step)
step 74190 loss = 0.358, train_acc = 0.900 (3.315 sec/step)
step 74200 loss = 0.014, train_acc = 1.000 (3.346 sec/step)
step 74210 loss = 0.026, train_acc = 1.000 (3.318 sec/step)
step 74220 loss = 0.898, train_acc = 0.900 (3.348 sec/step)
step 74230 loss = 0.163, train_acc = 0.900 (3.374 sec/step)
step 74240 loss = 0.040, train_acc = 1.000 (3.348 sec/step)
step 74250 loss = 0.204, train_acc = 0.900 (3.369 sec/step)
step 74260 loss = 0.044, train_acc = 1.000 (3.378 sec/step)
step 74270 loss = 0.004, train_acc = 1.000 (3.299 sec/step)
step 74280 loss = 0.010, train_acc = 1.000 (3.343 sec/step)
step 74290 loss = 0.558, train_acc = 0.900 (3.384 sec/step)
step 74300 loss = 0.354, train_acc = 0.900 (3.363 sec/step)
step 74310 loss = 0.055, train_acc = 1.000 (3.387 sec/step)
step 74320 loss = 0.000, train_acc = 1.000 (3.342 sec/step)
step 74330 loss = 0.001, train_acc = 1.000 (3.388 sec/step)
step 74340 loss = 0.072, train_acc = 1.000 (3.351 sec/step)
step 74350 loss = 0.007, train_acc = 1.000 (3.303 sec/step)
step 74360 loss = 0.151, train_acc = 1.000 (3.338 sec/step)
step 74370 loss = 0.064, train_acc = 1.000 (3.359 sec/step)
step 74380 loss = 0.067, train_acc = 1.000 (3.370 sec/step)
step 74390 loss = 1.199, train_acc = 0.600 (3.294 sec/step)
step 74400 loss = 1.026, train_acc = 0.700 (3.335 sec/step)
step 74410 loss = 0.694, train_acc = 0.800 (3.325 sec/step)
step 74420 loss = 0.676, train_acc = 0.700 (3.406 sec/step)
step 74430 loss = 1.819, train_acc = 0.700 (3.343 sec/step)
step 74440 loss = 2.009, train_acc = 0.700 (3.384 sec/step)
step 74450 loss = 0.003, train_acc = 1.000 (3.327 sec/step)
step 74460 loss = 0.164, train_acc = 0.900 (3.351 sec/step)
step 74470 loss = 0.005, train_acc = 1.000 (3.332 sec/step)
step 74480 loss = 0.038, train_acc = 1.000 (3.312 sec/step)
step 74490 loss = 0.304, train_acc = 0.900 (3.403 sec/step)
step 74500 loss = 0.228, train_acc = 0.900 (3.333 sec/step)
step 74510 loss = 0.203, train_acc = 0.900 (3.341 sec/step)
step 74520 loss = 0.035, train_acc = 1.000 (3.316 sec/step)
step 74530 loss = 0.009, train_acc = 1.000 (3.328 sec/step)
step 74540 loss = 0.504, train_acc = 0.900 (3.335 sec/step)
step 74550 loss = 0.658, train_acc = 0.800 (3.375 sec/step)
step 74560 loss = 0.130, train_acc = 0.900 (3.367 sec/step)
step 74570 loss = 0.531, train_acc = 0.900 (3.313 sec/step)
step 74580 loss = 0.356, train_acc = 0.900 (3.314 sec/step)
step 74590 loss = 0.018, train_acc = 1.000 (3.302 sec/step)
step 74600 loss = 0.007, train_acc = 1.000 (3.367 sec/step)
step 74610 loss = 0.121, train_acc = 0.900 (3.383 sec/step)
step 74620 loss = 0.089, train_acc = 1.000 (3.403 sec/step)
step 74630 loss = 0.421, train_acc = 0.900 (3.323 sec/step)
step 74640 loss = 0.279, train_acc = 0.800 (3.314 sec/step)
step 74650 loss = 0.232, train_acc = 0.900 (3.342 sec/step)
step 74660 loss = 0.000, train_acc = 1.000 (3.393 sec/step)
step 74670 loss = 0.076, train_acc = 0.900 (3.360 sec/step)
step 74680 loss = 0.388, train_acc = 0.900 (3.360 sec/step)
step 74690 loss = 0.006, train_acc = 1.000 (3.395 sec/step)
step 74700 loss = 0.043, train_acc = 1.000 (3.314 sec/step)
step 74710 loss = 0.306, train_acc = 0.900 (3.347 sec/step)
step 74720 loss = 0.014, train_acc = 1.000 (3.293 sec/step)
step 74730 loss = 0.253, train_acc = 0.900 (3.327 sec/step)
step 74740 loss = 0.022, train_acc = 1.000 (3.353 sec/step)
step 74750 loss = 0.415, train_acc = 0.900 (3.396 sec/step)
step 74760 loss = 0.000, train_acc = 1.000 (3.396 sec/step)
step 74770 loss = 0.403, train_acc = 0.900 (3.352 sec/step)
step 74780 loss = 0.001, train_acc = 1.000 (3.308 sec/step)
step 74790 loss = 1.747, train_acc = 0.900 (3.347 sec/step)
step 74800 loss = 0.021, train_acc = 1.000 (3.334 sec/step)
step 74810 loss = 0.294, train_acc = 0.900 (3.357 sec/step)
step 74820 loss = 0.001, train_acc = 1.000 (3.315 sec/step)
step 74830 loss = 0.952, train_acc = 0.900 (3.368 sec/step)
step 74840 loss = 0.000, train_acc = 1.000 (3.351 sec/step)
step 74850 loss = 0.091, train_acc = 1.000 (3.379 sec/step)
step 74860 loss = 0.016, train_acc = 1.000 (3.343 sec/step)
step 74870 loss = 0.001, train_acc = 1.000 (3.392 sec/step)
step 74880 loss = 0.055, train_acc = 1.000 (3.375 sec/step)
step 74890 loss = 0.000, train_acc = 1.000 (3.443 sec/step)
step 74900 loss = 0.652, train_acc = 0.800 (3.318 sec/step)
step 74910 loss = 0.221, train_acc = 0.900 (3.295 sec/step)
step 74920 loss = 0.078, train_acc = 1.000 (3.314 sec/step)
step 74930 loss = 0.006, train_acc = 1.000 (3.349 sec/step)
step 74940 loss = 0.229, train_acc = 0.900 (3.375 sec/step)
step 74950 loss = 0.000, train_acc = 1.000 (3.361 sec/step)
step 74960 loss = 0.007, train_acc = 1.000 (3.388 sec/step)
step 74970 loss = 0.023, train_acc = 1.000 (3.293 sec/step)
step 74980 loss = 0.000, train_acc = 1.000 (3.370 sec/step)
step 74990 loss = 0.010, train_acc = 1.000 (3.375 sec/step)
step 75000 loss = 0.086, train_acc = 0.900 (3.343 sec/step)
step 75010 loss = 0.005, train_acc = 1.000 (3.325 sec/step)
step 75020 loss = 0.006, train_acc = 1.000 (3.364 sec/step)
step 75030 loss = 0.009, train_acc = 1.000 (3.295 sec/step)
step 75040 loss = 0.884, train_acc = 0.800 (3.351 sec/step)
step 75050 loss = 0.092, train_acc = 0.900 (3.324 sec/step)
step 75060 loss = 0.001, train_acc = 1.000 (3.456 sec/step)
step 75070 loss = 0.007, train_acc = 1.000 (3.367 sec/step)
step 75080 loss = 0.544, train_acc = 0.900 (3.386 sec/step)
step 75090 loss = 0.435, train_acc = 0.700 (3.349 sec/step)
step 75100 loss = 0.027, train_acc = 1.000 (3.340 sec/step)
step 75110 loss = 0.376, train_acc = 0.800 (3.369 sec/step)
step 75120 loss = 0.012, train_acc = 1.000 (3.334 sec/step)
step 75130 loss = 0.002, train_acc = 1.000 (3.343 sec/step)
step 75140 loss = 0.131, train_acc = 0.900 (3.350 sec/step)
step 75150 loss = 0.049, train_acc = 1.000 (3.350 sec/step)
step 75160 loss = 0.858, train_acc = 0.900 (3.371 sec/step)
step 75170 loss = 0.157, train_acc = 0.900 (3.389 sec/step)
step 75180 loss = 0.303, train_acc = 0.900 (3.373 sec/step)
step 75190 loss = 0.030, train_acc = 1.000 (3.351 sec/step)
step 75200 loss = 0.147, train_acc = 0.900 (3.348 sec/step)
step 75210 loss = 0.001, train_acc = 1.000 (3.354 sec/step)
step 75220 loss = 0.001, train_acc = 1.000 (3.399 sec/step)
step 75230 loss = 0.564, train_acc = 0.800 (3.377 sec/step)
step 75240 loss = 0.134, train_acc = 0.900 (3.386 sec/step)
step 75250 loss = 0.003, train_acc = 1.000 (3.319 sec/step)
step 75260 loss = 0.000, train_acc = 1.000 (3.349 sec/step)
step 75270 loss = 0.172, train_acc = 0.900 (3.417 sec/step)
step 75280 loss = 0.052, train_acc = 1.000 (3.368 sec/step)
step 75290 loss = 0.004, train_acc = 1.000 (3.397 sec/step)
step 75300 loss = 0.003, train_acc = 1.000 (3.422 sec/step)
step 75310 loss = 0.035, train_acc = 1.000 (3.327 sec/step)
step 75320 loss = 0.003, train_acc = 1.000 (3.359 sec/step)
step 75330 loss = 0.450, train_acc = 0.900 (3.330 sec/step)
step 75340 loss = 0.018, train_acc = 1.000 (3.300 sec/step)
step 75350 loss = 0.055, train_acc = 1.000 (3.395 sec/step)
step 75360 loss = 0.058, train_acc = 1.000 (3.298 sec/step)
step 75370 loss = 0.200, train_acc = 0.900 (3.343 sec/step)
step 75380 loss = 0.089, train_acc = 1.000 (3.362 sec/step)
step 75390 loss = 0.004, train_acc = 1.000 (3.335 sec/step)
step 75400 loss = 0.069, train_acc = 1.000 (3.298 sec/step)
step 75410 loss = 0.000, train_acc = 1.000 (3.367 sec/step)
step 75420 loss = 0.017, train_acc = 1.000 (3.328 sec/step)
step 75430 loss = 0.231, train_acc = 0.900 (3.333 sec/step)
step 75440 loss = 0.161, train_acc = 0.900 (3.338 sec/step)
step 75450 loss = 0.173, train_acc = 0.900 (3.352 sec/step)
step 75460 loss = 0.157, train_acc = 0.900 (3.353 sec/step)
step 75470 loss = 0.003, train_acc = 1.000 (3.369 sec/step)
step 75480 loss = 0.021, train_acc = 1.000 (3.364 sec/step)
step 75490 loss = 0.002, train_acc = 1.000 (3.320 sec/step)
step 75500 loss = 0.100, train_acc = 0.900 (3.358 sec/step)
step 75510 loss = 0.000, train_acc = 1.000 (3.404 sec/step)
step 75520 loss = 0.330, train_acc = 0.900 (3.352 sec/step)
step 75530 loss = 0.033, train_acc = 1.000 (3.364 sec/step)
step 75540 loss = 0.036, train_acc = 1.000 (3.314 sec/step)
step 75550 loss = 0.744, train_acc = 0.800 (3.322 sec/step)
step 75560 loss = 0.296, train_acc = 0.900 (3.348 sec/step)
step 75570 loss = 0.034, train_acc = 1.000 (3.306 sec/step)
step 75580 loss = 0.023, train_acc = 1.000 (3.359 sec/step)
step 75590 loss = 0.012, train_acc = 1.000 (3.359 sec/step)
step 75600 loss = 0.047, train_acc = 1.000 (3.345 sec/step)
step 75610 loss = 1.568, train_acc = 0.700 (3.381 sec/step)
step 75620 loss = 0.199, train_acc = 0.900 (3.371 sec/step)
step 75630 loss = 0.038, train_acc = 1.000 (3.335 sec/step)
step 75640 loss = 0.025, train_acc = 1.000 (3.358 sec/step)
step 75650 loss = 0.116, train_acc = 0.900 (3.370 sec/step)
step 75660 loss = 0.940, train_acc = 0.900 (3.320 sec/step)
step 75670 loss = 0.533, train_acc = 0.800 (3.338 sec/step)
step 75680 loss = 0.527, train_acc = 0.800 (3.317 sec/step)
step 75690 loss = 0.001, train_acc = 1.000 (3.328 sec/step)
step 75700 loss = 0.037, train_acc = 1.000 (3.358 sec/step)
step 75710 loss = 0.033, train_acc = 1.000 (3.345 sec/step)
step 75720 loss = 0.233, train_acc = 0.800 (3.410 sec/step)
step 75730 loss = 0.543, train_acc = 0.800 (3.333 sec/step)
step 75740 loss = 0.567, train_acc = 0.800 (3.318 sec/step)
step 75750 loss = 0.828, train_acc = 0.800 (3.300 sec/step)
step 75760 loss = 0.714, train_acc = 0.800 (3.328 sec/step)
step 75770 loss = 0.986, train_acc = 0.800 (3.321 sec/step)
step 75780 loss = 0.271, train_acc = 0.800 (3.439 sec/step)
step 75790 loss = 1.535, train_acc = 0.900 (3.353 sec/step)
step 75800 loss = 0.000, train_acc = 1.000 (3.358 sec/step)
step 75810 loss = 0.136, train_acc = 1.000 (3.322 sec/step)
step 75820 loss = 0.938, train_acc = 0.700 (3.377 sec/step)
step 75830 loss = 0.235, train_acc = 1.000 (3.348 sec/step)
step 75840 loss = 0.014, train_acc = 1.000 (3.358 sec/step)
step 75850 loss = 0.828, train_acc = 0.800 (3.344 sec/step)
step 75860 loss = 0.030, train_acc = 1.000 (3.334 sec/step)
step 75870 loss = 0.022, train_acc = 1.000 (3.332 sec/step)
step 75880 loss = 0.142, train_acc = 1.000 (3.346 sec/step)
step 75890 loss = 0.000, train_acc = 1.000 (3.407 sec/step)
step 75900 loss = 0.542, train_acc = 0.800 (3.308 sec/step)
step 75910 loss = 0.156, train_acc = 0.900 (3.308 sec/step)
step 75920 loss = 0.298, train_acc = 0.800 (3.343 sec/step)
step 75930 loss = 0.027, train_acc = 1.000 (3.346 sec/step)
step 75940 loss = 0.078, train_acc = 1.000 (3.293 sec/step)
step 75950 loss = 0.004, train_acc = 1.000 (3.389 sec/step)
step 75960 loss = 0.102, train_acc = 0.900 (3.326 sec/step)
step 75970 loss = 0.004, train_acc = 1.000 (3.340 sec/step)
step 75980 loss = 0.004, train_acc = 1.000 (3.389 sec/step)
step 75990 loss = 0.172, train_acc = 0.900 (3.398 sec/step)
VALIDATION acc = 0.562 (3.647 sec)
step 76000 loss = 0.075, train_acc = 1.000 (3.342 sec/step)
step 76010 loss = 0.004, train_acc = 1.000 (3.335 sec/step)
step 76020 loss = 0.001, train_acc = 1.000 (3.385 sec/step)
step 76030 loss = 0.002, train_acc = 1.000 (3.337 sec/step)
step 76040 loss = 0.001, train_acc = 1.000 (3.375 sec/step)
step 76050 loss = 0.425, train_acc = 0.900 (3.365 sec/step)
step 76060 loss = 0.007, train_acc = 1.000 (3.309 sec/step)
step 76070 loss = 0.087, train_acc = 1.000 (3.293 sec/step)
step 76080 loss = 0.590, train_acc = 0.800 (3.420 sec/step)
step 76090 loss = 0.006, train_acc = 1.000 (3.305 sec/step)
step 76100 loss = 0.024, train_acc = 1.000 (3.372 sec/step)
step 76110 loss = 0.220, train_acc = 0.900 (3.344 sec/step)
step 76120 loss = 0.113, train_acc = 1.000 (3.330 sec/step)
step 76130 loss = 0.006, train_acc = 1.000 (3.351 sec/step)
step 76140 loss = 0.001, train_acc = 1.000 (3.449 sec/step)
step 76150 loss = 0.006, train_acc = 1.000 (3.316 sec/step)
step 76160 loss = 0.052, train_acc = 1.000 (3.319 sec/step)
step 76170 loss = 5.901, train_acc = 0.800 (3.321 sec/step)
step 76180 loss = 0.341, train_acc = 0.900 (3.359 sec/step)
step 76190 loss = 0.181, train_acc = 1.000 (3.304 sec/step)
step 76200 loss = 0.143, train_acc = 1.000 (3.367 sec/step)
step 76210 loss = 0.864, train_acc = 0.800 (3.339 sec/step)
step 76220 loss = 0.176, train_acc = 0.900 (3.345 sec/step)
step 76230 loss = 0.002, train_acc = 1.000 (3.331 sec/step)
step 76240 loss = 1.145, train_acc = 0.800 (3.312 sec/step)
step 76250 loss = 0.466, train_acc = 0.900 (3.355 sec/step)
step 76260 loss = 0.028, train_acc = 1.000 (3.351 sec/step)
step 76270 loss = 0.219, train_acc = 0.900 (3.344 sec/step)
step 76280 loss = 0.105, train_acc = 1.000 (3.336 sec/step)
step 76290 loss = 0.003, train_acc = 1.000 (3.297 sec/step)
step 76300 loss = 0.000, train_acc = 1.000 (3.394 sec/step)
step 76310 loss = 0.237, train_acc = 0.900 (3.319 sec/step)
step 76320 loss = 0.770, train_acc = 0.900 (3.361 sec/step)
step 76330 loss = 0.045, train_acc = 1.000 (3.317 sec/step)
step 76340 loss = 0.004, train_acc = 1.000 (3.308 sec/step)
step 76350 loss = 0.001, train_acc = 1.000 (3.382 sec/step)
step 76360 loss = 0.062, train_acc = 1.000 (3.385 sec/step)
step 76370 loss = 0.000, train_acc = 1.000 (3.321 sec/step)
step 76380 loss = 0.297, train_acc = 0.900 (3.327 sec/step)
step 76390 loss = 0.002, train_acc = 1.000 (3.323 sec/step)
step 76400 loss = 0.195, train_acc = 0.900 (3.302 sec/step)
step 76410 loss = 0.998, train_acc = 0.700 (3.432 sec/step)
step 76420 loss = 0.000, train_acc = 1.000 (3.305 sec/step)
step 76430 loss = 0.107, train_acc = 0.900 (3.311 sec/step)
step 76440 loss = 0.013, train_acc = 1.000 (3.306 sec/step)
step 76450 loss = 0.023, train_acc = 1.000 (3.332 sec/step)
step 76460 loss = 0.108, train_acc = 0.900 (3.353 sec/step)
step 76470 loss = 0.522, train_acc = 0.900 (3.355 sec/step)
step 76480 loss = 0.525, train_acc = 0.900 (3.298 sec/step)
step 76490 loss = 0.502, train_acc = 0.900 (3.330 sec/step)
step 76500 loss = 0.388, train_acc = 0.700 (3.383 sec/step)
step 76510 loss = 0.002, train_acc = 1.000 (3.321 sec/step)
step 76520 loss = 0.001, train_acc = 1.000 (3.323 sec/step)
step 76530 loss = 0.504, train_acc = 0.800 (3.313 sec/step)
step 76540 loss = 0.303, train_acc = 0.900 (3.384 sec/step)
step 76550 loss = 0.142, train_acc = 0.900 (3.344 sec/step)
step 76560 loss = 0.535, train_acc = 0.900 (3.381 sec/step)
step 76570 loss = 0.079, train_acc = 1.000 (3.351 sec/step)
step 76580 loss = 0.036, train_acc = 1.000 (3.370 sec/step)
step 76590 loss = 0.036, train_acc = 1.000 (3.382 sec/step)
step 76600 loss = 0.019, train_acc = 1.000 (3.381 sec/step)
step 76610 loss = 0.024, train_acc = 1.000 (3.346 sec/step)
step 76620 loss = 0.047, train_acc = 1.000 (3.371 sec/step)
step 76630 loss = 0.790, train_acc = 0.800 (3.364 sec/step)
step 76640 loss = 0.014, train_acc = 1.000 (3.348 sec/step)
step 76650 loss = 0.004, train_acc = 1.000 (3.377 sec/step)
step 76660 loss = 0.051, train_acc = 1.000 (3.365 sec/step)
step 76670 loss = 0.374, train_acc = 0.900 (3.412 sec/step)
step 76680 loss = 0.080, train_acc = 1.000 (3.370 sec/step)
step 76690 loss = 0.118, train_acc = 0.900 (3.345 sec/step)
step 76700 loss = 0.418, train_acc = 0.900 (3.337 sec/step)
step 76710 loss = 0.061, train_acc = 1.000 (3.338 sec/step)
step 76720 loss = 0.453, train_acc = 0.900 (3.403 sec/step)
step 76730 loss = 0.037, train_acc = 1.000 (3.397 sec/step)
step 76740 loss = 0.023, train_acc = 1.000 (3.351 sec/step)
step 76750 loss = 0.020, train_acc = 1.000 (3.334 sec/step)
step 76760 loss = 0.296, train_acc = 0.900 (3.328 sec/step)
step 76770 loss = 0.184, train_acc = 0.900 (3.339 sec/step)
step 76780 loss = 0.128, train_acc = 0.900 (3.394 sec/step)
step 76790 loss = 0.256, train_acc = 0.900 (3.321 sec/step)
step 76800 loss = 0.584, train_acc = 0.800 (3.329 sec/step)
step 76810 loss = 0.126, train_acc = 0.900 (3.349 sec/step)
step 76820 loss = 0.042, train_acc = 1.000 (3.340 sec/step)
step 76830 loss = 0.001, train_acc = 1.000 (3.360 sec/step)
step 76840 loss = 0.047, train_acc = 1.000 (3.347 sec/step)
step 76850 loss = 0.131, train_acc = 1.000 (3.336 sec/step)
step 76860 loss = 0.320, train_acc = 0.900 (3.364 sec/step)
step 76870 loss = 0.309, train_acc = 0.900 (3.313 sec/step)
step 76880 loss = 0.001, train_acc = 1.000 (3.327 sec/step)
step 76890 loss = 0.006, train_acc = 1.000 (3.308 sec/step)
step 76900 loss = 0.011, train_acc = 1.000 (3.355 sec/step)
step 76910 loss = 0.854, train_acc = 0.700 (3.368 sec/step)
step 76920 loss = 0.089, train_acc = 0.900 (3.352 sec/step)
step 76930 loss = 0.004, train_acc = 1.000 (3.303 sec/step)
step 76940 loss = 0.075, train_acc = 1.000 (3.411 sec/step)
step 76950 loss = 0.022, train_acc = 1.000 (3.360 sec/step)
step 76960 loss = 0.044, train_acc = 1.000 (3.361 sec/step)
step 76970 loss = 0.014, train_acc = 1.000 (3.326 sec/step)
step 76980 loss = 2.429, train_acc = 0.800 (3.318 sec/step)
step 76990 loss = 0.016, train_acc = 1.000 (3.309 sec/step)
step 77000 loss = 0.108, train_acc = 0.900 (3.369 sec/step)
step 77010 loss = 0.157, train_acc = 1.000 (3.342 sec/step)
step 77020 loss = 0.036, train_acc = 1.000 (3.415 sec/step)
step 77030 loss = 0.039, train_acc = 1.000 (3.376 sec/step)
step 77040 loss = 0.247, train_acc = 0.900 (3.296 sec/step)
step 77050 loss = 2.511, train_acc = 0.900 (3.344 sec/step)
step 77060 loss = 0.417, train_acc = 0.800 (3.336 sec/step)
step 77070 loss = 0.502, train_acc = 0.900 (3.386 sec/step)
step 77080 loss = 1.226, train_acc = 0.800 (3.344 sec/step)
step 77090 loss = 0.987, train_acc = 0.800 (3.324 sec/step)
step 77100 loss = 0.244, train_acc = 0.900 (3.340 sec/step)
step 77110 loss = 0.011, train_acc = 1.000 (3.344 sec/step)
step 77120 loss = 0.030, train_acc = 1.000 (3.342 sec/step)
step 77130 loss = 0.146, train_acc = 0.900 (3.358 sec/step)
step 77140 loss = 0.100, train_acc = 0.900 (3.360 sec/step)
step 77150 loss = 0.026, train_acc = 1.000 (3.375 sec/step)
step 77160 loss = 0.113, train_acc = 1.000 (3.329 sec/step)
step 77170 loss = 0.006, train_acc = 1.000 (3.341 sec/step)
step 77180 loss = 0.056, train_acc = 1.000 (3.366 sec/step)
step 77190 loss = 0.170, train_acc = 0.900 (3.347 sec/step)
step 77200 loss = 0.004, train_acc = 1.000 (3.338 sec/step)
step 77210 loss = 0.010, train_acc = 1.000 (3.346 sec/step)
step 77220 loss = 0.015, train_acc = 1.000 (3.375 sec/step)
step 77230 loss = 0.244, train_acc = 0.900 (3.323 sec/step)
step 77240 loss = 0.077, train_acc = 0.900 (3.370 sec/step)
step 77250 loss = 0.000, train_acc = 1.000 (3.383 sec/step)
step 77260 loss = 0.246, train_acc = 0.900 (3.438 sec/step)
step 77270 loss = 0.371, train_acc = 0.900 (3.393 sec/step)
step 77280 loss = 0.003, train_acc = 1.000 (3.364 sec/step)
step 77290 loss = 0.057, train_acc = 1.000 (3.357 sec/step)
step 77300 loss = 0.000, train_acc = 1.000 (3.353 sec/step)
step 77310 loss = 0.000, train_acc = 1.000 (3.382 sec/step)
step 77320 loss = 0.021, train_acc = 1.000 (3.351 sec/step)
step 77330 loss = 0.000, train_acc = 1.000 (3.438 sec/step)
step 77340 loss = 0.132, train_acc = 0.900 (3.365 sec/step)
step 77350 loss = 0.437, train_acc = 0.900 (3.310 sec/step)
step 77360 loss = 0.181, train_acc = 0.900 (3.383 sec/step)
step 77370 loss = 0.368, train_acc = 0.900 (3.323 sec/step)
step 77380 loss = 0.035, train_acc = 1.000 (3.378 sec/step)
step 77390 loss = 0.133, train_acc = 0.900 (3.306 sec/step)
step 77400 loss = 0.219, train_acc = 0.900 (3.375 sec/step)
step 77410 loss = 0.112, train_acc = 0.900 (3.321 sec/step)
step 77420 loss = 0.028, train_acc = 1.000 (3.340 sec/step)
step 77430 loss = 0.000, train_acc = 1.000 (3.328 sec/step)
step 77440 loss = 0.237, train_acc = 0.900 (3.361 sec/step)
step 77450 loss = 0.197, train_acc = 0.900 (3.306 sec/step)
step 77460 loss = 0.053, train_acc = 1.000 (3.357 sec/step)
step 77470 loss = 0.311, train_acc = 0.800 (3.359 sec/step)
step 77480 loss = 0.857, train_acc = 0.900 (3.337 sec/step)
step 77490 loss = 0.526, train_acc = 0.900 (3.325 sec/step)
step 77500 loss = 0.089, train_acc = 1.000 (3.454 sec/step)
step 77510 loss = 0.017, train_acc = 1.000 (3.441 sec/step)
step 77520 loss = 0.000, train_acc = 1.000 (3.450 sec/step)
step 77530 loss = 0.776, train_acc = 0.900 (3.315 sec/step)
step 77540 loss = 0.015, train_acc = 1.000 (3.334 sec/step)
step 77550 loss = 0.100, train_acc = 1.000 (3.394 sec/step)
step 77560 loss = 0.626, train_acc = 0.800 (3.319 sec/step)
step 77570 loss = 0.001, train_acc = 1.000 (3.355 sec/step)
step 77580 loss = 0.004, train_acc = 1.000 (3.329 sec/step)
step 77590 loss = 0.065, train_acc = 1.000 (3.332 sec/step)
step 77600 loss = 0.005, train_acc = 1.000 (3.318 sec/step)
step 77610 loss = 0.001, train_acc = 1.000 (3.432 sec/step)
step 77620 loss = 0.080, train_acc = 0.900 (3.331 sec/step)
step 77630 loss = 0.096, train_acc = 0.900 (3.338 sec/step)
step 77640 loss = 0.002, train_acc = 1.000 (3.406 sec/step)
step 77650 loss = 0.089, train_acc = 0.900 (3.342 sec/step)
step 77660 loss = 0.897, train_acc = 0.800 (3.363 sec/step)
step 77670 loss = 0.240, train_acc = 0.900 (3.370 sec/step)
step 77680 loss = 0.024, train_acc = 1.000 (3.350 sec/step)
step 77690 loss = 0.322, train_acc = 0.900 (3.350 sec/step)
step 77700 loss = 0.081, train_acc = 0.900 (3.399 sec/step)
step 77710 loss = 0.093, train_acc = 1.000 (3.332 sec/step)
step 77720 loss = 0.069, train_acc = 1.000 (3.373 sec/step)
step 77730 loss = 0.091, train_acc = 1.000 (3.361 sec/step)
step 77740 loss = 0.006, train_acc = 1.000 (3.469 sec/step)
step 77750 loss = 0.097, train_acc = 1.000 (3.350 sec/step)
step 77760 loss = 0.266, train_acc = 0.900 (3.344 sec/step)
step 77770 loss = 0.661, train_acc = 0.900 (3.353 sec/step)
step 77780 loss = 0.394, train_acc = 0.900 (3.378 sec/step)
step 77790 loss = 0.117, train_acc = 0.900 (3.333 sec/step)
step 77800 loss = 1.358, train_acc = 0.800 (3.313 sec/step)
step 77810 loss = 0.462, train_acc = 0.900 (3.353 sec/step)
step 77820 loss = 0.029, train_acc = 1.000 (3.364 sec/step)
step 77830 loss = 0.719, train_acc = 0.800 (3.398 sec/step)
step 77840 loss = 0.091, train_acc = 0.900 (3.350 sec/step)
step 77850 loss = 0.655, train_acc = 0.900 (3.360 sec/step)
step 77860 loss = 0.008, train_acc = 1.000 (3.337 sec/step)
step 77870 loss = 0.091, train_acc = 0.900 (3.398 sec/step)
step 77880 loss = 0.017, train_acc = 1.000 (3.352 sec/step)
step 77890 loss = 1.218, train_acc = 0.900 (3.315 sec/step)
VALIDATION acc = 0.527 (3.627 sec)
step 77900 loss = 0.098, train_acc = 1.000 (3.411 sec/step)
step 77910 loss = 0.025, train_acc = 1.000 (3.305 sec/step)
step 77920 loss = 0.220, train_acc = 0.900 (3.330 sec/step)
step 77930 loss = 0.153, train_acc = 0.900 (3.402 sec/step)
step 77940 loss = 0.007, train_acc = 1.000 (3.370 sec/step)
step 77950 loss = 0.159, train_acc = 0.900 (3.338 sec/step)
step 77960 loss = 0.085, train_acc = 0.900 (3.418 sec/step)
step 77970 loss = 0.003, train_acc = 1.000 (3.326 sec/step)
step 77980 loss = 0.185, train_acc = 0.800 (3.333 sec/step)
step 77990 loss = 0.003, train_acc = 1.000 (3.324 sec/step)
step 78000 loss = 0.040, train_acc = 1.000 (3.356 sec/step)
step 78010 loss = 0.008, train_acc = 1.000 (3.340 sec/step)
step 78020 loss = 0.928, train_acc = 0.800 (3.354 sec/step)
step 78030 loss = 0.003, train_acc = 1.000 (3.350 sec/step)
step 78040 loss = 0.012, train_acc = 1.000 (3.371 sec/step)
step 78050 loss = 0.347, train_acc = 0.900 (3.372 sec/step)
step 78060 loss = 0.939, train_acc = 0.900 (3.406 sec/step)
step 78070 loss = 0.034, train_acc = 1.000 (3.375 sec/step)
step 78080 loss = 0.038, train_acc = 1.000 (3.330 sec/step)
step 78090 loss = 0.104, train_acc = 1.000 (3.332 sec/step)
step 78100 loss = 0.145, train_acc = 1.000 (3.381 sec/step)
step 78110 loss = 0.104, train_acc = 1.000 (3.387 sec/step)
step 78120 loss = 0.161, train_acc = 0.900 (3.439 sec/step)
step 78130 loss = 0.000, train_acc = 1.000 (3.333 sec/step)
step 78140 loss = 0.134, train_acc = 0.900 (3.305 sec/step)
step 78150 loss = 0.067, train_acc = 1.000 (3.303 sec/step)
step 78160 loss = 0.048, train_acc = 1.000 (3.375 sec/step)
step 78170 loss = 2.449, train_acc = 0.700 (3.345 sec/step)
step 78180 loss = 0.220, train_acc = 0.900 (3.331 sec/step)
step 78190 loss = 0.247, train_acc = 0.900 (3.375 sec/step)
step 78200 loss = 0.026, train_acc = 1.000 (3.326 sec/step)
step 78210 loss = 2.128, train_acc = 0.900 (3.342 sec/step)
step 78220 loss = 0.041, train_acc = 1.000 (3.340 sec/step)
step 78230 loss = 0.041, train_acc = 1.000 (3.320 sec/step)
step 78240 loss = 0.004, train_acc = 1.000 (3.332 sec/step)
step 78250 loss = 0.002, train_acc = 1.000 (3.303 sec/step)
step 78260 loss = 0.001, train_acc = 1.000 (3.347 sec/step)
step 78270 loss = 0.037, train_acc = 1.000 (3.307 sec/step)
step 78280 loss = 0.003, train_acc = 1.000 (3.387 sec/step)
step 78290 loss = 0.013, train_acc = 1.000 (3.388 sec/step)
step 78300 loss = 0.008, train_acc = 1.000 (3.380 sec/step)
step 78310 loss = 0.008, train_acc = 1.000 (3.347 sec/step)
step 78320 loss = 0.001, train_acc = 1.000 (3.324 sec/step)
step 78330 loss = 0.328, train_acc = 0.900 (3.348 sec/step)
step 78340 loss = 0.527, train_acc = 0.800 (3.379 sec/step)
step 78350 loss = 0.003, train_acc = 1.000 (3.376 sec/step)
step 78360 loss = 0.043, train_acc = 1.000 (3.345 sec/step)
step 78370 loss = 0.037, train_acc = 1.000 (3.368 sec/step)
step 78380 loss = 0.301, train_acc = 0.900 (3.362 sec/step)
step 78390 loss = 0.029, train_acc = 1.000 (3.341 sec/step)
step 78400 loss = 0.033, train_acc = 1.000 (3.342 sec/step)
step 78410 loss = 0.015, train_acc = 1.000 (3.385 sec/step)
step 78420 loss = 0.410, train_acc = 0.900 (3.326 sec/step)
step 78430 loss = 1.462, train_acc = 0.600 (3.398 sec/step)
step 78440 loss = 0.388, train_acc = 0.900 (3.313 sec/step)
step 78450 loss = 0.285, train_acc = 0.900 (3.362 sec/step)
step 78460 loss = 0.068, train_acc = 1.000 (3.371 sec/step)
step 78470 loss = 0.391, train_acc = 0.900 (3.298 sec/step)
step 78480 loss = 0.172, train_acc = 0.900 (3.342 sec/step)
step 78490 loss = 0.007, train_acc = 1.000 (3.341 sec/step)
step 78500 loss = 0.082, train_acc = 1.000 (3.307 sec/step)
step 78510 loss = 0.329, train_acc = 0.900 (3.382 sec/step)
step 78520 loss = 0.001, train_acc = 1.000 (3.346 sec/step)
step 78530 loss = 0.500, train_acc = 0.900 (3.374 sec/step)
step 78540 loss = 0.500, train_acc = 0.800 (3.412 sec/step)
step 78550 loss = 0.178, train_acc = 0.900 (3.337 sec/step)
step 78560 loss = 0.000, train_acc = 1.000 (3.331 sec/step)
step 78570 loss = 0.005, train_acc = 1.000 (3.384 sec/step)
step 78580 loss = 0.087, train_acc = 0.900 (3.338 sec/step)
step 78590 loss = 0.001, train_acc = 1.000 (3.344 sec/step)
step 78600 loss = 0.123, train_acc = 0.900 (3.353 sec/step)
step 78610 loss = 0.167, train_acc = 0.900 (3.368 sec/step)
step 78620 loss = 0.373, train_acc = 0.900 (3.383 sec/step)
step 78630 loss = 0.173, train_acc = 0.900 (3.384 sec/step)
step 78640 loss = 0.010, train_acc = 1.000 (3.353 sec/step)
step 78650 loss = 0.000, train_acc = 1.000 (3.362 sec/step)
step 78660 loss = 0.190, train_acc = 0.900 (3.363 sec/step)
step 78670 loss = 0.033, train_acc = 1.000 (3.334 sec/step)
step 78680 loss = 0.070, train_acc = 1.000 (3.305 sec/step)
step 78690 loss = 0.053, train_acc = 1.000 (3.358 sec/step)
step 78700 loss = 0.066, train_acc = 1.000 (3.360 sec/step)
step 78710 loss = 0.000, train_acc = 1.000 (3.382 sec/step)
step 78720 loss = 0.006, train_acc = 1.000 (3.352 sec/step)
step 78730 loss = 0.007, train_acc = 1.000 (3.297 sec/step)
step 78740 loss = 0.105, train_acc = 1.000 (3.332 sec/step)
step 78750 loss = 0.249, train_acc = 0.900 (3.351 sec/step)
step 78760 loss = 0.016, train_acc = 1.000 (3.363 sec/step)
step 78770 loss = 1.158, train_acc = 0.900 (3.340 sec/step)
step 78780 loss = 0.528, train_acc = 0.900 (3.332 sec/step)
step 78790 loss = 0.000, train_acc = 1.000 (3.357 sec/step)
step 78800 loss = 0.020, train_acc = 1.000 (3.329 sec/step)
step 78810 loss = 0.174, train_acc = 0.900 (3.344 sec/step)
step 78820 loss = 0.084, train_acc = 1.000 (3.339 sec/step)
step 78830 loss = 0.018, train_acc = 1.000 (3.337 sec/step)
step 78840 loss = 0.004, train_acc = 1.000 (3.345 sec/step)
step 78850 loss = 0.000, train_acc = 1.000 (3.371 sec/step)
step 78860 loss = 0.032, train_acc = 1.000 (3.304 sec/step)
step 78870 loss = 0.002, train_acc = 1.000 (3.353 sec/step)
step 78880 loss = 0.001, train_acc = 1.000 (3.318 sec/step)
step 78890 loss = 0.112, train_acc = 0.900 (3.298 sec/step)
step 78900 loss = 0.000, train_acc = 1.000 (3.316 sec/step)
step 78910 loss = 0.030, train_acc = 1.000 (3.337 sec/step)
step 78920 loss = 0.085, train_acc = 0.900 (3.378 sec/step)
step 78930 loss = 0.010, train_acc = 1.000 (3.342 sec/step)
step 78940 loss = 0.236, train_acc = 0.900 (3.337 sec/step)
step 78950 loss = 0.239, train_acc = 0.900 (3.370 sec/step)
step 78960 loss = 0.166, train_acc = 0.900 (3.303 sec/step)
step 78970 loss = 0.003, train_acc = 1.000 (3.307 sec/step)
step 78980 loss = 0.000, train_acc = 1.000 (3.332 sec/step)
step 78990 loss = 0.428, train_acc = 0.900 (3.332 sec/step)
step 79000 loss = 0.753, train_acc = 0.900 (3.300 sec/step)
step 79010 loss = 0.001, train_acc = 1.000 (3.363 sec/step)
step 79020 loss = 0.000, train_acc = 1.000 (3.301 sec/step)
step 79030 loss = 0.028, train_acc = 1.000 (3.402 sec/step)
step 79040 loss = 1.720, train_acc = 0.800 (3.352 sec/step)
step 79050 loss = 0.519, train_acc = 0.800 (3.321 sec/step)
step 79060 loss = 0.031, train_acc = 1.000 (3.334 sec/step)
step 79070 loss = 0.251, train_acc = 0.900 (3.395 sec/step)
step 79080 loss = 0.011, train_acc = 1.000 (3.326 sec/step)
step 79090 loss = 0.009, train_acc = 1.000 (3.343 sec/step)
step 79100 loss = 0.312, train_acc = 0.800 (3.353 sec/step)
step 79110 loss = 0.336, train_acc = 0.900 (3.347 sec/step)
step 79120 loss = 0.653, train_acc = 0.900 (3.404 sec/step)
step 79130 loss = 0.002, train_acc = 1.000 (3.341 sec/step)
step 79140 loss = 0.348, train_acc = 0.800 (3.327 sec/step)
step 79150 loss = 0.901, train_acc = 0.700 (3.331 sec/step)
step 79160 loss = 0.001, train_acc = 1.000 (3.327 sec/step)
step 79170 loss = 0.019, train_acc = 1.000 (3.359 sec/step)
step 79180 loss = 0.017, train_acc = 1.000 (3.340 sec/step)
step 79190 loss = 0.824, train_acc = 0.900 (3.389 sec/step)
step 79200 loss = 0.000, train_acc = 1.000 (3.360 sec/step)
step 79210 loss = 0.565, train_acc = 0.800 (3.370 sec/step)
step 79220 loss = 0.022, train_acc = 1.000 (3.385 sec/step)
step 79230 loss = 0.006, train_acc = 1.000 (3.341 sec/step)
step 79240 loss = 0.365, train_acc = 0.900 (3.382 sec/step)
step 79250 loss = 0.071, train_acc = 1.000 (3.328 sec/step)
step 79260 loss = 0.129, train_acc = 0.900 (3.380 sec/step)
step 79270 loss = 0.224, train_acc = 0.800 (3.340 sec/step)
step 79280 loss = 0.170, train_acc = 0.900 (3.319 sec/step)
step 79290 loss = 0.248, train_acc = 0.900 (3.403 sec/step)
step 79300 loss = 0.035, train_acc = 1.000 (3.354 sec/step)
step 79310 loss = 0.000, train_acc = 1.000 (3.353 sec/step)
step 79320 loss = 0.278, train_acc = 0.900 (3.348 sec/step)
step 79330 loss = 0.024, train_acc = 1.000 (3.378 sec/step)
step 79340 loss = 0.183, train_acc = 1.000 (3.396 sec/step)
step 79350 loss = 0.029, train_acc = 1.000 (3.339 sec/step)
step 79360 loss = 0.000, train_acc = 1.000 (3.410 sec/step)
step 79370 loss = 0.042, train_acc = 1.000 (3.330 sec/step)
step 79380 loss = 0.101, train_acc = 1.000 (3.321 sec/step)
step 79390 loss = 0.453, train_acc = 0.900 (3.390 sec/step)
step 79400 loss = 0.061, train_acc = 1.000 (3.311 sec/step)
step 79410 loss = 0.702, train_acc = 0.900 (3.319 sec/step)
step 79420 loss = 0.052, train_acc = 1.000 (3.380 sec/step)
step 79430 loss = 0.746, train_acc = 0.700 (3.314 sec/step)
step 79440 loss = 0.032, train_acc = 1.000 (3.379 sec/step)
step 79450 loss = 0.256, train_acc = 0.900 (3.332 sec/step)
step 79460 loss = 0.027, train_acc = 1.000 (3.310 sec/step)
step 79470 loss = 0.001, train_acc = 1.000 (3.362 sec/step)
step 79480 loss = 0.333, train_acc = 0.900 (3.402 sec/step)
step 79490 loss = 0.052, train_acc = 1.000 (3.419 sec/step)
step 79500 loss = 0.051, train_acc = 1.000 (3.378 sec/step)
step 79510 loss = 0.262, train_acc = 0.900 (3.362 sec/step)
step 79520 loss = 0.000, train_acc = 1.000 (3.359 sec/step)
step 79530 loss = 0.313, train_acc = 0.900 (3.370 sec/step)
step 79540 loss = 0.578, train_acc = 0.900 (3.410 sec/step)
step 79550 loss = 0.013, train_acc = 1.000 (3.340 sec/step)
step 79560 loss = 0.110, train_acc = 1.000 (3.303 sec/step)
step 79570 loss = 0.352, train_acc = 0.900 (3.339 sec/step)
step 79580 loss = 0.263, train_acc = 0.900 (3.367 sec/step)
step 79590 loss = 0.767, train_acc = 0.800 (3.362 sec/step)
step 79600 loss = 0.236, train_acc = 0.900 (3.380 sec/step)
step 79610 loss = 0.006, train_acc = 1.000 (3.330 sec/step)
step 79620 loss = 0.023, train_acc = 1.000 (3.358 sec/step)
step 79630 loss = 0.278, train_acc = 0.800 (3.362 sec/step)
step 79640 loss = 0.011, train_acc = 1.000 (3.388 sec/step)
step 79650 loss = 0.001, train_acc = 1.000 (3.390 sec/step)
step 79660 loss = 0.011, train_acc = 1.000 (3.330 sec/step)
step 79670 loss = 0.000, train_acc = 1.000 (3.349 sec/step)
step 79680 loss = 0.002, train_acc = 1.000 (3.371 sec/step)
step 79690 loss = 0.001, train_acc = 1.000 (3.444 sec/step)
step 79700 loss = 2.495, train_acc = 0.900 (3.356 sec/step)
step 79710 loss = 0.014, train_acc = 1.000 (3.349 sec/step)
step 79720 loss = 0.455, train_acc = 0.900 (3.370 sec/step)
step 79730 loss = 0.045, train_acc = 1.000 (3.357 sec/step)
step 79740 loss = 0.004, train_acc = 1.000 (3.455 sec/step)
step 79750 loss = 0.003, train_acc = 1.000 (3.306 sec/step)
step 79760 loss = 0.087, train_acc = 1.000 (3.363 sec/step)
step 79770 loss = 0.800, train_acc = 0.700 (3.365 sec/step)
step 79780 loss = 0.298, train_acc = 0.900 (3.315 sec/step)
step 79790 loss = 1.122, train_acc = 0.800 (3.328 sec/step)
VALIDATION acc = 0.540 (3.629 sec)
step 79800 loss = 0.225, train_acc = 0.900 (3.332 sec/step)
step 79810 loss = 0.669, train_acc = 0.900 (3.331 sec/step)
step 79820 loss = 0.010, train_acc = 1.000 (3.332 sec/step)
step 79830 loss = 0.468, train_acc = 0.900 (3.377 sec/step)
step 79840 loss = 0.014, train_acc = 1.000 (3.392 sec/step)
step 79850 loss = 0.356, train_acc = 0.900 (3.354 sec/step)
step 79860 loss = 0.285, train_acc = 0.900 (3.312 sec/step)
step 79870 loss = 0.019, train_acc = 1.000 (3.303 sec/step)
step 79880 loss = 0.007, train_acc = 1.000 (3.362 sec/step)
step 79890 loss = 0.001, train_acc = 1.000 (3.409 sec/step)
step 79900 loss = 0.378, train_acc = 0.900 (3.321 sec/step)
step 79910 loss = 0.000, train_acc = 1.000 (3.399 sec/step)
step 79920 loss = 0.019, train_acc = 1.000 (3.381 sec/step)
step 79930 loss = 0.155, train_acc = 1.000 (3.376 sec/step)
step 79940 loss = 0.137, train_acc = 0.900 (3.363 sec/step)
step 79950 loss = 0.484, train_acc = 0.900 (3.344 sec/step)
step 79960 loss = 0.253, train_acc = 0.900 (3.349 sec/step)
step 79970 loss = 0.022, train_acc = 1.000 (3.371 sec/step)
step 79980 loss = 0.000, train_acc = 1.000 (3.370 sec/step)
step 79990 loss = 0.351, train_acc = 0.800 (3.378 sec/step)
step 80000 loss = 0.513, train_acc = 0.700 (3.392 sec/step)
step 80010 loss = 0.002, train_acc = 1.000 (3.346 sec/step)
step 80020 loss = 0.338, train_acc = 0.800 (3.389 sec/step)
step 80030 loss = 0.000, train_acc = 1.000 (3.344 sec/step)
step 80040 loss = 0.003, train_acc = 1.000 (3.488 sec/step)
step 80050 loss = 0.114, train_acc = 0.900 (3.314 sec/step)
step 80060 loss = 0.001, train_acc = 1.000 (3.357 sec/step)
step 80070 loss = 0.000, train_acc = 1.000 (3.330 sec/step)
step 80080 loss = 0.337, train_acc = 0.800 (3.345 sec/step)
step 80090 loss = 0.105, train_acc = 0.900 (3.389 sec/step)
step 80100 loss = 0.132, train_acc = 0.900 (3.391 sec/step)
step 80110 loss = 0.007, train_acc = 1.000 (3.318 sec/step)
step 80120 loss = 1.010, train_acc = 0.800 (3.364 sec/step)
step 80130 loss = 0.436, train_acc = 0.900 (3.343 sec/step)
step 80140 loss = 0.898, train_acc = 0.700 (3.400 sec/step)
step 80150 loss = 0.003, train_acc = 1.000 (3.349 sec/step)
step 80160 loss = 2.037, train_acc = 0.800 (3.351 sec/step)
step 80170 loss = 0.067, train_acc = 1.000 (3.341 sec/step)
step 80180 loss = 0.001, train_acc = 1.000 (3.378 sec/step)
step 80190 loss = 0.145, train_acc = 0.900 (3.309 sec/step)
step 80200 loss = 0.297, train_acc = 0.800 (3.337 sec/step)
step 80210 loss = 0.552, train_acc = 0.900 (3.396 sec/step)
step 80220 loss = 0.024, train_acc = 1.000 (3.369 sec/step)
step 80230 loss = 0.350, train_acc = 0.800 (3.367 sec/step)
step 80240 loss = 0.031, train_acc = 1.000 (3.317 sec/step)
step 80250 loss = 0.834, train_acc = 0.800 (3.366 sec/step)
step 80260 loss = 0.006, train_acc = 1.000 (3.368 sec/step)
step 80270 loss = 0.397, train_acc = 0.800 (3.371 sec/step)
step 80280 loss = 0.359, train_acc = 0.900 (3.341 sec/step)
step 80290 loss = 0.010, train_acc = 1.000 (3.390 sec/step)
step 80300 loss = 0.662, train_acc = 0.800 (3.302 sec/step)
step 80310 loss = 0.014, train_acc = 1.000 (3.349 sec/step)
step 80320 loss = 0.012, train_acc = 1.000 (3.341 sec/step)
step 80330 loss = 0.356, train_acc = 0.900 (3.318 sec/step)
step 80340 loss = 0.544, train_acc = 0.900 (3.397 sec/step)
step 80350 loss = 0.510, train_acc = 0.800 (3.367 sec/step)
step 80360 loss = 0.424, train_acc = 0.900 (3.313 sec/step)
step 80370 loss = 0.305, train_acc = 0.900 (3.425 sec/step)
step 80380 loss = 0.081, train_acc = 0.900 (3.423 sec/step)
step 80390 loss = 0.201, train_acc = 0.900 (3.329 sec/step)
step 80400 loss = 0.005, train_acc = 1.000 (3.312 sec/step)
step 80410 loss = 0.010, train_acc = 1.000 (3.397 sec/step)
step 80420 loss = 0.039, train_acc = 1.000 (3.377 sec/step)
step 80430 loss = 0.245, train_acc = 0.900 (3.342 sec/step)
step 80440 loss = 0.016, train_acc = 1.000 (3.387 sec/step)
step 80450 loss = 0.003, train_acc = 1.000 (3.361 sec/step)
step 80460 loss = 0.001, train_acc = 1.000 (3.345 sec/step)
step 80470 loss = 0.364, train_acc = 0.900 (3.357 sec/step)
step 80480 loss = 0.002, train_acc = 1.000 (3.349 sec/step)
step 80490 loss = 0.018, train_acc = 1.000 (3.372 sec/step)
step 80500 loss = 0.034, train_acc = 1.000 (3.365 sec/step)
step 80510 loss = 0.035, train_acc = 1.000 (3.449 sec/step)
step 80520 loss = 0.187, train_acc = 0.900 (3.415 sec/step)
step 80530 loss = 0.116, train_acc = 1.000 (3.353 sec/step)
step 80540 loss = 0.003, train_acc = 1.000 (3.307 sec/step)
step 80550 loss = 0.032, train_acc = 1.000 (3.390 sec/step)
step 80560 loss = 0.057, train_acc = 1.000 (3.322 sec/step)
step 80570 loss = 0.063, train_acc = 1.000 (3.319 sec/step)
step 80580 loss = 0.037, train_acc = 1.000 (3.356 sec/step)
step 80590 loss = 0.005, train_acc = 1.000 (3.322 sec/step)
step 80600 loss = 0.000, train_acc = 1.000 (3.307 sec/step)
step 80610 loss = 0.379, train_acc = 0.900 (3.417 sec/step)
step 80620 loss = 0.002, train_acc = 1.000 (3.341 sec/step)
step 80630 loss = 0.119, train_acc = 0.900 (3.388 sec/step)
step 80640 loss = 1.182, train_acc = 0.800 (3.372 sec/step)
step 80650 loss = 0.670, train_acc = 0.900 (3.364 sec/step)
step 80660 loss = 0.045, train_acc = 1.000 (3.353 sec/step)
step 80670 loss = 0.063, train_acc = 1.000 (3.394 sec/step)
step 80680 loss = 0.012, train_acc = 1.000 (3.385 sec/step)
step 80690 loss = 0.009, train_acc = 1.000 (3.333 sec/step)
step 80700 loss = 0.611, train_acc = 0.800 (3.350 sec/step)
step 80710 loss = 0.002, train_acc = 1.000 (3.364 sec/step)
step 80720 loss = 0.080, train_acc = 1.000 (3.372 sec/step)
step 80730 loss = 0.440, train_acc = 0.900 (3.318 sec/step)
step 80740 loss = 0.372, train_acc = 0.800 (3.393 sec/step)
step 80750 loss = 0.172, train_acc = 0.900 (3.378 sec/step)
step 80760 loss = 0.001, train_acc = 1.000 (3.336 sec/step)
step 80770 loss = 0.002, train_acc = 1.000 (3.322 sec/step)
step 80780 loss = 0.005, train_acc = 1.000 (3.387 sec/step)
step 80790 loss = 1.402, train_acc = 0.800 (3.332 sec/step)
step 80800 loss = 0.025, train_acc = 1.000 (3.355 sec/step)
step 80810 loss = 0.230, train_acc = 0.900 (3.308 sec/step)
step 80820 loss = 0.369, train_acc = 0.900 (3.329 sec/step)
step 80830 loss = 0.330, train_acc = 0.900 (3.318 sec/step)
step 80840 loss = 0.003, train_acc = 1.000 (3.369 sec/step)
step 80850 loss = 0.121, train_acc = 0.900 (3.314 sec/step)
step 80860 loss = 0.210, train_acc = 0.900 (3.325 sec/step)
step 80870 loss = 0.566, train_acc = 0.800 (3.321 sec/step)
step 80880 loss = 0.110, train_acc = 1.000 (3.318 sec/step)
step 80890 loss = 0.394, train_acc = 0.800 (3.375 sec/step)
step 80900 loss = 0.111, train_acc = 0.900 (3.387 sec/step)
step 80910 loss = 0.004, train_acc = 1.000 (3.313 sec/step)
step 80920 loss = 0.106, train_acc = 1.000 (3.381 sec/step)
step 80930 loss = 0.032, train_acc = 1.000 (3.315 sec/step)
step 80940 loss = 0.228, train_acc = 0.900 (3.371 sec/step)
step 80950 loss = 0.046, train_acc = 1.000 (3.360 sec/step)
step 80960 loss = 0.044, train_acc = 1.000 (3.300 sec/step)
step 80970 loss = 0.364, train_acc = 0.900 (3.348 sec/step)
step 80980 loss = 0.138, train_acc = 1.000 (3.396 sec/step)
step 80990 loss = 0.002, train_acc = 1.000 (3.385 sec/step)
step 81000 loss = 0.224, train_acc = 0.900 (3.323 sec/step)
step 81010 loss = 0.209, train_acc = 0.900 (3.370 sec/step)
step 81020 loss = 0.019, train_acc = 1.000 (3.325 sec/step)
step 81030 loss = 0.042, train_acc = 1.000 (3.381 sec/step)
step 81040 loss = 0.706, train_acc = 0.800 (3.359 sec/step)
step 81050 loss = 0.002, train_acc = 1.000 (3.362 sec/step)
step 81060 loss = 0.004, train_acc = 1.000 (3.362 sec/step)
step 81070 loss = 0.004, train_acc = 1.000 (3.344 sec/step)
step 81080 loss = 0.001, train_acc = 1.000 (3.329 sec/step)
step 81090 loss = 0.387, train_acc = 0.900 (3.374 sec/step)
step 81100 loss = 0.000, train_acc = 1.000 (3.366 sec/step)
step 81110 loss = 0.243, train_acc = 0.900 (3.366 sec/step)
step 81120 loss = 0.425, train_acc = 0.900 (3.366 sec/step)
step 81130 loss = 0.001, train_acc = 1.000 (3.347 sec/step)
step 81140 loss = 0.589, train_acc = 0.900 (3.387 sec/step)
step 81150 loss = 0.015, train_acc = 1.000 (3.406 sec/step)
step 81160 loss = 0.022, train_acc = 1.000 (3.324 sec/step)
step 81170 loss = 0.013, train_acc = 1.000 (3.398 sec/step)
step 81180 loss = 0.002, train_acc = 1.000 (3.368 sec/step)
step 81190 loss = 0.384, train_acc = 0.800 (3.406 sec/step)
step 81200 loss = 0.005, train_acc = 1.000 (3.315 sec/step)
step 81210 loss = 0.301, train_acc = 0.900 (3.356 sec/step)
step 81220 loss = 0.677, train_acc = 0.800 (3.358 sec/step)
step 81230 loss = 0.079, train_acc = 1.000 (3.315 sec/step)
step 81240 loss = 0.074, train_acc = 0.900 (3.368 sec/step)
step 81250 loss = 0.431, train_acc = 0.700 (3.396 sec/step)
step 81260 loss = 0.203, train_acc = 0.800 (3.345 sec/step)
step 81270 loss = 0.126, train_acc = 0.900 (3.377 sec/step)
step 81280 loss = 0.001, train_acc = 1.000 (3.322 sec/step)
step 81290 loss = 0.064, train_acc = 1.000 (3.353 sec/step)
step 81300 loss = 0.079, train_acc = 1.000 (3.345 sec/step)
step 81310 loss = 0.135, train_acc = 0.900 (3.320 sec/step)
step 81320 loss = 0.063, train_acc = 1.000 (3.313 sec/step)
step 81330 loss = 0.000, train_acc = 1.000 (3.368 sec/step)
step 81340 loss = 0.009, train_acc = 1.000 (3.376 sec/step)
step 81350 loss = 0.000, train_acc = 1.000 (3.355 sec/step)
step 81360 loss = 1.780, train_acc = 0.900 (3.365 sec/step)
step 81370 loss = 0.022, train_acc = 1.000 (3.364 sec/step)
step 81380 loss = 0.184, train_acc = 0.900 (3.378 sec/step)
step 81390 loss = 0.000, train_acc = 1.000 (3.382 sec/step)
step 81400 loss = 1.196, train_acc = 0.600 (3.322 sec/step)
step 81410 loss = 0.753, train_acc = 0.900 (3.317 sec/step)
step 81420 loss = 0.746, train_acc = 0.800 (3.367 sec/step)
step 81430 loss = 0.325, train_acc = 0.900 (3.339 sec/step)
step 81440 loss = 0.126, train_acc = 1.000 (3.321 sec/step)
step 81450 loss = 0.730, train_acc = 0.800 (3.402 sec/step)
step 81460 loss = 0.226, train_acc = 0.900 (3.342 sec/step)
step 81470 loss = 0.012, train_acc = 1.000 (3.310 sec/step)
step 81480 loss = 0.000, train_acc = 1.000 (3.382 sec/step)
step 81490 loss = 0.006, train_acc = 1.000 (3.370 sec/step)
step 81500 loss = 0.016, train_acc = 1.000 (3.359 sec/step)
step 81510 loss = 0.014, train_acc = 1.000 (3.379 sec/step)
step 81520 loss = 0.017, train_acc = 1.000 (3.365 sec/step)
step 81530 loss = 0.267, train_acc = 0.900 (3.367 sec/step)
step 81540 loss = 0.271, train_acc = 0.900 (3.375 sec/step)
step 81550 loss = 0.242, train_acc = 0.900 (3.338 sec/step)
step 81560 loss = 0.058, train_acc = 1.000 (3.346 sec/step)
step 81570 loss = 0.000, train_acc = 1.000 (3.357 sec/step)
step 81580 loss = 0.024, train_acc = 1.000 (3.338 sec/step)
step 81590 loss = 0.003, train_acc = 1.000 (3.306 sec/step)
step 81600 loss = 0.047, train_acc = 1.000 (3.377 sec/step)
step 81610 loss = 0.601, train_acc = 0.900 (3.317 sec/step)
step 81620 loss = 0.000, train_acc = 1.000 (3.330 sec/step)
step 81630 loss = 0.219, train_acc = 0.900 (3.303 sec/step)
step 81640 loss = 1.199, train_acc = 0.900 (3.373 sec/step)
step 81650 loss = 0.001, train_acc = 1.000 (3.334 sec/step)
step 81660 loss = 0.001, train_acc = 1.000 (3.404 sec/step)
step 81670 loss = 0.049, train_acc = 1.000 (3.358 sec/step)
step 81680 loss = 0.002, train_acc = 1.000 (3.399 sec/step)
step 81690 loss = 0.116, train_acc = 1.000 (3.396 sec/step)
VALIDATION acc = 0.538 (3.642 sec)
step 81700 loss = 0.424, train_acc = 0.900 (3.376 sec/step)
step 81710 loss = 0.060, train_acc = 1.000 (3.292 sec/step)
step 81720 loss = 0.127, train_acc = 0.900 (3.323 sec/step)
step 81730 loss = 0.405, train_acc = 0.900 (3.399 sec/step)
step 81740 loss = 1.225, train_acc = 0.800 (3.481 sec/step)
step 81750 loss = 0.022, train_acc = 1.000 (3.410 sec/step)
step 81760 loss = 0.482, train_acc = 0.800 (3.303 sec/step)
step 81770 loss = 0.498, train_acc = 0.800 (3.312 sec/step)
step 81780 loss = 0.321, train_acc = 0.900 (3.332 sec/step)
step 81790 loss = 0.146, train_acc = 0.900 (3.329 sec/step)
step 81800 loss = 0.064, train_acc = 1.000 (3.303 sec/step)
step 81810 loss = 0.000, train_acc = 1.000 (3.324 sec/step)
step 81820 loss = 0.003, train_acc = 1.000 (3.319 sec/step)
step 81830 loss = 0.006, train_acc = 1.000 (3.294 sec/step)
step 81840 loss = 0.962, train_acc = 0.700 (3.340 sec/step)
step 81850 loss = 0.443, train_acc = 0.800 (3.387 sec/step)
step 81860 loss = 0.218, train_acc = 0.900 (3.350 sec/step)
step 81870 loss = 0.307, train_acc = 0.900 (3.391 sec/step)
step 81880 loss = 0.949, train_acc = 0.800 (3.329 sec/step)
step 81890 loss = 0.019, train_acc = 1.000 (3.336 sec/step)
step 81900 loss = 0.307, train_acc = 0.800 (3.321 sec/step)
step 81910 loss = 0.226, train_acc = 0.900 (3.462 sec/step)
step 81920 loss = 0.092, train_acc = 1.000 (3.371 sec/step)
step 81930 loss = 0.078, train_acc = 0.900 (3.324 sec/step)
step 81940 loss = 0.033, train_acc = 1.000 (3.344 sec/step)
step 81950 loss = 0.044, train_acc = 1.000 (3.334 sec/step)
step 81960 loss = 0.065, train_acc = 1.000 (3.442 sec/step)
step 81970 loss = 0.954, train_acc = 0.900 (3.315 sec/step)
step 81980 loss = 0.001, train_acc = 1.000 (3.343 sec/step)
step 81990 loss = 0.055, train_acc = 1.000 (3.388 sec/step)
step 82000 loss = 0.021, train_acc = 1.000 (3.349 sec/step)
step 82010 loss = 0.051, train_acc = 1.000 (3.368 sec/step)
step 82020 loss = 0.062, train_acc = 1.000 (3.303 sec/step)
step 82030 loss = 0.503, train_acc = 0.900 (3.383 sec/step)
step 82040 loss = 1.443, train_acc = 0.600 (3.304 sec/step)
step 82050 loss = 0.134, train_acc = 0.900 (3.343 sec/step)
step 82060 loss = 0.087, train_acc = 0.900 (3.336 sec/step)
step 82070 loss = 0.140, train_acc = 0.900 (3.372 sec/step)
step 82080 loss = 0.073, train_acc = 1.000 (3.333 sec/step)
step 82090 loss = 0.000, train_acc = 1.000 (3.382 sec/step)
step 82100 loss = 0.022, train_acc = 1.000 (3.344 sec/step)
step 82110 loss = 0.298, train_acc = 0.900 (3.394 sec/step)
step 82120 loss = 0.364, train_acc = 0.900 (3.376 sec/step)
step 82130 loss = 0.255, train_acc = 0.900 (3.365 sec/step)
step 82140 loss = 0.200, train_acc = 0.900 (3.353 sec/step)
step 82150 loss = 0.460, train_acc = 0.700 (3.359 sec/step)
step 82160 loss = 0.025, train_acc = 1.000 (3.358 sec/step)
step 82170 loss = 0.019, train_acc = 1.000 (3.370 sec/step)
step 82180 loss = 0.000, train_acc = 1.000 (3.355 sec/step)
step 82190 loss = 0.255, train_acc = 0.900 (3.339 sec/step)
step 82200 loss = 0.275, train_acc = 0.800 (3.332 sec/step)
step 82210 loss = 0.108, train_acc = 1.000 (3.348 sec/step)
step 82220 loss = 0.122, train_acc = 1.000 (3.371 sec/step)
step 82230 loss = 0.012, train_acc = 1.000 (3.374 sec/step)
step 82240 loss = 0.003, train_acc = 1.000 (3.344 sec/step)
step 82250 loss = 0.015, train_acc = 1.000 (3.390 sec/step)
step 82260 loss = 0.240, train_acc = 0.900 (3.395 sec/step)
step 82270 loss = 0.334, train_acc = 0.900 (3.362 sec/step)
step 82280 loss = 0.520, train_acc = 0.900 (3.351 sec/step)
step 82290 loss = 0.015, train_acc = 1.000 (3.325 sec/step)
step 82300 loss = 0.019, train_acc = 1.000 (3.339 sec/step)
step 82310 loss = 0.181, train_acc = 0.900 (3.350 sec/step)
step 82320 loss = 0.046, train_acc = 1.000 (3.357 sec/step)
step 82330 loss = 0.067, train_acc = 1.000 (3.371 sec/step)
step 82340 loss = 0.005, train_acc = 1.000 (3.351 sec/step)
step 82350 loss = 0.371, train_acc = 0.800 (3.302 sec/step)
step 82360 loss = 0.320, train_acc = 0.900 (3.328 sec/step)
step 82370 loss = 0.007, train_acc = 1.000 (3.398 sec/step)
step 82380 loss = 0.302, train_acc = 0.900 (3.372 sec/step)
step 82390 loss = 0.201, train_acc = 0.900 (3.311 sec/step)
step 82400 loss = 0.892, train_acc = 0.900 (3.377 sec/step)
step 82410 loss = 1.543, train_acc = 0.700 (3.293 sec/step)
step 82420 loss = 0.112, train_acc = 1.000 (3.388 sec/step)
step 82430 loss = 0.122, train_acc = 0.900 (3.319 sec/step)
step 82440 loss = 0.322, train_acc = 0.900 (3.368 sec/step)
step 82450 loss = 0.014, train_acc = 1.000 (3.368 sec/step)
step 82460 loss = 0.007, train_acc = 1.000 (3.460 sec/step)
step 82470 loss = 0.200, train_acc = 0.900 (3.367 sec/step)
step 82480 loss = 0.543, train_acc = 0.900 (3.371 sec/step)
step 82490 loss = 0.325, train_acc = 0.900 (3.308 sec/step)
step 82500 loss = 0.065, train_acc = 1.000 (3.357 sec/step)
step 82510 loss = 0.049, train_acc = 1.000 (3.304 sec/step)
step 82520 loss = 0.023, train_acc = 1.000 (3.352 sec/step)
step 82530 loss = 0.002, train_acc = 1.000 (3.334 sec/step)
step 82540 loss = 0.015, train_acc = 1.000 (3.430 sec/step)
step 82550 loss = 0.000, train_acc = 1.000 (3.324 sec/step)
step 82560 loss = 0.006, train_acc = 1.000 (3.391 sec/step)
step 82570 loss = 1.362, train_acc = 0.800 (3.353 sec/step)
step 82580 loss = 0.207, train_acc = 0.900 (3.384 sec/step)
step 82590 loss = 0.258, train_acc = 0.900 (3.395 sec/step)
step 82600 loss = 0.441, train_acc = 0.900 (3.455 sec/step)
step 82610 loss = 0.172, train_acc = 0.900 (3.365 sec/step)
step 82620 loss = 0.000, train_acc = 1.000 (3.373 sec/step)
step 82630 loss = 0.570, train_acc = 0.900 (3.383 sec/step)
step 82640 loss = 0.343, train_acc = 0.900 (3.370 sec/step)
step 82650 loss = 0.000, train_acc = 1.000 (3.351 sec/step)
step 82660 loss = 0.188, train_acc = 0.900 (3.462 sec/step)
step 82670 loss = 0.007, train_acc = 1.000 (3.341 sec/step)
step 82680 loss = 0.063, train_acc = 1.000 (3.329 sec/step)
step 82690 loss = 0.009, train_acc = 1.000 (3.358 sec/step)
step 82700 loss = 0.006, train_acc = 1.000 (3.360 sec/step)
step 82710 loss = 0.682, train_acc = 0.800 (3.375 sec/step)
step 82720 loss = 0.067, train_acc = 1.000 (3.336 sec/step)
step 82730 loss = 0.684, train_acc = 0.800 (3.380 sec/step)
step 82740 loss = 0.017, train_acc = 1.000 (3.362 sec/step)
step 82750 loss = 0.844, train_acc = 0.800 (3.311 sec/step)
step 82760 loss = 0.251, train_acc = 0.900 (3.379 sec/step)
step 82770 loss = 0.041, train_acc = 1.000 (3.373 sec/step)
step 82780 loss = 0.012, train_acc = 1.000 (3.329 sec/step)
step 82790 loss = 1.963, train_acc = 0.800 (3.393 sec/step)
step 82800 loss = 0.268, train_acc = 0.900 (3.335 sec/step)
step 82810 loss = 0.352, train_acc = 0.900 (3.347 sec/step)
step 82820 loss = 0.004, train_acc = 1.000 (3.386 sec/step)
step 82830 loss = 0.141, train_acc = 0.900 (3.367 sec/step)
step 82840 loss = 0.119, train_acc = 0.900 (3.324 sec/step)
step 82850 loss = 0.028, train_acc = 1.000 (3.329 sec/step)
step 82860 loss = 0.249, train_acc = 0.900 (3.326 sec/step)
step 82870 loss = 0.140, train_acc = 1.000 (3.310 sec/step)
step 82880 loss = 0.076, train_acc = 1.000 (3.354 sec/step)
step 82890 loss = 0.025, train_acc = 1.000 (3.377 sec/step)
step 82900 loss = 0.000, train_acc = 1.000 (3.400 sec/step)
step 82910 loss = 0.001, train_acc = 1.000 (3.360 sec/step)
step 82920 loss = 1.432, train_acc = 0.700 (3.374 sec/step)
step 82930 loss = 1.172, train_acc = 0.900 (3.331 sec/step)
step 82940 loss = 0.024, train_acc = 1.000 (3.348 sec/step)
step 82950 loss = 0.630, train_acc = 0.900 (3.346 sec/step)
step 82960 loss = 0.316, train_acc = 0.900 (3.309 sec/step)
step 82970 loss = 0.195, train_acc = 0.900 (3.424 sec/step)
step 82980 loss = 0.004, train_acc = 1.000 (3.375 sec/step)
step 82990 loss = 0.000, train_acc = 1.000 (3.430 sec/step)
step 83000 loss = 0.177, train_acc = 0.900 (3.471 sec/step)
step 83010 loss = 0.469, train_acc = 1.000 (3.381 sec/step)
step 83020 loss = 0.413, train_acc = 0.900 (3.403 sec/step)
step 83030 loss = 0.064, train_acc = 1.000 (3.314 sec/step)
step 83040 loss = 0.392, train_acc = 0.900 (3.384 sec/step)
step 83050 loss = 1.652, train_acc = 0.800 (3.388 sec/step)
step 83060 loss = 0.026, train_acc = 1.000 (3.343 sec/step)
step 83070 loss = 0.364, train_acc = 0.900 (3.334 sec/step)
step 83080 loss = 0.113, train_acc = 0.900 (3.364 sec/step)
step 83090 loss = 0.012, train_acc = 1.000 (3.343 sec/step)
step 83100 loss = 0.052, train_acc = 1.000 (3.324 sec/step)
step 83110 loss = 0.001, train_acc = 1.000 (3.380 sec/step)
step 83120 loss = 0.064, train_acc = 1.000 (3.380 sec/step)
step 83130 loss = 0.012, train_acc = 1.000 (3.345 sec/step)
step 83140 loss = 0.040, train_acc = 1.000 (3.330 sec/step)
step 83150 loss = 0.023, train_acc = 1.000 (3.368 sec/step)
step 83160 loss = 0.077, train_acc = 1.000 (3.375 sec/step)
step 83170 loss = 0.009, train_acc = 1.000 (3.345 sec/step)
step 83180 loss = 0.029, train_acc = 1.000 (3.344 sec/step)
step 83190 loss = 0.094, train_acc = 0.900 (3.450 sec/step)
step 83200 loss = 0.857, train_acc = 0.900 (3.316 sec/step)
step 83210 loss = 0.179, train_acc = 0.900 (3.446 sec/step)
step 83220 loss = 0.151, train_acc = 0.900 (3.350 sec/step)
step 83230 loss = 0.000, train_acc = 1.000 (3.374 sec/step)
step 83240 loss = 0.115, train_acc = 0.900 (3.341 sec/step)
step 83250 loss = 0.215, train_acc = 0.900 (3.341 sec/step)
step 83260 loss = 0.301, train_acc = 0.900 (3.392 sec/step)
step 83270 loss = 0.079, train_acc = 1.000 (3.312 sec/step)
step 83280 loss = 0.008, train_acc = 1.000 (3.355 sec/step)
step 83290 loss = 0.022, train_acc = 1.000 (3.382 sec/step)
step 83300 loss = 0.002, train_acc = 1.000 (3.353 sec/step)
step 83310 loss = 0.024, train_acc = 1.000 (3.368 sec/step)
step 83320 loss = 0.002, train_acc = 1.000 (3.308 sec/step)
step 83330 loss = 0.055, train_acc = 1.000 (3.387 sec/step)
step 83340 loss = 0.320, train_acc = 0.900 (3.364 sec/step)
step 83350 loss = 0.167, train_acc = 0.900 (3.433 sec/step)
step 83360 loss = 0.269, train_acc = 0.900 (3.353 sec/step)
step 83370 loss = 0.000, train_acc = 1.000 (3.361 sec/step)
step 83380 loss = 0.450, train_acc = 0.800 (3.397 sec/step)
step 83390 loss = 0.000, train_acc = 1.000 (3.346 sec/step)
step 83400 loss = 0.398, train_acc = 0.900 (3.388 sec/step)
step 83410 loss = 0.000, train_acc = 1.000 (3.345 sec/step)
step 83420 loss = 0.029, train_acc = 1.000 (3.306 sec/step)
step 83430 loss = 0.021, train_acc = 1.000 (3.328 sec/step)
step 83440 loss = 0.171, train_acc = 0.900 (3.346 sec/step)
step 83450 loss = 0.153, train_acc = 0.900 (3.365 sec/step)
step 83460 loss = 0.007, train_acc = 1.000 (3.360 sec/step)
step 83470 loss = 0.037, train_acc = 1.000 (3.328 sec/step)
step 83480 loss = 0.020, train_acc = 1.000 (3.413 sec/step)
step 83490 loss = 0.271, train_acc = 0.900 (3.374 sec/step)
step 83500 loss = 0.298, train_acc = 0.900 (3.328 sec/step)
step 83510 loss = 0.013, train_acc = 1.000 (3.366 sec/step)
step 83520 loss = 0.005, train_acc = 1.000 (3.308 sec/step)
step 83530 loss = 0.069, train_acc = 1.000 (3.301 sec/step)
step 83540 loss = 0.442, train_acc = 0.900 (3.432 sec/step)
step 83550 loss = 0.027, train_acc = 1.000 (3.335 sec/step)
step 83560 loss = 0.907, train_acc = 0.700 (3.372 sec/step)
step 83570 loss = 0.778, train_acc = 0.800 (3.399 sec/step)
step 83580 loss = 0.207, train_acc = 0.900 (3.380 sec/step)
step 83590 loss = 0.036, train_acc = 1.000 (3.353 sec/step)
VALIDATION acc = 0.529 (3.609 sec)
step 83600 loss = 0.496, train_acc = 0.900 (3.394 sec/step)
step 83610 loss = 0.010, train_acc = 1.000 (3.321 sec/step)
step 83620 loss = 0.342, train_acc = 0.900 (3.418 sec/step)
step 83630 loss = 0.076, train_acc = 1.000 (3.399 sec/step)
step 83640 loss = 0.027, train_acc = 1.000 (3.394 sec/step)
step 83650 loss = 0.314, train_acc = 0.800 (3.335 sec/step)
step 83660 loss = 0.000, train_acc = 1.000 (3.376 sec/step)
step 83670 loss = 0.003, train_acc = 1.000 (3.342 sec/step)
step 83680 loss = 0.002, train_acc = 1.000 (3.411 sec/step)
step 83690 loss = 0.016, train_acc = 1.000 (3.345 sec/step)
step 83700 loss = 0.227, train_acc = 0.900 (3.420 sec/step)
step 83710 loss = 0.001, train_acc = 1.000 (3.362 sec/step)
step 83720 loss = 0.553, train_acc = 0.900 (3.390 sec/step)
step 83730 loss = 0.037, train_acc = 1.000 (3.312 sec/step)
step 83740 loss = 0.001, train_acc = 1.000 (3.376 sec/step)
step 83750 loss = 0.146, train_acc = 0.900 (3.332 sec/step)
step 83760 loss = 0.219, train_acc = 1.000 (3.382 sec/step)
step 83770 loss = 0.007, train_acc = 1.000 (3.381 sec/step)
step 83780 loss = 0.002, train_acc = 1.000 (3.340 sec/step)
step 83790 loss = 0.000, train_acc = 1.000 (3.376 sec/step)
step 83800 loss = 0.094, train_acc = 1.000 (3.374 sec/step)
step 83810 loss = 0.034, train_acc = 1.000 (3.388 sec/step)
step 83820 loss = 0.009, train_acc = 1.000 (3.402 sec/step)
step 83830 loss = 0.014, train_acc = 1.000 (3.408 sec/step)
step 83840 loss = 0.037, train_acc = 1.000 (3.338 sec/step)
step 83850 loss = 0.207, train_acc = 1.000 (3.385 sec/step)
step 83860 loss = 0.015, train_acc = 1.000 (3.383 sec/step)
step 83870 loss = 0.000, train_acc = 1.000 (3.364 sec/step)
step 83880 loss = 0.606, train_acc = 0.800 (3.348 sec/step)
step 83890 loss = 0.319, train_acc = 0.900 (3.379 sec/step)
step 83900 loss = 0.029, train_acc = 1.000 (3.312 sec/step)
step 83910 loss = 0.064, train_acc = 1.000 (3.365 sec/step)
step 83920 loss = 0.015, train_acc = 1.000 (3.377 sec/step)
step 83930 loss = 0.014, train_acc = 1.000 (3.375 sec/step)
step 83940 loss = 0.013, train_acc = 1.000 (3.325 sec/step)
step 83950 loss = 0.001, train_acc = 1.000 (3.371 sec/step)
step 83960 loss = 0.161, train_acc = 0.900 (3.338 sec/step)
step 83970 loss = 0.035, train_acc = 1.000 (3.352 sec/step)
step 83980 loss = 0.158, train_acc = 0.900 (3.371 sec/step)
step 83990 loss = 0.206, train_acc = 0.900 (3.379 sec/step)
step 84000 loss = 0.963, train_acc = 0.600 (3.341 sec/step)
step 84010 loss = 0.022, train_acc = 1.000 (3.308 sec/step)
step 84020 loss = 0.123, train_acc = 1.000 (3.315 sec/step)
step 84030 loss = 0.084, train_acc = 1.000 (3.320 sec/step)
step 84040 loss = 0.215, train_acc = 0.900 (3.319 sec/step)
step 84050 loss = 0.141, train_acc = 0.900 (3.353 sec/step)
step 84060 loss = 0.045, train_acc = 1.000 (3.338 sec/step)
step 84070 loss = 0.000, train_acc = 1.000 (3.319 sec/step)
step 84080 loss = 0.826, train_acc = 0.900 (3.370 sec/step)
step 84090 loss = 0.042, train_acc = 1.000 (3.379 sec/step)
step 84100 loss = 0.106, train_acc = 1.000 (3.368 sec/step)
step 84110 loss = 0.028, train_acc = 1.000 (3.337 sec/step)
step 84120 loss = 0.849, train_acc = 0.600 (3.340 sec/step)
step 84130 loss = 0.356, train_acc = 0.900 (3.368 sec/step)
step 84140 loss = 0.121, train_acc = 0.900 (3.387 sec/step)
step 84150 loss = 0.100, train_acc = 0.900 (3.349 sec/step)
step 84160 loss = 0.002, train_acc = 1.000 (3.340 sec/step)
step 84170 loss = 0.000, train_acc = 1.000 (3.354 sec/step)
step 84180 loss = 0.002, train_acc = 1.000 (3.378 sec/step)
step 84190 loss = 0.890, train_acc = 0.800 (3.349 sec/step)
step 84200 loss = 0.113, train_acc = 1.000 (3.308 sec/step)
step 84210 loss = 0.000, train_acc = 1.000 (3.326 sec/step)
step 84220 loss = 1.380, train_acc = 0.700 (3.400 sec/step)
step 84230 loss = 1.040, train_acc = 0.800 (3.330 sec/step)
step 84240 loss = 0.138, train_acc = 1.000 (3.321 sec/step)
step 84250 loss = 0.598, train_acc = 0.900 (3.358 sec/step)
step 84260 loss = 0.030, train_acc = 1.000 (3.308 sec/step)
step 84270 loss = 0.202, train_acc = 0.900 (3.328 sec/step)
step 84280 loss = 0.000, train_acc = 1.000 (3.323 sec/step)
step 84290 loss = 0.245, train_acc = 0.900 (3.344 sec/step)
step 84300 loss = 0.017, train_acc = 1.000 (3.317 sec/step)
step 84310 loss = 0.061, train_acc = 1.000 (3.347 sec/step)
step 84320 loss = 0.474, train_acc = 0.900 (3.374 sec/step)
step 84330 loss = 0.431, train_acc = 0.900 (3.334 sec/step)
step 84340 loss = 0.018, train_acc = 1.000 (3.335 sec/step)
step 84350 loss = 0.021, train_acc = 1.000 (3.399 sec/step)
step 84360 loss = 0.147, train_acc = 0.900 (3.357 sec/step)
step 84370 loss = 0.104, train_acc = 0.900 (3.388 sec/step)
step 84380 loss = 0.271, train_acc = 0.900 (3.316 sec/step)
step 84390 loss = 0.001, train_acc = 1.000 (3.330 sec/step)
step 84400 loss = 0.003, train_acc = 1.000 (3.369 sec/step)
step 84410 loss = 0.297, train_acc = 0.900 (3.399 sec/step)
step 84420 loss = 0.050, train_acc = 1.000 (3.311 sec/step)
step 84430 loss = 0.282, train_acc = 0.900 (3.338 sec/step)
step 84440 loss = 0.002, train_acc = 1.000 (3.360 sec/step)
step 84450 loss = 0.007, train_acc = 1.000 (3.363 sec/step)
step 84460 loss = 1.746, train_acc = 0.900 (3.338 sec/step)
step 84470 loss = 0.858, train_acc = 0.900 (3.349 sec/step)
step 84480 loss = 0.133, train_acc = 1.000 (3.352 sec/step)
step 84490 loss = 0.008, train_acc = 1.000 (3.352 sec/step)
step 84500 loss = 0.119, train_acc = 0.900 (3.360 sec/step)
step 84510 loss = 0.036, train_acc = 1.000 (3.332 sec/step)
step 84520 loss = 0.602, train_acc = 0.900 (3.379 sec/step)
step 84530 loss = 0.000, train_acc = 1.000 (3.335 sec/step)
step 84540 loss = 0.011, train_acc = 1.000 (3.310 sec/step)
step 84550 loss = 0.062, train_acc = 1.000 (3.361 sec/step)
step 84560 loss = 0.631, train_acc = 0.900 (3.353 sec/step)
step 84570 loss = 0.938, train_acc = 0.800 (3.347 sec/step)
step 84580 loss = 0.550, train_acc = 0.900 (3.409 sec/step)
step 84590 loss = 0.145, train_acc = 0.900 (3.399 sec/step)
step 84600 loss = 0.036, train_acc = 1.000 (3.366 sec/step)
step 84610 loss = 0.078, train_acc = 1.000 (3.315 sec/step)
step 84620 loss = 0.055, train_acc = 1.000 (3.349 sec/step)
step 84630 loss = 0.073, train_acc = 1.000 (3.374 sec/step)
step 84640 loss = 0.339, train_acc = 0.900 (3.402 sec/step)
step 84650 loss = 0.031, train_acc = 1.000 (3.390 sec/step)
step 84660 loss = 0.503, train_acc = 0.900 (3.330 sec/step)
step 84670 loss = 0.103, train_acc = 0.900 (3.392 sec/step)
step 84680 loss = 0.101, train_acc = 0.900 (3.399 sec/step)
step 84690 loss = 0.705, train_acc = 0.800 (3.339 sec/step)
step 84700 loss = 0.013, train_acc = 1.000 (3.342 sec/step)
step 84710 loss = 0.069, train_acc = 1.000 (3.340 sec/step)
step 84720 loss = 0.041, train_acc = 1.000 (3.371 sec/step)
step 84730 loss = 0.219, train_acc = 0.900 (3.344 sec/step)
step 84740 loss = 0.102, train_acc = 0.900 (3.393 sec/step)
step 84750 loss = 1.308, train_acc = 0.800 (3.425 sec/step)
step 84760 loss = 0.177, train_acc = 0.900 (3.324 sec/step)
step 84770 loss = 0.294, train_acc = 0.900 (3.317 sec/step)
step 84780 loss = 0.027, train_acc = 1.000 (3.348 sec/step)
step 84790 loss = 0.317, train_acc = 0.900 (3.297 sec/step)
step 84800 loss = 0.266, train_acc = 0.900 (3.310 sec/step)
step 84810 loss = 0.027, train_acc = 1.000 (3.376 sec/step)
step 84820 loss = 0.000, train_acc = 1.000 (3.348 sec/step)
step 84830 loss = 0.000, train_acc = 1.000 (3.334 sec/step)
step 84840 loss = 0.000, train_acc = 1.000 (3.478 sec/step)
step 84850 loss = 0.349, train_acc = 0.900 (3.364 sec/step)
step 84860 loss = 0.638, train_acc = 0.800 (3.370 sec/step)
step 84870 loss = 0.853, train_acc = 0.800 (3.361 sec/step)
step 84880 loss = 0.029, train_acc = 1.000 (3.384 sec/step)
step 84890 loss = 0.051, train_acc = 1.000 (3.364 sec/step)
step 84900 loss = 0.000, train_acc = 1.000 (3.336 sec/step)
step 84910 loss = 0.004, train_acc = 1.000 (3.331 sec/step)
step 84920 loss = 1.200, train_acc = 0.800 (3.353 sec/step)
step 84930 loss = 0.629, train_acc = 0.900 (3.380 sec/step)
step 84940 loss = 1.038, train_acc = 0.900 (3.331 sec/step)
step 84950 loss = 0.380, train_acc = 0.900 (3.368 sec/step)
step 84960 loss = 0.213, train_acc = 0.900 (3.334 sec/step)
step 84970 loss = 0.035, train_acc = 1.000 (3.411 sec/step)
step 84980 loss = 0.675, train_acc = 0.800 (3.312 sec/step)
step 84990 loss = 0.642, train_acc = 0.900 (3.314 sec/step)
step 85000 loss = 0.068, train_acc = 1.000 (3.346 sec/step)
step 85010 loss = 0.000, train_acc = 1.000 (3.410 sec/step)
step 85020 loss = 0.083, train_acc = 0.900 (3.342 sec/step)
step 85030 loss = 0.151, train_acc = 1.000 (3.378 sec/step)
step 85040 loss = 0.079, train_acc = 1.000 (3.371 sec/step)
step 85050 loss = 1.184, train_acc = 0.900 (3.353 sec/step)
step 85060 loss = 0.005, train_acc = 1.000 (3.350 sec/step)
step 85070 loss = 0.352, train_acc = 0.900 (3.399 sec/step)
step 85080 loss = 0.066, train_acc = 1.000 (3.369 sec/step)
step 85090 loss = 0.078, train_acc = 1.000 (3.321 sec/step)
step 85100 loss = 0.074, train_acc = 1.000 (3.339 sec/step)
step 85110 loss = 0.180, train_acc = 0.900 (3.355 sec/step)
step 85120 loss = 0.086, train_acc = 0.900 (3.360 sec/step)
step 85130 loss = 0.001, train_acc = 1.000 (3.367 sec/step)
step 85140 loss = 0.393, train_acc = 0.800 (3.380 sec/step)
step 85150 loss = 0.073, train_acc = 1.000 (3.362 sec/step)
step 85160 loss = 0.000, train_acc = 1.000 (3.372 sec/step)
step 85170 loss = 0.141, train_acc = 1.000 (3.341 sec/step)
step 85180 loss = 0.001, train_acc = 1.000 (3.361 sec/step)
step 85190 loss = 0.013, train_acc = 1.000 (3.382 sec/step)
step 85200 loss = 0.000, train_acc = 1.000 (3.383 sec/step)
step 85210 loss = 0.046, train_acc = 1.000 (3.375 sec/step)
step 85220 loss = 0.517, train_acc = 0.800 (3.458 sec/step)
step 85230 loss = 0.064, train_acc = 1.000 (3.310 sec/step)
step 85240 loss = 4.633, train_acc = 0.800 (3.341 sec/step)
step 85250 loss = 0.105, train_acc = 1.000 (3.365 sec/step)
step 85260 loss = 0.041, train_acc = 1.000 (3.391 sec/step)
step 85270 loss = 0.797, train_acc = 0.700 (3.341 sec/step)
step 85280 loss = 0.043, train_acc = 1.000 (3.350 sec/step)
step 85290 loss = 0.004, train_acc = 1.000 (3.409 sec/step)
step 85300 loss = 0.009, train_acc = 1.000 (3.352 sec/step)
step 85310 loss = 0.392, train_acc = 0.800 (3.365 sec/step)
step 85320 loss = 0.798, train_acc = 0.800 (3.359 sec/step)
step 85330 loss = 0.094, train_acc = 1.000 (3.319 sec/step)
step 85340 loss = 0.405, train_acc = 0.900 (3.367 sec/step)
step 85350 loss = 0.003, train_acc = 1.000 (3.337 sec/step)
step 85360 loss = 0.869, train_acc = 0.900 (3.375 sec/step)
step 85370 loss = 0.002, train_acc = 1.000 (3.388 sec/step)
step 85380 loss = 0.014, train_acc = 1.000 (3.298 sec/step)
step 85390 loss = 0.203, train_acc = 0.900 (3.373 sec/step)
step 85400 loss = 0.007, train_acc = 1.000 (3.309 sec/step)
step 85410 loss = 0.156, train_acc = 0.900 (3.410 sec/step)
step 85420 loss = 0.127, train_acc = 0.900 (3.419 sec/step)
step 85430 loss = 0.025, train_acc = 1.000 (3.381 sec/step)
step 85440 loss = 0.013, train_acc = 1.000 (3.397 sec/step)
step 85450 loss = 0.194, train_acc = 0.900 (3.394 sec/step)
step 85460 loss = 0.069, train_acc = 1.000 (3.377 sec/step)
step 85470 loss = 0.077, train_acc = 1.000 (3.340 sec/step)
step 85480 loss = 0.033, train_acc = 1.000 (3.370 sec/step)
step 85490 loss = 0.003, train_acc = 1.000 (3.472 sec/step)
VALIDATION acc = 0.534 (3.626 sec)
step 85500 loss = 0.070, train_acc = 1.000 (3.355 sec/step)
step 85510 loss = 0.002, train_acc = 1.000 (3.353 sec/step)
step 85520 loss = 0.093, train_acc = 1.000 (3.390 sec/step)
step 85530 loss = 1.716, train_acc = 0.800 (3.352 sec/step)
step 85540 loss = 0.001, train_acc = 1.000 (3.397 sec/step)
step 85550 loss = 0.018, train_acc = 1.000 (3.438 sec/step)
step 85560 loss = 0.014, train_acc = 1.000 (3.408 sec/step)
step 85570 loss = 0.051, train_acc = 1.000 (3.404 sec/step)
step 85580 loss = 0.023, train_acc = 1.000 (3.383 sec/step)
step 85590 loss = 0.404, train_acc = 0.900 (3.390 sec/step)
step 85600 loss = 0.298, train_acc = 0.900 (3.441 sec/step)
step 85610 loss = 0.426, train_acc = 0.900 (3.304 sec/step)
step 85620 loss = 0.194, train_acc = 0.900 (3.324 sec/step)
step 85630 loss = 0.000, train_acc = 1.000 (3.345 sec/step)
step 85640 loss = 0.059, train_acc = 1.000 (3.335 sec/step)
step 85650 loss = 0.029, train_acc = 1.000 (3.352 sec/step)
step 85660 loss = 0.063, train_acc = 1.000 (3.361 sec/step)
step 85670 loss = 0.330, train_acc = 0.900 (3.307 sec/step)
step 85680 loss = 0.000, train_acc = 1.000 (3.326 sec/step)
step 85690 loss = 0.278, train_acc = 0.800 (3.420 sec/step)
step 85700 loss = 0.231, train_acc = 0.900 (3.352 sec/step)
step 85710 loss = 0.249, train_acc = 0.900 (3.439 sec/step)
step 85720 loss = 0.385, train_acc = 0.800 (3.390 sec/step)
step 85730 loss = 0.196, train_acc = 0.900 (3.378 sec/step)
step 85740 loss = 0.725, train_acc = 0.700 (3.343 sec/step)
step 85750 loss = 0.055, train_acc = 1.000 (3.361 sec/step)
step 85760 loss = 0.016, train_acc = 1.000 (3.368 sec/step)
step 85770 loss = 0.008, train_acc = 1.000 (3.358 sec/step)
step 85780 loss = 0.000, train_acc = 1.000 (3.332 sec/step)
step 85790 loss = 0.000, train_acc = 1.000 (3.377 sec/step)
step 85800 loss = 0.004, train_acc = 1.000 (3.353 sec/step)
step 85810 loss = 0.218, train_acc = 0.800 (3.317 sec/step)
step 85820 loss = 0.102, train_acc = 0.900 (3.394 sec/step)
step 85830 loss = 0.179, train_acc = 0.900 (3.334 sec/step)
step 85840 loss = 0.152, train_acc = 0.900 (3.381 sec/step)
step 85850 loss = 0.012, train_acc = 1.000 (3.351 sec/step)
step 85860 loss = 0.022, train_acc = 1.000 (3.342 sec/step)
step 85870 loss = 0.003, train_acc = 1.000 (3.362 sec/step)
step 85880 loss = 0.017, train_acc = 1.000 (3.334 sec/step)
step 85890 loss = 0.160, train_acc = 1.000 (3.349 sec/step)
step 85900 loss = 0.003, train_acc = 1.000 (3.314 sec/step)
step 85910 loss = 0.100, train_acc = 0.900 (3.322 sec/step)
step 85920 loss = 0.001, train_acc = 1.000 (3.369 sec/step)
step 85930 loss = 0.231, train_acc = 0.900 (3.387 sec/step)
step 85940 loss = 0.145, train_acc = 1.000 (3.464 sec/step)
step 85950 loss = 0.000, train_acc = 1.000 (3.391 sec/step)
step 85960 loss = 0.080, train_acc = 0.900 (3.343 sec/step)
step 85970 loss = 0.271, train_acc = 0.800 (3.382 sec/step)
step 85980 loss = 0.079, train_acc = 0.900 (3.355 sec/step)
step 85990 loss = 0.008, train_acc = 1.000 (3.382 sec/step)
step 86000 loss = 0.005, train_acc = 1.000 (3.383 sec/step)
step 86010 loss = 0.043, train_acc = 1.000 (3.331 sec/step)
step 86020 loss = 0.314, train_acc = 0.800 (3.341 sec/step)
step 86030 loss = 0.012, train_acc = 1.000 (3.359 sec/step)
step 86040 loss = 0.116, train_acc = 1.000 (3.366 sec/step)
step 86050 loss = 0.276, train_acc = 0.900 (3.324 sec/step)
step 86060 loss = 0.225, train_acc = 0.900 (3.396 sec/step)
step 86070 loss = 0.080, train_acc = 0.900 (3.345 sec/step)
step 86080 loss = 0.118, train_acc = 1.000 (3.381 sec/step)
step 86090 loss = 0.663, train_acc = 0.800 (3.381 sec/step)
step 86100 loss = 0.461, train_acc = 0.800 (3.409 sec/step)
step 86110 loss = 0.029, train_acc = 1.000 (3.348 sec/step)
step 86120 loss = 0.000, train_acc = 1.000 (3.350 sec/step)
step 86130 loss = 0.048, train_acc = 1.000 (3.377 sec/step)
step 86140 loss = 0.230, train_acc = 0.900 (3.464 sec/step)
step 86150 loss = 0.080, train_acc = 0.900 (3.308 sec/step)
step 86160 loss = 0.005, train_acc = 1.000 (3.306 sec/step)
step 86170 loss = 0.027, train_acc = 1.000 (3.339 sec/step)
step 86180 loss = 0.008, train_acc = 1.000 (3.321 sec/step)
step 86190 loss = 0.004, train_acc = 1.000 (3.330 sec/step)
step 86200 loss = 0.564, train_acc = 0.700 (3.364 sec/step)
step 86210 loss = 0.081, train_acc = 0.900 (3.389 sec/step)
step 86220 loss = 0.006, train_acc = 1.000 (3.355 sec/step)
step 86230 loss = 0.147, train_acc = 0.900 (3.350 sec/step)
step 86240 loss = 0.016, train_acc = 1.000 (3.353 sec/step)
step 86250 loss = 0.733, train_acc = 0.900 (3.388 sec/step)
step 86260 loss = 0.005, train_acc = 1.000 (3.385 sec/step)
step 86270 loss = 0.041, train_acc = 1.000 (3.378 sec/step)
step 86280 loss = 0.168, train_acc = 0.900 (3.357 sec/step)
step 86290 loss = 0.029, train_acc = 1.000 (3.335 sec/step)
step 86300 loss = 0.750, train_acc = 0.900 (3.390 sec/step)
step 86310 loss = 0.003, train_acc = 1.000 (3.347 sec/step)
step 86320 loss = 0.051, train_acc = 1.000 (3.364 sec/step)
step 86330 loss = 0.245, train_acc = 1.000 (3.332 sec/step)
step 86340 loss = 0.691, train_acc = 0.900 (3.367 sec/step)
step 86350 loss = 0.187, train_acc = 0.900 (3.311 sec/step)
step 86360 loss = 0.079, train_acc = 1.000 (3.398 sec/step)
step 86370 loss = 0.014, train_acc = 1.000 (3.391 sec/step)
step 86380 loss = 0.025, train_acc = 1.000 (3.323 sec/step)
step 86390 loss = 0.001, train_acc = 1.000 (3.377 sec/step)
step 86400 loss = 0.422, train_acc = 0.900 (3.399 sec/step)
step 86410 loss = 0.565, train_acc = 0.800 (3.363 sec/step)
step 86420 loss = 0.454, train_acc = 0.800 (3.341 sec/step)
step 86430 loss = 0.606, train_acc = 0.900 (3.325 sec/step)
step 86440 loss = 0.106, train_acc = 1.000 (3.363 sec/step)
step 86450 loss = 0.457, train_acc = 0.800 (3.412 sec/step)
step 86460 loss = 0.062, train_acc = 1.000 (3.384 sec/step)
step 86470 loss = 0.207, train_acc = 0.800 (3.332 sec/step)
step 86480 loss = 0.025, train_acc = 1.000 (3.357 sec/step)
step 86490 loss = 0.005, train_acc = 1.000 (3.346 sec/step)
step 86500 loss = 0.004, train_acc = 1.000 (3.363 sec/step)
step 86510 loss = 0.001, train_acc = 1.000 (3.372 sec/step)
step 86520 loss = 0.036, train_acc = 1.000 (3.354 sec/step)
step 86530 loss = 0.485, train_acc = 0.700 (3.431 sec/step)
step 86540 loss = 0.426, train_acc = 0.800 (3.346 sec/step)
step 86550 loss = 0.305, train_acc = 0.900 (3.334 sec/step)
step 86560 loss = 0.050, train_acc = 1.000 (3.351 sec/step)
step 86570 loss = 0.015, train_acc = 1.000 (3.316 sec/step)
step 86580 loss = 0.075, train_acc = 1.000 (3.347 sec/step)
step 86590 loss = 0.216, train_acc = 0.900 (3.355 sec/step)
step 86600 loss = 0.000, train_acc = 1.000 (3.359 sec/step)
step 86610 loss = 0.002, train_acc = 1.000 (3.315 sec/step)
step 86620 loss = 0.030, train_acc = 1.000 (3.332 sec/step)
step 86630 loss = 0.452, train_acc = 0.800 (3.345 sec/step)
step 86640 loss = 0.061, train_acc = 1.000 (3.372 sec/step)
step 86650 loss = 0.018, train_acc = 1.000 (3.365 sec/step)
step 86660 loss = 0.085, train_acc = 1.000 (3.346 sec/step)
step 86670 loss = 0.005, train_acc = 1.000 (3.351 sec/step)
step 86680 loss = 0.001, train_acc = 1.000 (3.351 sec/step)
step 86690 loss = 0.101, train_acc = 1.000 (3.313 sec/step)
step 86700 loss = 0.320, train_acc = 0.900 (3.348 sec/step)
step 86710 loss = 0.012, train_acc = 1.000 (3.324 sec/step)
step 86720 loss = 0.146, train_acc = 0.900 (3.329 sec/step)
step 86730 loss = 0.345, train_acc = 0.900 (3.385 sec/step)
step 86740 loss = 0.042, train_acc = 1.000 (3.368 sec/step)
step 86750 loss = 0.001, train_acc = 1.000 (3.394 sec/step)
step 86760 loss = 0.078, train_acc = 0.900 (3.369 sec/step)
step 86770 loss = 0.067, train_acc = 1.000 (3.351 sec/step)
step 86780 loss = 0.012, train_acc = 1.000 (3.429 sec/step)
step 86790 loss = 0.005, train_acc = 1.000 (3.362 sec/step)
step 86800 loss = 0.000, train_acc = 1.000 (3.354 sec/step)
step 86810 loss = 0.019, train_acc = 1.000 (3.361 sec/step)
step 86820 loss = 0.021, train_acc = 1.000 (3.336 sec/step)
step 86830 loss = 0.238, train_acc = 0.900 (3.350 sec/step)
step 86840 loss = 0.002, train_acc = 1.000 (3.339 sec/step)
step 86850 loss = 0.012, train_acc = 1.000 (3.384 sec/step)
step 86860 loss = 0.064, train_acc = 1.000 (3.417 sec/step)
step 86870 loss = 0.087, train_acc = 1.000 (3.397 sec/step)
step 86880 loss = 0.311, train_acc = 0.900 (3.337 sec/step)
step 86890 loss = 0.257, train_acc = 0.800 (3.346 sec/step)
step 86900 loss = 0.089, train_acc = 1.000 (3.388 sec/step)
step 86910 loss = 0.197, train_acc = 0.900 (3.320 sec/step)
step 86920 loss = 0.002, train_acc = 1.000 (3.328 sec/step)
step 86930 loss = 0.228, train_acc = 0.900 (3.395 sec/step)
step 86940 loss = 0.540, train_acc = 0.900 (3.346 sec/step)
step 86950 loss = 1.907, train_acc = 0.500 (3.327 sec/step)
step 86960 loss = 0.150, train_acc = 0.900 (3.368 sec/step)
step 86970 loss = 0.005, train_acc = 1.000 (3.388 sec/step)
step 86980 loss = 0.015, train_acc = 1.000 (3.367 sec/step)
step 86990 loss = 0.002, train_acc = 1.000 (3.358 sec/step)
step 87000 loss = 0.000, train_acc = 1.000 (3.358 sec/step)
step 87010 loss = 0.014, train_acc = 1.000 (3.356 sec/step)
step 87020 loss = 0.001, train_acc = 1.000 (3.337 sec/step)
step 87030 loss = 3.799, train_acc = 0.900 (3.345 sec/step)
step 87040 loss = 0.195, train_acc = 0.900 (3.327 sec/step)
step 87050 loss = 0.295, train_acc = 0.800 (3.324 sec/step)
step 87060 loss = 0.606, train_acc = 0.900 (3.335 sec/step)
step 87070 loss = 0.325, train_acc = 0.900 (3.310 sec/step)
step 87080 loss = 0.397, train_acc = 0.800 (3.362 sec/step)
step 87090 loss = 0.004, train_acc = 1.000 (3.335 sec/step)
step 87100 loss = 0.202, train_acc = 0.900 (3.389 sec/step)
step 87110 loss = 0.002, train_acc = 1.000 (3.348 sec/step)
step 87120 loss = 1.199, train_acc = 0.800 (3.389 sec/step)
step 87130 loss = 0.216, train_acc = 0.900 (3.353 sec/step)
step 87140 loss = 0.002, train_acc = 1.000 (3.372 sec/step)
step 87150 loss = 0.019, train_acc = 1.000 (3.429 sec/step)
step 87160 loss = 0.009, train_acc = 1.000 (3.358 sec/step)
step 87170 loss = 1.511, train_acc = 0.900 (3.383 sec/step)
step 87180 loss = 0.062, train_acc = 1.000 (3.403 sec/step)
step 87190 loss = 0.326, train_acc = 0.900 (3.368 sec/step)
step 87200 loss = 0.360, train_acc = 0.900 (3.327 sec/step)
step 87210 loss = 0.139, train_acc = 1.000 (3.350 sec/step)
step 87220 loss = 0.025, train_acc = 1.000 (3.358 sec/step)
step 87230 loss = 0.200, train_acc = 1.000 (3.331 sec/step)
step 87240 loss = 0.039, train_acc = 1.000 (3.388 sec/step)
step 87250 loss = 0.006, train_acc = 1.000 (3.363 sec/step)
step 87260 loss = 0.203, train_acc = 0.900 (3.360 sec/step)
step 87270 loss = 0.015, train_acc = 1.000 (3.387 sec/step)
step 87280 loss = 0.148, train_acc = 0.900 (3.390 sec/step)
step 87290 loss = 0.545, train_acc = 0.800 (3.378 sec/step)
step 87300 loss = 1.441, train_acc = 0.900 (3.397 sec/step)
step 87310 loss = 0.006, train_acc = 1.000 (3.356 sec/step)
step 87320 loss = 0.063, train_acc = 1.000 (3.360 sec/step)
step 87330 loss = 0.018, train_acc = 1.000 (3.317 sec/step)
step 87340 loss = 0.068, train_acc = 1.000 (3.329 sec/step)
step 87350 loss = 0.033, train_acc = 1.000 (3.338 sec/step)
step 87360 loss = 0.926, train_acc = 0.700 (3.360 sec/step)
step 87370 loss = 0.115, train_acc = 1.000 (3.375 sec/step)
step 87380 loss = 0.001, train_acc = 1.000 (3.340 sec/step)
step 87390 loss = 0.245, train_acc = 0.900 (3.365 sec/step)
VALIDATION acc = 0.546 (3.616 sec)
step 87400 loss = 0.003, train_acc = 1.000 (3.349 sec/step)
step 87410 loss = 0.004, train_acc = 1.000 (3.302 sec/step)
step 87420 loss = 0.022, train_acc = 1.000 (3.338 sec/step)
step 87430 loss = 0.262, train_acc = 0.800 (3.345 sec/step)
step 87440 loss = 0.389, train_acc = 0.800 (3.372 sec/step)
step 87450 loss = 0.232, train_acc = 0.900 (3.406 sec/step)
step 87460 loss = 0.004, train_acc = 1.000 (3.393 sec/step)
step 87470 loss = 0.000, train_acc = 1.000 (3.311 sec/step)
step 87480 loss = 0.154, train_acc = 0.900 (3.337 sec/step)
step 87490 loss = 0.143, train_acc = 0.900 (3.371 sec/step)
step 87500 loss = 0.015, train_acc = 1.000 (3.334 sec/step)
step 87510 loss = 0.000, train_acc = 1.000 (3.384 sec/step)
step 87520 loss = 0.002, train_acc = 1.000 (3.379 sec/step)
step 87530 loss = 0.002, train_acc = 1.000 (3.331 sec/step)
step 87540 loss = 0.057, train_acc = 1.000 (3.391 sec/step)
step 87550 loss = 0.895, train_acc = 0.700 (3.348 sec/step)
step 87560 loss = 0.098, train_acc = 1.000 (3.353 sec/step)
step 87570 loss = 0.056, train_acc = 1.000 (3.345 sec/step)
step 87580 loss = 0.061, train_acc = 1.000 (3.367 sec/step)
step 87590 loss = 0.285, train_acc = 0.900 (3.377 sec/step)
step 87600 loss = 0.306, train_acc = 0.900 (3.389 sec/step)
step 87610 loss = 0.009, train_acc = 1.000 (3.335 sec/step)
step 87620 loss = 0.007, train_acc = 1.000 (3.369 sec/step)
step 87630 loss = 0.166, train_acc = 0.900 (3.328 sec/step)
step 87640 loss = 0.186, train_acc = 0.900 (3.377 sec/step)
step 87650 loss = 0.132, train_acc = 1.000 (3.351 sec/step)
step 87660 loss = 0.202, train_acc = 0.900 (3.337 sec/step)
step 87670 loss = 0.001, train_acc = 1.000 (3.392 sec/step)
step 87680 loss = 0.149, train_acc = 0.900 (3.324 sec/step)
step 87690 loss = 0.016, train_acc = 1.000 (3.357 sec/step)
step 87700 loss = 0.306, train_acc = 0.900 (3.342 sec/step)
step 87710 loss = 0.106, train_acc = 0.900 (3.317 sec/step)
step 87720 loss = 0.021, train_acc = 1.000 (3.381 sec/step)
step 87730 loss = 0.374, train_acc = 0.900 (3.356 sec/step)
step 87740 loss = 0.195, train_acc = 0.900 (3.356 sec/step)
step 87750 loss = 0.354, train_acc = 0.900 (3.355 sec/step)
step 87760 loss = 0.012, train_acc = 1.000 (3.377 sec/step)
step 87770 loss = 0.271, train_acc = 0.900 (3.315 sec/step)
step 87780 loss = 0.002, train_acc = 1.000 (3.451 sec/step)
step 87790 loss = 0.000, train_acc = 1.000 (3.310 sec/step)
step 87800 loss = 0.748, train_acc = 0.700 (3.357 sec/step)
step 87810 loss = 0.001, train_acc = 1.000 (3.326 sec/step)
step 87820 loss = 0.020, train_acc = 1.000 (3.381 sec/step)
step 87830 loss = 0.027, train_acc = 1.000 (3.331 sec/step)
step 87840 loss = 0.000, train_acc = 1.000 (3.308 sec/step)
step 87850 loss = 0.062, train_acc = 1.000 (3.386 sec/step)
step 87860 loss = 0.001, train_acc = 1.000 (3.398 sec/step)
step 87870 loss = 0.580, train_acc = 0.900 (3.342 sec/step)
step 87880 loss = 0.270, train_acc = 0.900 (3.345 sec/step)
step 87890 loss = 0.321, train_acc = 0.900 (3.317 sec/step)
step 87900 loss = 0.141, train_acc = 0.900 (3.375 sec/step)
step 87910 loss = 0.243, train_acc = 0.800 (3.365 sec/step)
step 87920 loss = 0.007, train_acc = 1.000 (3.377 sec/step)
step 87930 loss = 0.210, train_acc = 0.800 (3.366 sec/step)
step 87940 loss = 0.008, train_acc = 1.000 (3.440 sec/step)
step 87950 loss = 0.003, train_acc = 1.000 (3.357 sec/step)
step 87960 loss = 0.000, train_acc = 1.000 (3.323 sec/step)
step 87970 loss = 0.017, train_acc = 1.000 (3.388 sec/step)
step 87980 loss = 0.050, train_acc = 1.000 (3.354 sec/step)
step 87990 loss = 0.062, train_acc = 1.000 (3.392 sec/step)
step 88000 loss = 0.072, train_acc = 1.000 (3.315 sec/step)
step 88010 loss = 0.000, train_acc = 1.000 (3.332 sec/step)
step 88020 loss = 0.166, train_acc = 0.900 (3.359 sec/step)
step 88030 loss = 0.011, train_acc = 1.000 (3.327 sec/step)
step 88040 loss = 0.031, train_acc = 1.000 (3.329 sec/step)
step 88050 loss = 0.007, train_acc = 1.000 (3.343 sec/step)
step 88060 loss = 0.002, train_acc = 1.000 (3.364 sec/step)
step 88070 loss = 0.003, train_acc = 1.000 (3.306 sec/step)
step 88080 loss = 0.003, train_acc = 1.000 (3.369 sec/step)
step 88090 loss = 0.087, train_acc = 1.000 (3.414 sec/step)
step 88100 loss = 0.023, train_acc = 1.000 (3.330 sec/step)
step 88110 loss = 0.056, train_acc = 1.000 (3.368 sec/step)
step 88120 loss = 0.344, train_acc = 0.900 (3.367 sec/step)
step 88130 loss = 0.002, train_acc = 1.000 (3.322 sec/step)
step 88140 loss = 0.042, train_acc = 1.000 (3.353 sec/step)
step 88150 loss = 2.070, train_acc = 0.500 (3.380 sec/step)
step 88160 loss = 0.725, train_acc = 0.900 (3.360 sec/step)
step 88170 loss = 0.051, train_acc = 1.000 (3.373 sec/step)
step 88180 loss = 0.026, train_acc = 1.000 (3.307 sec/step)
step 88190 loss = 0.009, train_acc = 1.000 (3.356 sec/step)
step 88200 loss = 0.000, train_acc = 1.000 (3.313 sec/step)
step 88210 loss = 0.005, train_acc = 1.000 (3.302 sec/step)
step 88220 loss = 0.006, train_acc = 1.000 (3.324 sec/step)
step 88230 loss = 0.006, train_acc = 1.000 (3.341 sec/step)
step 88240 loss = 0.404, train_acc = 0.900 (3.363 sec/step)
step 88250 loss = 0.984, train_acc = 0.800 (3.315 sec/step)
step 88260 loss = 0.400, train_acc = 0.800 (3.330 sec/step)
step 88270 loss = 0.000, train_acc = 1.000 (3.309 sec/step)
step 88280 loss = 0.012, train_acc = 1.000 (3.325 sec/step)
step 88290 loss = 0.798, train_acc = 0.800 (3.488 sec/step)
step 88300 loss = 0.462, train_acc = 0.700 (3.303 sec/step)
step 88310 loss = 0.002, train_acc = 1.000 (3.358 sec/step)
step 88320 loss = 0.381, train_acc = 0.900 (3.384 sec/step)
step 88330 loss = 0.006, train_acc = 1.000 (3.363 sec/step)
step 88340 loss = 0.004, train_acc = 1.000 (3.346 sec/step)
step 88350 loss = 1.116, train_acc = 0.900 (3.340 sec/step)
step 88360 loss = 0.016, train_acc = 1.000 (3.340 sec/step)
step 88370 loss = 0.003, train_acc = 1.000 (3.390 sec/step)
step 88380 loss = 0.000, train_acc = 1.000 (3.325 sec/step)
step 88390 loss = 0.044, train_acc = 1.000 (3.320 sec/step)
step 88400 loss = 0.365, train_acc = 0.900 (3.348 sec/step)
step 88410 loss = 0.236, train_acc = 0.900 (3.343 sec/step)
step 88420 loss = 0.036, train_acc = 1.000 (3.375 sec/step)
step 88430 loss = 0.100, train_acc = 0.900 (3.333 sec/step)
step 88440 loss = 0.066, train_acc = 1.000 (3.334 sec/step)
step 88450 loss = 0.010, train_acc = 1.000 (3.311 sec/step)
step 88460 loss = 0.150, train_acc = 1.000 (3.321 sec/step)
step 88470 loss = 0.127, train_acc = 1.000 (3.339 sec/step)
step 88480 loss = 0.080, train_acc = 1.000 (3.356 sec/step)
step 88490 loss = 0.014, train_acc = 1.000 (3.437 sec/step)
step 88500 loss = 0.008, train_acc = 1.000 (3.391 sec/step)
step 88510 loss = 0.000, train_acc = 1.000 (3.377 sec/step)
step 88520 loss = 0.000, train_acc = 1.000 (3.378 sec/step)
step 88530 loss = 0.000, train_acc = 1.000 (3.373 sec/step)
step 88540 loss = 0.001, train_acc = 1.000 (3.354 sec/step)
step 88550 loss = 0.016, train_acc = 1.000 (3.371 sec/step)
step 88560 loss = 0.000, train_acc = 1.000 (3.387 sec/step)
step 88570 loss = 0.000, train_acc = 1.000 (3.316 sec/step)
step 88580 loss = 0.520, train_acc = 0.900 (3.387 sec/step)
step 88590 loss = 0.054, train_acc = 1.000 (3.350 sec/step)
step 88600 loss = 0.029, train_acc = 1.000 (3.326 sec/step)
step 88610 loss = 0.256, train_acc = 0.900 (3.351 sec/step)
step 88620 loss = 0.211, train_acc = 0.900 (3.378 sec/step)
step 88630 loss = 0.007, train_acc = 1.000 (3.349 sec/step)
step 88640 loss = 0.099, train_acc = 0.900 (3.377 sec/step)
step 88650 loss = 0.264, train_acc = 0.900 (3.349 sec/step)
step 88660 loss = 0.011, train_acc = 1.000 (3.347 sec/step)
step 88670 loss = 0.776, train_acc = 0.900 (3.379 sec/step)
step 88680 loss = 0.105, train_acc = 0.900 (3.342 sec/step)
step 88690 loss = 0.873, train_acc = 0.900 (3.371 sec/step)
step 88700 loss = 0.000, train_acc = 1.000 (3.394 sec/step)
step 88710 loss = 0.160, train_acc = 0.900 (3.363 sec/step)
step 88720 loss = 0.022, train_acc = 1.000 (3.361 sec/step)
step 88730 loss = 0.077, train_acc = 1.000 (3.364 sec/step)
step 88740 loss = 0.056, train_acc = 1.000 (3.328 sec/step)
step 88750 loss = 0.032, train_acc = 1.000 (3.450 sec/step)
step 88760 loss = 0.028, train_acc = 1.000 (3.349 sec/step)
step 88770 loss = 0.083, train_acc = 0.900 (3.356 sec/step)
step 88780 loss = 0.004, train_acc = 1.000 (3.354 sec/step)
step 88790 loss = 0.053, train_acc = 1.000 (3.299 sec/step)
step 88800 loss = 0.115, train_acc = 1.000 (3.325 sec/step)
step 88810 loss = 0.079, train_acc = 1.000 (3.341 sec/step)
step 88820 loss = 0.425, train_acc = 0.900 (3.353 sec/step)
step 88830 loss = 0.012, train_acc = 1.000 (3.333 sec/step)
step 88840 loss = 0.292, train_acc = 1.000 (3.336 sec/step)
step 88850 loss = 0.068, train_acc = 1.000 (3.319 sec/step)
step 88860 loss = 0.133, train_acc = 0.900 (3.393 sec/step)
step 88870 loss = 0.215, train_acc = 0.900 (3.347 sec/step)
step 88880 loss = 2.363, train_acc = 0.800 (3.389 sec/step)
step 88890 loss = 0.023, train_acc = 1.000 (3.375 sec/step)
step 88900 loss = 0.001, train_acc = 1.000 (3.355 sec/step)
step 88910 loss = 0.000, train_acc = 1.000 (3.408 sec/step)
step 88920 loss = 0.027, train_acc = 1.000 (3.299 sec/step)
step 88930 loss = 0.002, train_acc = 1.000 (3.350 sec/step)
step 88940 loss = 0.208, train_acc = 0.900 (3.356 sec/step)
step 88950 loss = 0.027, train_acc = 1.000 (3.321 sec/step)
step 88960 loss = 1.254, train_acc = 0.700 (3.375 sec/step)
step 88970 loss = 0.038, train_acc = 1.000 (3.348 sec/step)
step 88980 loss = 0.013, train_acc = 1.000 (3.386 sec/step)
step 88990 loss = 0.030, train_acc = 1.000 (3.375 sec/step)
step 89000 loss = 0.587, train_acc = 0.900 (3.347 sec/step)
step 89010 loss = 0.056, train_acc = 1.000 (3.469 sec/step)
step 89020 loss = 0.080, train_acc = 0.900 (3.319 sec/step)
step 89030 loss = 0.092, train_acc = 1.000 (3.299 sec/step)
step 89040 loss = 0.321, train_acc = 1.000 (3.409 sec/step)
step 89050 loss = 0.392, train_acc = 0.900 (3.359 sec/step)
step 89060 loss = 0.093, train_acc = 0.900 (3.337 sec/step)
step 89070 loss = 0.022, train_acc = 1.000 (3.319 sec/step)
step 89080 loss = 0.004, train_acc = 1.000 (3.320 sec/step)
step 89090 loss = 0.357, train_acc = 0.900 (3.343 sec/step)
step 89100 loss = 0.361, train_acc = 0.800 (3.384 sec/step)
step 89110 loss = 0.002, train_acc = 1.000 (3.381 sec/step)
step 89120 loss = 0.000, train_acc = 1.000 (3.357 sec/step)
step 89130 loss = 0.002, train_acc = 1.000 (3.356 sec/step)
step 89140 loss = 0.009, train_acc = 1.000 (3.320 sec/step)
step 89150 loss = 0.004, train_acc = 1.000 (3.333 sec/step)
step 89160 loss = 0.003, train_acc = 1.000 (3.343 sec/step)
step 89170 loss = 0.000, train_acc = 1.000 (3.378 sec/step)
step 89180 loss = 0.068, train_acc = 1.000 (3.409 sec/step)
step 89190 loss = 0.002, train_acc = 1.000 (3.316 sec/step)
step 89200 loss = 0.627, train_acc = 0.900 (3.339 sec/step)
step 89210 loss = 0.062, train_acc = 1.000 (3.342 sec/step)
step 89220 loss = 0.210, train_acc = 0.900 (3.307 sec/step)
step 89230 loss = 0.091, train_acc = 0.900 (3.351 sec/step)
step 89240 loss = 0.524, train_acc = 0.900 (3.380 sec/step)
step 89250 loss = 0.020, train_acc = 1.000 (3.359 sec/step)
step 89260 loss = 0.000, train_acc = 1.000 (3.349 sec/step)
step 89270 loss = 1.367, train_acc = 0.800 (3.308 sec/step)
step 89280 loss = 0.006, train_acc = 1.000 (3.426 sec/step)
step 89290 loss = 0.410, train_acc = 0.900 (3.394 sec/step)
VALIDATION acc = 0.525 (3.631 sec)
step 89300 loss = 0.247, train_acc = 0.900 (3.386 sec/step)
step 89310 loss = 0.023, train_acc = 1.000 (3.323 sec/step)
step 89320 loss = 0.030, train_acc = 1.000 (3.345 sec/step)
step 89330 loss = 1.750, train_acc = 0.900 (3.455 sec/step)
step 89340 loss = 0.072, train_acc = 1.000 (3.347 sec/step)
step 89350 loss = 0.120, train_acc = 1.000 (3.347 sec/step)
step 89360 loss = 0.172, train_acc = 0.900 (3.307 sec/step)
step 89370 loss = 0.009, train_acc = 1.000 (3.327 sec/step)
step 89380 loss = 0.895, train_acc = 0.900 (3.398 sec/step)
step 89390 loss = 0.072, train_acc = 1.000 (3.382 sec/step)
step 89400 loss = 0.017, train_acc = 1.000 (3.329 sec/step)
step 89410 loss = 0.123, train_acc = 0.900 (3.376 sec/step)
step 89420 loss = 0.001, train_acc = 1.000 (3.332 sec/step)
step 89430 loss = 0.000, train_acc = 1.000 (3.385 sec/step)
step 89440 loss = 0.000, train_acc = 1.000 (3.327 sec/step)
step 89450 loss = 0.396, train_acc = 0.900 (3.344 sec/step)
step 89460 loss = 0.112, train_acc = 1.000 (3.328 sec/step)
step 89470 loss = 0.072, train_acc = 0.900 (3.335 sec/step)
step 89480 loss = 0.011, train_acc = 1.000 (3.365 sec/step)
step 89490 loss = 0.001, train_acc = 1.000 (3.347 sec/step)
step 89500 loss = 0.734, train_acc = 0.900 (3.343 sec/step)
step 89510 loss = 0.935, train_acc = 0.900 (3.317 sec/step)
step 89520 loss = 0.455, train_acc = 0.800 (3.351 sec/step)
step 89530 loss = 0.672, train_acc = 0.900 (3.403 sec/step)
step 89540 loss = 0.142, train_acc = 0.900 (3.352 sec/step)
step 89550 loss = 0.001, train_acc = 1.000 (3.373 sec/step)
step 89560 loss = 0.001, train_acc = 1.000 (3.342 sec/step)
step 89570 loss = 0.018, train_acc = 1.000 (3.336 sec/step)
step 89580 loss = 0.012, train_acc = 1.000 (3.379 sec/step)
step 89590 loss = 0.013, train_acc = 1.000 (3.340 sec/step)
step 89600 loss = 0.088, train_acc = 1.000 (3.315 sec/step)
step 89610 loss = 0.046, train_acc = 1.000 (3.353 sec/step)
step 89620 loss = 0.039, train_acc = 1.000 (3.374 sec/step)
step 89630 loss = 0.100, train_acc = 1.000 (3.349 sec/step)
step 89640 loss = 0.008, train_acc = 1.000 (3.398 sec/step)
step 89650 loss = 0.041, train_acc = 1.000 (3.411 sec/step)
step 89660 loss = 0.022, train_acc = 1.000 (3.314 sec/step)
step 89670 loss = 0.000, train_acc = 1.000 (3.341 sec/step)
step 89680 loss = 0.000, train_acc = 1.000 (3.337 sec/step)
step 89690 loss = 0.000, train_acc = 1.000 (3.377 sec/step)
step 89700 loss = 0.275, train_acc = 0.800 (3.371 sec/step)
step 89710 loss = 0.500, train_acc = 0.800 (3.299 sec/step)
step 89720 loss = 0.313, train_acc = 0.900 (3.382 sec/step)
step 89730 loss = 0.284, train_acc = 0.900 (3.383 sec/step)
step 89740 loss = 0.011, train_acc = 1.000 (3.338 sec/step)
step 89750 loss = 0.003, train_acc = 1.000 (3.387 sec/step)
step 89760 loss = 0.084, train_acc = 1.000 (3.355 sec/step)
step 89770 loss = 0.349, train_acc = 0.900 (3.361 sec/step)
step 89780 loss = 0.015, train_acc = 1.000 (3.488 sec/step)
step 89790 loss = 0.092, train_acc = 1.000 (3.324 sec/step)
step 89800 loss = 0.067, train_acc = 1.000 (3.342 sec/step)
step 89810 loss = 0.017, train_acc = 1.000 (3.378 sec/step)
step 89820 loss = 0.013, train_acc = 1.000 (3.354 sec/step)
step 89830 loss = 0.170, train_acc = 1.000 (3.328 sec/step)
step 89840 loss = 0.009, train_acc = 1.000 (3.345 sec/step)
step 89850 loss = 0.044, train_acc = 1.000 (3.377 sec/step)
step 89860 loss = 0.197, train_acc = 0.900 (3.345 sec/step)
step 89870 loss = 0.048, train_acc = 1.000 (3.343 sec/step)
step 89880 loss = 0.355, train_acc = 0.900 (3.306 sec/step)
step 89890 loss = 0.015, train_acc = 1.000 (3.344 sec/step)
step 89900 loss = 0.221, train_acc = 0.900 (3.375 sec/step)
step 89910 loss = 0.010, train_acc = 1.000 (3.388 sec/step)
step 89920 loss = 0.134, train_acc = 0.900 (3.341 sec/step)
step 89930 loss = 0.516, train_acc = 0.900 (3.409 sec/step)
step 89940 loss = 0.929, train_acc = 0.700 (3.348 sec/step)
step 89950 loss = 1.144, train_acc = 0.900 (3.357 sec/step)
step 89960 loss = 0.112, train_acc = 1.000 (3.399 sec/step)
step 89970 loss = 0.043, train_acc = 1.000 (3.398 sec/step)
step 89980 loss = 0.020, train_acc = 1.000 (3.363 sec/step)
step 89990 loss = 0.200, train_acc = 0.900 (3.349 sec/step)
step 90000 loss = 0.765, train_acc = 0.800 (3.375 sec/step)
step 90010 loss = 0.067, train_acc = 1.000 (3.332 sec/step)
step 90020 loss = 0.369, train_acc = 0.900 (3.368 sec/step)
step 90030 loss = 0.256, train_acc = 0.800 (3.330 sec/step)
step 90040 loss = 0.238, train_acc = 0.900 (3.316 sec/step)
step 90050 loss = 0.000, train_acc = 1.000 (3.374 sec/step)
step 90060 loss = 0.270, train_acc = 0.900 (3.330 sec/step)
step 90070 loss = 0.001, train_acc = 1.000 (3.395 sec/step)
step 90080 loss = 0.003, train_acc = 1.000 (3.404 sec/step)
step 90090 loss = 0.077, train_acc = 0.900 (3.368 sec/step)
step 90100 loss = 0.001, train_acc = 1.000 (3.338 sec/step)
step 90110 loss = 0.007, train_acc = 1.000 (3.403 sec/step)
step 90120 loss = 0.138, train_acc = 0.900 (3.363 sec/step)
step 90130 loss = 0.039, train_acc = 1.000 (3.385 sec/step)
step 90140 loss = 0.030, train_acc = 1.000 (3.360 sec/step)
step 90150 loss = 0.982, train_acc = 0.900 (3.331 sec/step)
step 90160 loss = 0.066, train_acc = 1.000 (3.369 sec/step)
step 90170 loss = 0.077, train_acc = 0.900 (3.393 sec/step)
step 90180 loss = 0.012, train_acc = 1.000 (3.291 sec/step)
step 90190 loss = 0.375, train_acc = 0.800 (3.343 sec/step)
step 90200 loss = 0.004, train_acc = 1.000 (3.396 sec/step)
step 90210 loss = 0.000, train_acc = 1.000 (3.357 sec/step)
step 90220 loss = 0.241, train_acc = 0.900 (3.403 sec/step)
step 90230 loss = 0.013, train_acc = 1.000 (3.389 sec/step)
step 90240 loss = 0.023, train_acc = 1.000 (3.407 sec/step)
step 90250 loss = 0.001, train_acc = 1.000 (3.343 sec/step)
step 90260 loss = 0.035, train_acc = 1.000 (3.311 sec/step)
step 90270 loss = 0.000, train_acc = 1.000 (3.325 sec/step)
step 90280 loss = 0.097, train_acc = 0.900 (3.322 sec/step)
step 90290 loss = 0.959, train_acc = 0.800 (3.355 sec/step)
step 90300 loss = 0.596, train_acc = 0.800 (3.414 sec/step)
step 90310 loss = 0.667, train_acc = 0.900 (3.374 sec/step)
step 90320 loss = 0.105, train_acc = 0.900 (3.309 sec/step)
step 90330 loss = 0.473, train_acc = 0.800 (3.330 sec/step)
step 90340 loss = 0.055, train_acc = 1.000 (3.350 sec/step)
step 90350 loss = 0.000, train_acc = 1.000 (3.449 sec/step)
step 90360 loss = 0.017, train_acc = 1.000 (3.363 sec/step)
step 90370 loss = 0.118, train_acc = 1.000 (3.388 sec/step)
step 90380 loss = 0.072, train_acc = 1.000 (3.380 sec/step)
step 90390 loss = 0.000, train_acc = 1.000 (3.378 sec/step)
step 90400 loss = 0.374, train_acc = 0.900 (3.321 sec/step)
step 90410 loss = 0.017, train_acc = 1.000 (3.326 sec/step)
step 90420 loss = 0.048, train_acc = 1.000 (3.334 sec/step)
step 90430 loss = 1.225, train_acc = 0.800 (3.320 sec/step)
step 90440 loss = 0.082, train_acc = 1.000 (3.354 sec/step)
step 90450 loss = 0.005, train_acc = 1.000 (3.357 sec/step)
step 90460 loss = 0.000, train_acc = 1.000 (3.369 sec/step)
step 90470 loss = 0.005, train_acc = 1.000 (3.422 sec/step)
step 90480 loss = 1.927, train_acc = 0.800 (3.407 sec/step)
step 90490 loss = 0.714, train_acc = 0.800 (3.348 sec/step)
step 90500 loss = 0.047, train_acc = 1.000 (3.451 sec/step)
step 90510 loss = 0.412, train_acc = 0.900 (3.361 sec/step)
step 90520 loss = 0.307, train_acc = 0.900 (3.371 sec/step)
step 90530 loss = 0.005, train_acc = 1.000 (3.453 sec/step)
step 90540 loss = 0.012, train_acc = 1.000 (3.305 sec/step)
step 90550 loss = 0.008, train_acc = 1.000 (3.357 sec/step)
step 90560 loss = 0.506, train_acc = 0.900 (3.327 sec/step)
step 90570 loss = 0.058, train_acc = 1.000 (3.334 sec/step)
step 90580 loss = 0.015, train_acc = 1.000 (3.393 sec/step)
step 90590 loss = 0.033, train_acc = 1.000 (3.375 sec/step)
step 90600 loss = 0.000, train_acc = 1.000 (3.325 sec/step)
step 90610 loss = 0.057, train_acc = 1.000 (3.321 sec/step)
step 90620 loss = 0.001, train_acc = 1.000 (3.360 sec/step)
step 90630 loss = 0.000, train_acc = 1.000 (3.377 sec/step)
step 90640 loss = 0.577, train_acc = 0.900 (3.317 sec/step)
step 90650 loss = 0.207, train_acc = 0.900 (3.305 sec/step)
step 90660 loss = 0.228, train_acc = 0.900 (3.406 sec/step)
step 90670 loss = 0.000, train_acc = 1.000 (3.338 sec/step)
step 90680 loss = 0.981, train_acc = 0.700 (3.337 sec/step)
step 90690 loss = 0.524, train_acc = 0.900 (3.386 sec/step)
step 90700 loss = 0.215, train_acc = 1.000 (3.350 sec/step)
step 90710 loss = 0.056, train_acc = 1.000 (3.361 sec/step)
step 90720 loss = 0.210, train_acc = 0.900 (3.332 sec/step)
step 90730 loss = 0.212, train_acc = 0.900 (3.360 sec/step)
step 90740 loss = 1.112, train_acc = 0.800 (3.389 sec/step)
step 90750 loss = 0.582, train_acc = 0.900 (3.352 sec/step)
step 90760 loss = 0.691, train_acc = 0.900 (3.397 sec/step)
step 90770 loss = 0.006, train_acc = 1.000 (3.382 sec/step)
step 90780 loss = 0.000, train_acc = 1.000 (3.357 sec/step)
step 90790 loss = 0.290, train_acc = 0.900 (3.332 sec/step)
step 90800 loss = 0.096, train_acc = 0.900 (3.346 sec/step)
step 90810 loss = 0.304, train_acc = 0.900 (3.395 sec/step)
step 90820 loss = 0.003, train_acc = 1.000 (3.301 sec/step)
step 90830 loss = 0.261, train_acc = 0.900 (3.367 sec/step)
step 90840 loss = 0.667, train_acc = 0.800 (3.348 sec/step)
step 90850 loss = 0.702, train_acc = 0.800 (3.338 sec/step)
step 90860 loss = 0.045, train_acc = 1.000 (3.383 sec/step)
step 90870 loss = 0.019, train_acc = 1.000 (3.311 sec/step)
step 90880 loss = 0.419, train_acc = 0.900 (3.393 sec/step)
step 90890 loss = 0.006, train_acc = 1.000 (3.382 sec/step)
step 90900 loss = 0.017, train_acc = 1.000 (3.402 sec/step)
step 90910 loss = 0.046, train_acc = 1.000 (3.430 sec/step)
step 90920 loss = 0.000, train_acc = 1.000 (3.363 sec/step)
step 90930 loss = 0.267, train_acc = 0.900 (3.337 sec/step)
step 90940 loss = 0.060, train_acc = 1.000 (3.357 sec/step)
step 90950 loss = 0.387, train_acc = 0.900 (3.334 sec/step)
step 90960 loss = 0.031, train_acc = 1.000 (3.324 sec/step)
step 90970 loss = 0.016, train_acc = 1.000 (3.318 sec/step)
step 90980 loss = 0.033, train_acc = 1.000 (3.325 sec/step)
step 90990 loss = 0.001, train_acc = 1.000 (3.330 sec/step)
step 91000 loss = 0.000, train_acc = 1.000 (3.405 sec/step)
step 91010 loss = 0.699, train_acc = 0.900 (3.354 sec/step)
step 91020 loss = 0.029, train_acc = 1.000 (3.354 sec/step)
step 91030 loss = 0.332, train_acc = 0.800 (3.354 sec/step)
step 91040 loss = 0.077, train_acc = 1.000 (3.349 sec/step)
step 91050 loss = 0.499, train_acc = 0.900 (3.362 sec/step)
step 91060 loss = 0.107, train_acc = 0.900 (3.354 sec/step)
step 91070 loss = 0.033, train_acc = 1.000 (3.386 sec/step)
step 91080 loss = 0.066, train_acc = 1.000 (3.349 sec/step)
step 91090 loss = 0.510, train_acc = 0.900 (3.342 sec/step)
step 91100 loss = 0.051, train_acc = 1.000 (3.327 sec/step)
step 91110 loss = 0.553, train_acc = 0.900 (3.365 sec/step)
step 91120 loss = 0.160, train_acc = 0.900 (3.308 sec/step)
step 91130 loss = 0.299, train_acc = 0.900 (3.317 sec/step)
step 91140 loss = 0.114, train_acc = 0.900 (3.478 sec/step)
step 91150 loss = 0.036, train_acc = 1.000 (3.366 sec/step)
step 91160 loss = 0.061, train_acc = 1.000 (3.368 sec/step)
step 91170 loss = 0.099, train_acc = 1.000 (3.311 sec/step)
step 91180 loss = 0.107, train_acc = 1.000 (3.306 sec/step)
step 91190 loss = 0.560, train_acc = 0.800 (3.337 sec/step)
VALIDATION acc = 0.536 (3.647 sec)
step 91200 loss = 0.192, train_acc = 0.900 (3.381 sec/step)
step 91210 loss = 0.160, train_acc = 0.900 (3.417 sec/step)
step 91220 loss = 0.000, train_acc = 1.000 (3.376 sec/step)
step 91230 loss = 0.534, train_acc = 0.900 (3.413 sec/step)
step 91240 loss = 0.167, train_acc = 0.900 (3.380 sec/step)
step 91250 loss = 1.197, train_acc = 0.900 (3.362 sec/step)
step 91260 loss = 0.018, train_acc = 1.000 (3.322 sec/step)
step 91270 loss = 0.225, train_acc = 0.900 (3.368 sec/step)
step 91280 loss = 0.001, train_acc = 1.000 (3.390 sec/step)
step 91290 loss = 0.568, train_acc = 0.900 (3.325 sec/step)
step 91300 loss = 0.000, train_acc = 1.000 (3.340 sec/step)
step 91310 loss = 0.000, train_acc = 1.000 (3.312 sec/step)
step 91320 loss = 0.012, train_acc = 1.000 (3.389 sec/step)
step 91330 loss = 0.141, train_acc = 0.900 (3.315 sec/step)
step 91340 loss = 0.192, train_acc = 0.900 (3.357 sec/step)
step 91350 loss = 0.057, train_acc = 1.000 (3.335 sec/step)
step 91360 loss = 0.045, train_acc = 1.000 (3.399 sec/step)
step 91370 loss = 0.164, train_acc = 0.900 (3.329 sec/step)
step 91380 loss = 0.010, train_acc = 1.000 (3.334 sec/step)
step 91390 loss = 0.519, train_acc = 0.900 (3.372 sec/step)
step 91400 loss = 0.164, train_acc = 0.900 (3.378 sec/step)
step 91410 loss = 0.278, train_acc = 0.800 (3.423 sec/step)
step 91420 loss = 1.797, train_acc = 0.700 (3.353 sec/step)
step 91430 loss = 0.023, train_acc = 1.000 (3.313 sec/step)
step 91440 loss = 0.313, train_acc = 0.900 (3.331 sec/step)
step 91450 loss = 0.401, train_acc = 0.900 (3.356 sec/step)
step 91460 loss = 0.070, train_acc = 1.000 (3.323 sec/step)
step 91470 loss = 0.110, train_acc = 0.900 (3.350 sec/step)
step 91480 loss = 0.003, train_acc = 1.000 (3.342 sec/step)
step 91490 loss = 0.000, train_acc = 1.000 (3.357 sec/step)
step 91500 loss = 0.011, train_acc = 1.000 (3.331 sec/step)
step 91510 loss = 0.346, train_acc = 0.900 (3.382 sec/step)
step 91520 loss = 0.004, train_acc = 1.000 (3.445 sec/step)
step 91530 loss = 0.001, train_acc = 1.000 (3.361 sec/step)
step 91540 loss = 0.060, train_acc = 1.000 (3.364 sec/step)
step 91550 loss = 0.337, train_acc = 0.900 (3.372 sec/step)
step 91560 loss = 0.711, train_acc = 0.800 (3.454 sec/step)
step 91570 loss = 0.023, train_acc = 1.000 (3.354 sec/step)
step 91580 loss = 0.000, train_acc = 1.000 (3.328 sec/step)
step 91590 loss = 0.000, train_acc = 1.000 (3.334 sec/step)
step 91600 loss = 1.819, train_acc = 0.900 (3.335 sec/step)
step 91610 loss = 0.010, train_acc = 1.000 (3.332 sec/step)
step 91620 loss = 0.848, train_acc = 0.800 (3.337 sec/step)
step 91630 loss = 0.023, train_acc = 1.000 (3.323 sec/step)
step 91640 loss = 0.207, train_acc = 0.900 (3.339 sec/step)
step 91650 loss = 0.033, train_acc = 1.000 (3.367 sec/step)
step 91660 loss = 0.305, train_acc = 0.800 (3.368 sec/step)
step 91670 loss = 0.000, train_acc = 1.000 (3.345 sec/step)
step 91680 loss = 0.103, train_acc = 1.000 (3.368 sec/step)
step 91690 loss = 0.005, train_acc = 1.000 (3.324 sec/step)
step 91700 loss = 0.398, train_acc = 0.900 (3.498 sec/step)
step 91710 loss = 0.042, train_acc = 1.000 (3.372 sec/step)
step 91720 loss = 0.004, train_acc = 1.000 (3.362 sec/step)
step 91730 loss = 0.054, train_acc = 1.000 (3.391 sec/step)
step 91740 loss = 0.246, train_acc = 0.900 (3.358 sec/step)
step 91750 loss = 0.084, train_acc = 0.900 (3.426 sec/step)
step 91760 loss = 0.079, train_acc = 0.900 (3.325 sec/step)
step 91770 loss = 0.772, train_acc = 0.900 (3.313 sec/step)
step 91780 loss = 0.542, train_acc = 0.800 (3.396 sec/step)
step 91790 loss = 0.178, train_acc = 0.900 (3.341 sec/step)
step 91800 loss = 0.213, train_acc = 0.900 (3.350 sec/step)
step 91810 loss = 0.007, train_acc = 1.000 (3.354 sec/step)
step 91820 loss = 0.140, train_acc = 0.900 (3.405 sec/step)
step 91830 loss = 0.170, train_acc = 0.900 (3.323 sec/step)
step 91840 loss = 0.053, train_acc = 1.000 (3.300 sec/step)
step 91850 loss = 0.215, train_acc = 0.900 (3.349 sec/step)
step 91860 loss = 0.246, train_acc = 0.900 (3.349 sec/step)
step 91870 loss = 0.042, train_acc = 1.000 (3.307 sec/step)
step 91880 loss = 0.005, train_acc = 1.000 (3.326 sec/step)
step 91890 loss = 0.195, train_acc = 0.900 (3.345 sec/step)
step 91900 loss = 0.045, train_acc = 1.000 (3.371 sec/step)
step 91910 loss = 0.184, train_acc = 0.900 (3.337 sec/step)
step 91920 loss = 0.002, train_acc = 1.000 (3.350 sec/step)
step 91930 loss = 0.012, train_acc = 1.000 (3.314 sec/step)
step 91940 loss = 0.006, train_acc = 1.000 (3.458 sec/step)
step 91950 loss = 0.057, train_acc = 1.000 (3.372 sec/step)
step 91960 loss = 0.440, train_acc = 0.900 (3.355 sec/step)
step 91970 loss = 0.103, train_acc = 1.000 (3.394 sec/step)
step 91980 loss = 0.006, train_acc = 1.000 (3.362 sec/step)
step 91990 loss = 0.003, train_acc = 1.000 (3.355 sec/step)
step 92000 loss = 0.046, train_acc = 1.000 (3.368 sec/step)
step 92010 loss = 0.555, train_acc = 0.900 (3.390 sec/step)
step 92020 loss = 0.503, train_acc = 0.900 (3.340 sec/step)
step 92030 loss = 0.003, train_acc = 1.000 (3.371 sec/step)
step 92040 loss = 0.223, train_acc = 0.900 (3.329 sec/step)
step 92050 loss = 0.017, train_acc = 1.000 (3.334 sec/step)
step 92060 loss = 0.135, train_acc = 0.900 (3.313 sec/step)
step 92070 loss = 0.127, train_acc = 0.900 (3.378 sec/step)
step 92080 loss = 0.111, train_acc = 1.000 (3.391 sec/step)
step 92090 loss = 0.000, train_acc = 1.000 (3.374 sec/step)
step 92100 loss = 0.076, train_acc = 1.000 (3.338 sec/step)
step 92110 loss = 0.011, train_acc = 1.000 (3.348 sec/step)
step 92120 loss = 0.035, train_acc = 1.000 (3.328 sec/step)
step 92130 loss = 0.009, train_acc = 1.000 (3.374 sec/step)
step 92140 loss = 0.051, train_acc = 1.000 (3.396 sec/step)
step 92150 loss = 0.001, train_acc = 1.000 (3.344 sec/step)
step 92160 loss = 0.002, train_acc = 1.000 (3.411 sec/step)
step 92170 loss = 0.000, train_acc = 1.000 (3.367 sec/step)
step 92180 loss = 0.449, train_acc = 0.800 (3.348 sec/step)
step 92190 loss = 0.055, train_acc = 1.000 (3.353 sec/step)
step 92200 loss = 0.002, train_acc = 1.000 (3.390 sec/step)
step 92210 loss = 0.023, train_acc = 1.000 (3.423 sec/step)
step 92220 loss = 0.011, train_acc = 1.000 (3.333 sec/step)
step 92230 loss = 0.195, train_acc = 0.900 (3.367 sec/step)
step 92240 loss = 0.115, train_acc = 0.900 (3.430 sec/step)
step 92250 loss = 0.475, train_acc = 0.900 (3.374 sec/step)
step 92260 loss = 0.255, train_acc = 0.900 (3.324 sec/step)
step 92270 loss = 0.066, train_acc = 1.000 (3.341 sec/step)
step 92280 loss = 0.000, train_acc = 1.000 (3.479 sec/step)
step 92290 loss = 0.000, train_acc = 1.000 (3.337 sec/step)
step 92300 loss = 0.602, train_acc = 0.800 (3.358 sec/step)
step 92310 loss = 0.001, train_acc = 1.000 (3.333 sec/step)
step 92320 loss = 0.019, train_acc = 1.000 (3.367 sec/step)
step 92330 loss = 0.312, train_acc = 0.900 (3.333 sec/step)
step 92340 loss = 1.062, train_acc = 0.900 (3.374 sec/step)
step 92350 loss = 0.042, train_acc = 1.000 (3.357 sec/step)
step 92360 loss = 0.065, train_acc = 1.000 (3.411 sec/step)
step 92370 loss = 0.045, train_acc = 1.000 (3.371 sec/step)
step 92380 loss = 0.001, train_acc = 1.000 (3.414 sec/step)
step 92390 loss = 0.002, train_acc = 1.000 (3.387 sec/step)
step 92400 loss = 0.211, train_acc = 0.900 (3.379 sec/step)
step 92410 loss = 0.000, train_acc = 1.000 (3.349 sec/step)
step 92420 loss = 0.001, train_acc = 1.000 (3.342 sec/step)
step 92430 loss = 0.004, train_acc = 1.000 (3.396 sec/step)
step 92440 loss = 0.452, train_acc = 0.900 (3.405 sec/step)
step 92450 loss = 0.099, train_acc = 1.000 (3.384 sec/step)
step 92460 loss = 0.056, train_acc = 1.000 (3.335 sec/step)
step 92470 loss = 0.028, train_acc = 1.000 (3.363 sec/step)
step 92480 loss = 0.001, train_acc = 1.000 (3.359 sec/step)
step 92490 loss = 1.065, train_acc = 0.900 (3.383 sec/step)
step 92500 loss = 0.328, train_acc = 0.900 (3.356 sec/step)
step 92510 loss = 0.035, train_acc = 1.000 (3.336 sec/step)
step 92520 loss = 0.000, train_acc = 1.000 (3.369 sec/step)
step 92530 loss = 0.258, train_acc = 0.900 (3.340 sec/step)
step 92540 loss = 0.018, train_acc = 1.000 (3.352 sec/step)
step 92550 loss = 0.006, train_acc = 1.000 (3.362 sec/step)
step 92560 loss = 0.008, train_acc = 1.000 (3.374 sec/step)
step 92570 loss = 0.006, train_acc = 1.000 (3.402 sec/step)
step 92580 loss = 3.099, train_acc = 0.800 (3.319 sec/step)
step 92590 loss = 1.690, train_acc = 0.400 (3.368 sec/step)
step 92600 loss = 0.068, train_acc = 1.000 (3.410 sec/step)
step 92610 loss = 0.003, train_acc = 1.000 (3.389 sec/step)
step 92620 loss = 0.061, train_acc = 1.000 (3.369 sec/step)
step 92630 loss = 0.000, train_acc = 1.000 (3.377 sec/step)
step 92640 loss = 0.108, train_acc = 0.900 (3.351 sec/step)
step 92650 loss = 0.107, train_acc = 0.900 (3.391 sec/step)
step 92660 loss = 0.015, train_acc = 1.000 (3.331 sec/step)
step 92670 loss = 0.128, train_acc = 0.900 (3.346 sec/step)
step 92680 loss = 0.040, train_acc = 1.000 (3.331 sec/step)
step 92690 loss = 0.005, train_acc = 1.000 (3.344 sec/step)
step 92700 loss = 0.008, train_acc = 1.000 (3.357 sec/step)
step 92710 loss = 0.377, train_acc = 0.900 (3.353 sec/step)
step 92720 loss = 0.229, train_acc = 0.900 (3.360 sec/step)
step 92730 loss = 0.004, train_acc = 1.000 (3.313 sec/step)
step 92740 loss = 0.008, train_acc = 1.000 (3.332 sec/step)
step 92750 loss = 0.058, train_acc = 1.000 (3.354 sec/step)
step 92760 loss = 0.000, train_acc = 1.000 (3.354 sec/step)
step 92770 loss = 0.043, train_acc = 1.000 (3.344 sec/step)
step 92780 loss = 0.006, train_acc = 1.000 (3.339 sec/step)
step 92790 loss = 1.034, train_acc = 0.800 (3.340 sec/step)
step 92800 loss = 0.121, train_acc = 0.900 (3.342 sec/step)
step 92810 loss = 0.035, train_acc = 1.000 (3.338 sec/step)
step 92820 loss = 0.496, train_acc = 0.800 (3.349 sec/step)
step 92830 loss = 0.520, train_acc = 0.800 (3.353 sec/step)
step 92840 loss = 0.293, train_acc = 0.900 (3.384 sec/step)
step 92850 loss = 0.001, train_acc = 1.000 (3.357 sec/step)
step 92860 loss = 0.171, train_acc = 1.000 (3.310 sec/step)
step 92870 loss = 0.010, train_acc = 1.000 (3.409 sec/step)
step 92880 loss = 0.000, train_acc = 1.000 (3.427 sec/step)
step 92890 loss = 0.000, train_acc = 1.000 (3.373 sec/step)
step 92900 loss = 0.000, train_acc = 1.000 (3.362 sec/step)
step 92910 loss = 0.001, train_acc = 1.000 (3.305 sec/step)
step 92920 loss = 0.097, train_acc = 1.000 (3.309 sec/step)
step 92930 loss = 0.044, train_acc = 1.000 (3.366 sec/step)
step 92940 loss = 0.008, train_acc = 1.000 (3.382 sec/step)
step 92950 loss = 0.114, train_acc = 0.900 (3.354 sec/step)
step 92960 loss = 0.000, train_acc = 1.000 (3.385 sec/step)
step 92970 loss = 0.000, train_acc = 1.000 (3.378 sec/step)
step 92980 loss = 0.030, train_acc = 1.000 (3.328 sec/step)
step 92990 loss = 0.000, train_acc = 1.000 (3.324 sec/step)
step 93000 loss = 0.021, train_acc = 1.000 (3.363 sec/step)
step 93010 loss = 0.209, train_acc = 0.900 (3.372 sec/step)
step 93020 loss = 0.005, train_acc = 1.000 (3.400 sec/step)
step 93030 loss = 0.227, train_acc = 0.800 (3.431 sec/step)
step 93040 loss = 0.378, train_acc = 0.900 (3.412 sec/step)
step 93050 loss = 0.000, train_acc = 1.000 (3.372 sec/step)
step 93060 loss = 0.000, train_acc = 1.000 (3.340 sec/step)
step 93070 loss = 0.408, train_acc = 0.900 (3.336 sec/step)
step 93080 loss = 0.250, train_acc = 0.900 (3.334 sec/step)
step 93090 loss = 0.162, train_acc = 0.900 (3.374 sec/step)
VALIDATION acc = 0.530 (3.619 sec)
step 93100 loss = 0.268, train_acc = 0.900 (3.385 sec/step)
step 93110 loss = 0.108, train_acc = 1.000 (3.375 sec/step)
step 93120 loss = 2.377, train_acc = 0.900 (3.364 sec/step)
step 93130 loss = 0.047, train_acc = 1.000 (3.397 sec/step)
step 93140 loss = 0.002, train_acc = 1.000 (3.356 sec/step)
step 93150 loss = 0.580, train_acc = 0.900 (3.344 sec/step)
step 93160 loss = 0.000, train_acc = 1.000 (3.417 sec/step)
step 93170 loss = 0.035, train_acc = 1.000 (3.401 sec/step)
step 93180 loss = 0.000, train_acc = 1.000 (3.347 sec/step)
step 93190 loss = 0.024, train_acc = 1.000 (3.321 sec/step)
step 93200 loss = 0.070, train_acc = 1.000 (3.433 sec/step)
step 93210 loss = 0.001, train_acc = 1.000 (3.370 sec/step)
step 93220 loss = 0.026, train_acc = 1.000 (3.345 sec/step)
step 93230 loss = 0.045, train_acc = 1.000 (3.425 sec/step)
step 93240 loss = 0.007, train_acc = 1.000 (3.339 sec/step)
step 93250 loss = 0.092, train_acc = 1.000 (3.382 sec/step)
step 93260 loss = 0.161, train_acc = 0.900 (3.396 sec/step)
step 93270 loss = 0.190, train_acc = 0.900 (3.370 sec/step)
step 93280 loss = 0.447, train_acc = 0.800 (3.388 sec/step)
step 93290 loss = 0.080, train_acc = 0.900 (3.363 sec/step)
step 93300 loss = 0.006, train_acc = 1.000 (3.336 sec/step)
step 93310 loss = 0.018, train_acc = 1.000 (3.393 sec/step)
step 93320 loss = 0.104, train_acc = 1.000 (3.359 sec/step)
step 93330 loss = 0.025, train_acc = 1.000 (3.315 sec/step)
step 93340 loss = 0.048, train_acc = 1.000 (3.498 sec/step)
step 93350 loss = 0.000, train_acc = 1.000 (3.300 sec/step)
step 93360 loss = 0.762, train_acc = 0.800 (3.393 sec/step)
step 93370 loss = 0.012, train_acc = 1.000 (3.347 sec/step)
step 93380 loss = 0.143, train_acc = 1.000 (3.354 sec/step)
step 93390 loss = 0.022, train_acc = 1.000 (3.319 sec/step)
step 93400 loss = 0.390, train_acc = 0.800 (3.348 sec/step)
step 93410 loss = 0.027, train_acc = 1.000 (3.358 sec/step)
step 93420 loss = 0.007, train_acc = 1.000 (3.354 sec/step)
step 93430 loss = 0.001, train_acc = 1.000 (3.344 sec/step)
step 93440 loss = 0.003, train_acc = 1.000 (3.359 sec/step)
step 93450 loss = 0.440, train_acc = 0.900 (3.403 sec/step)
step 93460 loss = 0.016, train_acc = 1.000 (3.376 sec/step)
step 93470 loss = 0.014, train_acc = 1.000 (3.349 sec/step)
step 93480 loss = 0.006, train_acc = 1.000 (3.345 sec/step)
step 93490 loss = 0.180, train_acc = 0.900 (3.434 sec/step)
step 93500 loss = 0.374, train_acc = 0.700 (3.370 sec/step)
step 93510 loss = 0.001, train_acc = 1.000 (3.338 sec/step)
step 93520 loss = 0.000, train_acc = 1.000 (3.365 sec/step)
step 93530 loss = 0.123, train_acc = 0.900 (3.398 sec/step)
step 93540 loss = 0.035, train_acc = 1.000 (3.333 sec/step)
step 93550 loss = 0.006, train_acc = 1.000 (3.361 sec/step)
step 93560 loss = 0.382, train_acc = 0.800 (3.351 sec/step)
step 93570 loss = 0.012, train_acc = 1.000 (3.417 sec/step)
step 93580 loss = 0.004, train_acc = 1.000 (3.375 sec/step)
step 93590 loss = 0.022, train_acc = 1.000 (3.349 sec/step)
step 93600 loss = 0.000, train_acc = 1.000 (3.407 sec/step)
step 93610 loss = 0.561, train_acc = 0.900 (3.334 sec/step)
step 93620 loss = 0.186, train_acc = 1.000 (3.359 sec/step)
step 93630 loss = 0.206, train_acc = 0.900 (3.416 sec/step)
step 93640 loss = 0.592, train_acc = 0.800 (3.393 sec/step)
step 93650 loss = 1.064, train_acc = 0.900 (3.305 sec/step)
step 93660 loss = 0.002, train_acc = 1.000 (3.335 sec/step)
step 93670 loss = 0.285, train_acc = 0.900 (3.381 sec/step)
step 93680 loss = 0.501, train_acc = 0.800 (3.357 sec/step)
step 93690 loss = 0.003, train_acc = 1.000 (3.408 sec/step)
step 93700 loss = 0.031, train_acc = 1.000 (3.370 sec/step)
step 93710 loss = 0.021, train_acc = 1.000 (3.423 sec/step)
step 93720 loss = 1.496, train_acc = 0.900 (3.370 sec/step)
step 93730 loss = 0.040, train_acc = 1.000 (3.415 sec/step)
step 93740 loss = 0.004, train_acc = 1.000 (3.394 sec/step)
step 93750 loss = 0.643, train_acc = 0.900 (3.321 sec/step)
step 93760 loss = 0.597, train_acc = 0.900 (3.361 sec/step)
step 93770 loss = 0.023, train_acc = 1.000 (3.344 sec/step)
step 93780 loss = 0.596, train_acc = 0.800 (3.369 sec/step)
step 93790 loss = 0.065, train_acc = 1.000 (3.489 sec/step)
step 93800 loss = 0.319, train_acc = 0.900 (3.315 sec/step)
step 93810 loss = 0.011, train_acc = 1.000 (3.342 sec/step)
step 93820 loss = 0.302, train_acc = 1.000 (3.345 sec/step)
step 93830 loss = 0.001, train_acc = 1.000 (3.359 sec/step)
step 93840 loss = 0.010, train_acc = 1.000 (3.319 sec/step)
step 93850 loss = 0.101, train_acc = 1.000 (3.319 sec/step)
step 93860 loss = 0.149, train_acc = 1.000 (3.369 sec/step)
step 93870 loss = 0.933, train_acc = 0.800 (3.370 sec/step)
step 93880 loss = 0.001, train_acc = 1.000 (3.373 sec/step)
step 93890 loss = 0.957, train_acc = 0.900 (3.385 sec/step)
step 93900 loss = 0.121, train_acc = 1.000 (3.374 sec/step)
step 93910 loss = 0.003, train_acc = 1.000 (3.391 sec/step)
step 93920 loss = 0.001, train_acc = 1.000 (3.411 sec/step)
step 93930 loss = 0.076, train_acc = 1.000 (3.326 sec/step)
step 93940 loss = 0.004, train_acc = 1.000 (3.367 sec/step)
step 93950 loss = 0.725, train_acc = 0.700 (3.393 sec/step)
step 93960 loss = 0.001, train_acc = 1.000 (3.316 sec/step)
step 93970 loss = 0.207, train_acc = 0.900 (3.457 sec/step)
step 93980 loss = 0.089, train_acc = 0.900 (3.387 sec/step)
step 93990 loss = 0.000, train_acc = 1.000 (3.370 sec/step)
step 94000 loss = 0.011, train_acc = 1.000 (3.385 sec/step)
step 94010 loss = 0.051, train_acc = 1.000 (3.398 sec/step)
step 94020 loss = 0.000, train_acc = 1.000 (3.396 sec/step)
step 94030 loss = 0.168, train_acc = 0.900 (3.344 sec/step)
step 94040 loss = 0.428, train_acc = 0.800 (3.387 sec/step)
step 94050 loss = 0.034, train_acc = 1.000 (3.406 sec/step)
step 94060 loss = 1.102, train_acc = 0.900 (3.351 sec/step)
step 94070 loss = 0.421, train_acc = 0.900 (3.359 sec/step)
step 94080 loss = 0.000, train_acc = 1.000 (3.376 sec/step)
step 94090 loss = 0.069, train_acc = 1.000 (3.359 sec/step)
step 94100 loss = 0.814, train_acc = 0.800 (3.388 sec/step)
step 94110 loss = 0.057, train_acc = 1.000 (3.369 sec/step)
step 94120 loss = 0.050, train_acc = 1.000 (3.437 sec/step)
step 94130 loss = 0.000, train_acc = 1.000 (3.416 sec/step)
step 94140 loss = 0.000, train_acc = 1.000 (3.381 sec/step)
step 94150 loss = 0.089, train_acc = 1.000 (3.357 sec/step)
step 94160 loss = 0.007, train_acc = 1.000 (3.349 sec/step)
step 94170 loss = 0.060, train_acc = 1.000 (3.390 sec/step)
step 94180 loss = 0.052, train_acc = 1.000 (3.319 sec/step)
step 94190 loss = 0.006, train_acc = 1.000 (3.376 sec/step)
step 94200 loss = 0.158, train_acc = 1.000 (3.359 sec/step)
step 94210 loss = 0.004, train_acc = 1.000 (3.329 sec/step)
step 94220 loss = 0.000, train_acc = 1.000 (3.386 sec/step)
step 94230 loss = 0.654, train_acc = 0.900 (3.392 sec/step)
step 94240 loss = 0.007, train_acc = 1.000 (3.338 sec/step)
step 94250 loss = 0.247, train_acc = 0.900 (3.325 sec/step)
step 94260 loss = 0.012, train_acc = 1.000 (3.419 sec/step)
step 94270 loss = 1.301, train_acc = 0.700 (3.382 sec/step)
step 94280 loss = 0.007, train_acc = 1.000 (3.389 sec/step)
step 94290 loss = 0.234, train_acc = 0.900 (3.346 sec/step)
step 94300 loss = 0.023, train_acc = 1.000 (3.359 sec/step)
step 94310 loss = 0.000, train_acc = 1.000 (3.377 sec/step)
step 94320 loss = 0.009, train_acc = 1.000 (3.448 sec/step)
step 94330 loss = 0.021, train_acc = 1.000 (3.390 sec/step)
step 94340 loss = 0.181, train_acc = 0.900 (3.359 sec/step)
step 94350 loss = 0.000, train_acc = 1.000 (3.359 sec/step)
step 94360 loss = 0.206, train_acc = 0.900 (3.333 sec/step)
step 94370 loss = 0.480, train_acc = 0.800 (3.349 sec/step)
step 94380 loss = 1.140, train_acc = 0.800 (3.401 sec/step)
step 94390 loss = 0.364, train_acc = 0.800 (3.387 sec/step)
step 94400 loss = 0.009, train_acc = 1.000 (3.368 sec/step)
step 94410 loss = 0.923, train_acc = 0.900 (3.351 sec/step)
step 94420 loss = 0.157, train_acc = 0.900 (3.329 sec/step)
step 94430 loss = 1.186, train_acc = 0.900 (3.374 sec/step)
step 94440 loss = 0.463, train_acc = 0.800 (3.351 sec/step)
step 94450 loss = 0.336, train_acc = 0.900 (3.362 sec/step)
step 94460 loss = 0.014, train_acc = 1.000 (3.347 sec/step)
step 94470 loss = 0.598, train_acc = 0.800 (3.465 sec/step)
step 94480 loss = 0.008, train_acc = 1.000 (3.372 sec/step)
step 94490 loss = 0.234, train_acc = 0.800 (3.359 sec/step)
step 94500 loss = 0.613, train_acc = 0.900 (3.362 sec/step)
step 94510 loss = 0.112, train_acc = 0.900 (3.346 sec/step)
step 94520 loss = 0.400, train_acc = 0.900 (3.373 sec/step)
step 94530 loss = 0.351, train_acc = 0.900 (3.327 sec/step)
step 94540 loss = 0.222, train_acc = 0.900 (3.338 sec/step)
step 94550 loss = 0.032, train_acc = 1.000 (3.340 sec/step)
step 94560 loss = 0.000, train_acc = 1.000 (3.359 sec/step)
step 94570 loss = 0.042, train_acc = 1.000 (3.339 sec/step)
step 94580 loss = 0.150, train_acc = 0.900 (3.338 sec/step)
step 94590 loss = 0.103, train_acc = 1.000 (3.355 sec/step)
step 94600 loss = 0.150, train_acc = 0.900 (3.344 sec/step)
step 94610 loss = 0.028, train_acc = 1.000 (3.395 sec/step)
step 94620 loss = 0.372, train_acc = 0.900 (3.349 sec/step)
step 94630 loss = 0.001, train_acc = 1.000 (3.375 sec/step)
step 94640 loss = 0.239, train_acc = 0.900 (3.383 sec/step)
step 94650 loss = 0.002, train_acc = 1.000 (3.361 sec/step)
step 94660 loss = 0.005, train_acc = 1.000 (3.379 sec/step)
step 94670 loss = 0.002, train_acc = 1.000 (3.392 sec/step)
step 94680 loss = 0.001, train_acc = 1.000 (3.329 sec/step)
step 94690 loss = 0.015, train_acc = 1.000 (3.351 sec/step)
step 94700 loss = 0.097, train_acc = 0.900 (3.359 sec/step)
step 94710 loss = 0.015, train_acc = 1.000 (3.346 sec/step)
step 94720 loss = 0.028, train_acc = 1.000 (3.327 sec/step)
step 94730 loss = 1.136, train_acc = 0.800 (3.367 sec/step)
step 94740 loss = 0.452, train_acc = 0.900 (3.399 sec/step)
step 94750 loss = 0.298, train_acc = 0.900 (3.344 sec/step)
step 94760 loss = 0.388, train_acc = 0.900 (3.362 sec/step)
step 94770 loss = 0.004, train_acc = 1.000 (3.374 sec/step)
step 94780 loss = 0.003, train_acc = 1.000 (3.365 sec/step)
step 94790 loss = 0.006, train_acc = 1.000 (3.333 sec/step)
step 94800 loss = 0.036, train_acc = 1.000 (3.350 sec/step)
step 94810 loss = 0.017, train_acc = 1.000 (3.367 sec/step)
step 94820 loss = 0.001, train_acc = 1.000 (3.339 sec/step)
step 94830 loss = 0.001, train_acc = 1.000 (3.423 sec/step)
step 94840 loss = 0.000, train_acc = 1.000 (3.389 sec/step)
step 94850 loss = 0.000, train_acc = 1.000 (3.375 sec/step)
step 94860 loss = 0.431, train_acc = 0.900 (3.352 sec/step)
step 94870 loss = 0.137, train_acc = 0.900 (3.369 sec/step)
step 94880 loss = 0.238, train_acc = 0.900 (3.385 sec/step)
step 94890 loss = 0.026, train_acc = 1.000 (3.390 sec/step)
step 94900 loss = 0.085, train_acc = 1.000 (3.366 sec/step)
step 94910 loss = 0.173, train_acc = 0.900 (3.379 sec/step)
step 94920 loss = 0.633, train_acc = 0.900 (3.403 sec/step)
step 94930 loss = 0.188, train_acc = 0.900 (3.374 sec/step)
step 94940 loss = 0.191, train_acc = 0.900 (3.331 sec/step)
step 94950 loss = 0.001, train_acc = 1.000 (3.366 sec/step)
step 94960 loss = 0.690, train_acc = 0.900 (3.374 sec/step)
step 94970 loss = 0.145, train_acc = 1.000 (3.373 sec/step)
step 94980 loss = 0.152, train_acc = 0.900 (3.412 sec/step)
step 94990 loss = 0.307, train_acc = 0.900 (3.355 sec/step)
VALIDATION acc = 0.531 (3.659 sec)
step 95000 loss = 0.541, train_acc = 0.900 (3.357 sec/step)
step 95010 loss = 0.008, train_acc = 1.000 (3.390 sec/step)
step 95020 loss = 0.027, train_acc = 1.000 (3.348 sec/step)
step 95030 loss = 0.594, train_acc = 0.700 (3.359 sec/step)
step 95040 loss = 0.005, train_acc = 1.000 (3.400 sec/step)
step 95050 loss = 0.088, train_acc = 0.900 (3.338 sec/step)
step 95060 loss = 0.019, train_acc = 1.000 (3.346 sec/step)
step 95070 loss = 0.021, train_acc = 1.000 (3.375 sec/step)
step 95080 loss = 0.000, train_acc = 1.000 (3.385 sec/step)
step 95090 loss = 0.001, train_acc = 1.000 (3.342 sec/step)
step 95100 loss = 0.383, train_acc = 0.800 (3.344 sec/step)
step 95110 loss = 1.527, train_acc = 0.900 (3.419 sec/step)
step 95120 loss = 0.628, train_acc = 0.900 (3.377 sec/step)
step 95130 loss = 0.077, train_acc = 1.000 (3.383 sec/step)
step 95140 loss = 0.024, train_acc = 1.000 (3.320 sec/step)
step 95150 loss = 1.150, train_acc = 0.900 (3.373 sec/step)
step 95160 loss = 0.338, train_acc = 0.800 (3.418 sec/step)
step 95170 loss = 0.000, train_acc = 1.000 (3.366 sec/step)
step 95180 loss = 0.648, train_acc = 0.900 (3.342 sec/step)
step 95190 loss = 0.000, train_acc = 1.000 (3.358 sec/step)
step 95200 loss = 0.014, train_acc = 1.000 (3.339 sec/step)
step 95210 loss = 0.051, train_acc = 1.000 (3.337 sec/step)
step 95220 loss = 0.000, train_acc = 1.000 (3.356 sec/step)
step 95230 loss = 0.074, train_acc = 1.000 (3.341 sec/step)
step 95240 loss = 1.468, train_acc = 0.900 (3.323 sec/step)
step 95250 loss = 0.048, train_acc = 1.000 (3.387 sec/step)
step 95260 loss = 0.158, train_acc = 0.900 (3.399 sec/step)
step 95270 loss = 0.021, train_acc = 1.000 (3.364 sec/step)
step 95280 loss = 0.018, train_acc = 1.000 (3.398 sec/step)
step 95290 loss = 0.225, train_acc = 0.900 (3.364 sec/step)
step 95300 loss = 0.235, train_acc = 0.900 (3.375 sec/step)
step 95310 loss = 0.042, train_acc = 1.000 (3.373 sec/step)
step 95320 loss = 0.173, train_acc = 0.800 (3.379 sec/step)
step 95330 loss = 1.579, train_acc = 0.900 (3.334 sec/step)
step 95340 loss = 0.045, train_acc = 1.000 (3.322 sec/step)
step 95350 loss = 0.137, train_acc = 0.900 (3.386 sec/step)
step 95360 loss = 0.013, train_acc = 1.000 (3.386 sec/step)
step 95370 loss = 0.011, train_acc = 1.000 (3.320 sec/step)
step 95380 loss = 0.023, train_acc = 1.000 (3.501 sec/step)
step 95390 loss = 0.319, train_acc = 0.900 (3.317 sec/step)
step 95400 loss = 0.797, train_acc = 0.800 (3.489 sec/step)
step 95410 loss = 0.704, train_acc = 0.800 (3.334 sec/step)
step 95420 loss = 1.111, train_acc = 0.900 (3.419 sec/step)
step 95430 loss = 0.069, train_acc = 1.000 (3.374 sec/step)
step 95440 loss = 0.000, train_acc = 1.000 (3.448 sec/step)
step 95450 loss = 0.001, train_acc = 1.000 (3.334 sec/step)
step 95460 loss = 0.006, train_acc = 1.000 (3.345 sec/step)
step 95470 loss = 0.000, train_acc = 1.000 (3.320 sec/step)
step 95480 loss = 0.162, train_acc = 0.900 (3.331 sec/step)
step 95490 loss = 0.083, train_acc = 1.000 (3.329 sec/step)
step 95500 loss = 0.042, train_acc = 1.000 (3.315 sec/step)
step 95510 loss = 0.016, train_acc = 1.000 (3.348 sec/step)
step 95520 loss = 0.026, train_acc = 1.000 (3.446 sec/step)
step 95530 loss = 0.375, train_acc = 0.900 (3.372 sec/step)
step 95540 loss = 0.952, train_acc = 0.800 (3.365 sec/step)
step 95550 loss = 0.001, train_acc = 1.000 (3.330 sec/step)
step 95560 loss = 0.174, train_acc = 0.900 (3.354 sec/step)
step 95570 loss = 0.061, train_acc = 1.000 (3.355 sec/step)
step 95580 loss = 0.034, train_acc = 1.000 (3.359 sec/step)
step 95590 loss = 0.048, train_acc = 1.000 (3.412 sec/step)
step 95600 loss = 0.594, train_acc = 0.800 (3.371 sec/step)
step 95610 loss = 0.011, train_acc = 1.000 (3.370 sec/step)
step 95620 loss = 0.031, train_acc = 1.000 (3.363 sec/step)
step 95630 loss = 0.052, train_acc = 1.000 (3.342 sec/step)
step 95640 loss = 0.405, train_acc = 0.900 (3.414 sec/step)
step 95650 loss = 0.011, train_acc = 1.000 (3.358 sec/step)
step 95660 loss = 0.025, train_acc = 1.000 (3.349 sec/step)
step 95670 loss = 0.420, train_acc = 0.900 (3.307 sec/step)
step 95680 loss = 0.000, train_acc = 1.000 (3.353 sec/step)
step 95690 loss = 0.013, train_acc = 1.000 (3.364 sec/step)
step 95700 loss = 0.209, train_acc = 0.800 (3.329 sec/step)
step 95710 loss = 0.005, train_acc = 1.000 (3.371 sec/step)
step 95720 loss = 0.307, train_acc = 0.900 (3.319 sec/step)
step 95730 loss = 0.638, train_acc = 0.800 (3.469 sec/step)
step 95740 loss = 0.013, train_acc = 1.000 (3.358 sec/step)
step 95750 loss = 0.009, train_acc = 1.000 (3.376 sec/step)
step 95760 loss = 0.139, train_acc = 0.900 (3.383 sec/step)
step 95770 loss = 0.027, train_acc = 1.000 (3.342 sec/step)
step 95780 loss = 0.012, train_acc = 1.000 (3.392 sec/step)
step 95790 loss = 0.191, train_acc = 0.800 (3.324 sec/step)
step 95800 loss = 0.098, train_acc = 0.900 (3.317 sec/step)
step 95810 loss = 0.213, train_acc = 0.900 (3.425 sec/step)
step 95820 loss = 0.006, train_acc = 1.000 (3.436 sec/step)
step 95830 loss = 0.009, train_acc = 1.000 (3.420 sec/step)
step 95840 loss = 0.082, train_acc = 1.000 (3.365 sec/step)
step 95850 loss = 0.034, train_acc = 1.000 (3.357 sec/step)
step 95860 loss = 0.037, train_acc = 1.000 (3.408 sec/step)
step 95870 loss = 0.011, train_acc = 1.000 (3.317 sec/step)
step 95880 loss = 0.024, train_acc = 1.000 (3.343 sec/step)
step 95890 loss = 0.075, train_acc = 1.000 (3.312 sec/step)
step 95900 loss = 0.000, train_acc = 1.000 (3.364 sec/step)
step 95910 loss = 0.012, train_acc = 1.000 (3.388 sec/step)
step 95920 loss = 0.000, train_acc = 1.000 (3.343 sec/step)
step 95930 loss = 0.016, train_acc = 1.000 (3.370 sec/step)
step 95940 loss = 0.096, train_acc = 0.900 (3.386 sec/step)
step 95950 loss = 0.002, train_acc = 1.000 (3.337 sec/step)
step 95960 loss = 0.002, train_acc = 1.000 (3.330 sec/step)
step 95970 loss = 0.004, train_acc = 1.000 (3.479 sec/step)
step 95980 loss = 0.051, train_acc = 1.000 (3.354 sec/step)
step 95990 loss = 0.105, train_acc = 0.900 (3.368 sec/step)
step 96000 loss = 0.021, train_acc = 1.000 (3.377 sec/step)
step 96010 loss = 0.000, train_acc = 1.000 (3.304 sec/step)
step 96020 loss = 0.025, train_acc = 1.000 (3.478 sec/step)
step 96030 loss = 0.148, train_acc = 0.900 (3.368 sec/step)
step 96040 loss = 0.870, train_acc = 0.900 (3.404 sec/step)
step 96050 loss = 0.042, train_acc = 1.000 (3.376 sec/step)
step 96060 loss = 0.023, train_acc = 1.000 (3.362 sec/step)
step 96070 loss = 0.150, train_acc = 0.900 (3.316 sec/step)
step 96080 loss = 0.110, train_acc = 0.900 (3.389 sec/step)
step 96090 loss = 0.000, train_acc = 1.000 (3.363 sec/step)
step 96100 loss = 0.036, train_acc = 1.000 (3.369 sec/step)
step 96110 loss = 1.131, train_acc = 0.700 (3.423 sec/step)
step 96120 loss = 0.004, train_acc = 1.000 (3.369 sec/step)
step 96130 loss = 0.944, train_acc = 0.900 (3.355 sec/step)
step 96140 loss = 0.557, train_acc = 0.900 (3.375 sec/step)
step 96150 loss = 0.477, train_acc = 0.900 (3.319 sec/step)
step 96160 loss = 0.194, train_acc = 0.900 (3.374 sec/step)
step 96170 loss = 0.985, train_acc = 0.800 (3.333 sec/step)
step 96180 loss = 0.003, train_acc = 1.000 (3.380 sec/step)
step 96190 loss = 0.000, train_acc = 1.000 (3.356 sec/step)
step 96200 loss = 0.030, train_acc = 1.000 (3.375 sec/step)
step 96210 loss = 0.003, train_acc = 1.000 (3.331 sec/step)
step 96220 loss = 0.000, train_acc = 1.000 (3.405 sec/step)
step 96230 loss = 0.019, train_acc = 1.000 (3.354 sec/step)
step 96240 loss = 0.047, train_acc = 1.000 (3.407 sec/step)
step 96250 loss = 0.111, train_acc = 1.000 (3.322 sec/step)
step 96260 loss = 0.089, train_acc = 0.900 (3.365 sec/step)
step 96270 loss = 0.178, train_acc = 0.800 (3.414 sec/step)
step 96280 loss = 0.074, train_acc = 1.000 (3.345 sec/step)
step 96290 loss = 0.139, train_acc = 1.000 (3.397 sec/step)
step 96300 loss = 0.001, train_acc = 1.000 (3.372 sec/step)
step 96310 loss = 0.100, train_acc = 0.900 (3.346 sec/step)
step 96320 loss = 1.353, train_acc = 0.900 (3.321 sec/step)
step 96330 loss = 0.625, train_acc = 0.800 (3.353 sec/step)
step 96340 loss = 0.308, train_acc = 0.900 (3.320 sec/step)
step 96350 loss = 0.289, train_acc = 0.900 (3.385 sec/step)
step 96360 loss = 0.498, train_acc = 0.900 (3.353 sec/step)
step 96370 loss = 0.000, train_acc = 1.000 (3.413 sec/step)
step 96380 loss = 0.008, train_acc = 1.000 (3.340 sec/step)
step 96390 loss = 0.020, train_acc = 1.000 (3.385 sec/step)
step 96400 loss = 0.000, train_acc = 1.000 (3.365 sec/step)
step 96410 loss = 0.084, train_acc = 0.900 (3.302 sec/step)
step 96420 loss = 0.468, train_acc = 0.900 (3.367 sec/step)
step 96430 loss = 0.131, train_acc = 0.900 (3.361 sec/step)
step 96440 loss = 0.177, train_acc = 0.800 (3.327 sec/step)
step 96450 loss = 0.000, train_acc = 1.000 (3.393 sec/step)
step 96460 loss = 0.002, train_acc = 1.000 (3.379 sec/step)
step 96470 loss = 0.001, train_acc = 1.000 (3.397 sec/step)
step 96480 loss = 0.021, train_acc = 1.000 (3.394 sec/step)
step 96490 loss = 0.001, train_acc = 1.000 (3.374 sec/step)
step 96500 loss = 0.000, train_acc = 1.000 (3.369 sec/step)
step 96510 loss = 0.000, train_acc = 1.000 (3.342 sec/step)
step 96520 loss = 0.610, train_acc = 0.700 (3.373 sec/step)
step 96530 loss = 0.009, train_acc = 1.000 (3.385 sec/step)
step 96540 loss = 0.218, train_acc = 0.900 (3.372 sec/step)
step 96550 loss = 0.018, train_acc = 1.000 (3.335 sec/step)
step 96560 loss = 0.092, train_acc = 1.000 (3.347 sec/step)
step 96570 loss = 0.002, train_acc = 1.000 (3.397 sec/step)
step 96580 loss = 0.060, train_acc = 1.000 (3.376 sec/step)
step 96590 loss = 1.709, train_acc = 0.800 (3.372 sec/step)
step 96600 loss = 0.857, train_acc = 0.800 (3.322 sec/step)
step 96610 loss = 0.030, train_acc = 1.000 (3.326 sec/step)
step 96620 loss = 0.107, train_acc = 0.900 (3.446 sec/step)
step 96630 loss = 0.155, train_acc = 0.900 (3.371 sec/step)
step 96640 loss = 0.264, train_acc = 0.900 (3.397 sec/step)
step 96650 loss = 0.172, train_acc = 0.900 (3.365 sec/step)
step 96660 loss = 0.185, train_acc = 0.900 (3.333 sec/step)
step 96670 loss = 0.005, train_acc = 1.000 (3.392 sec/step)
step 96680 loss = 0.001, train_acc = 1.000 (3.364 sec/step)
step 96690 loss = 0.113, train_acc = 0.900 (3.354 sec/step)
step 96700 loss = 0.441, train_acc = 0.800 (3.323 sec/step)
step 96710 loss = 0.033, train_acc = 1.000 (3.375 sec/step)
step 96720 loss = 0.011, train_acc = 1.000 (3.410 sec/step)
step 96730 loss = 1.104, train_acc = 0.800 (3.346 sec/step)
step 96740 loss = 0.051, train_acc = 1.000 (3.343 sec/step)
step 96750 loss = 0.136, train_acc = 0.900 (3.366 sec/step)
step 96760 loss = 0.499, train_acc = 0.900 (3.395 sec/step)
step 96770 loss = 0.098, train_acc = 1.000 (3.323 sec/step)
step 96780 loss = 0.048, train_acc = 1.000 (3.386 sec/step)
step 96790 loss = 0.011, train_acc = 1.000 (3.367 sec/step)
In [ ]:
Content source: animeshramesh/incremental-learning
Similar notebooks: