The python visualisation landscape is rich and diverse. But also, given the diversity of the tools - it is hard for vis libraries, it has a lot of challenges in learning libraries and varying degree of maturity for the tools.
See this PyCon 2017 Talk from JakeVandeplas on the Landscape
We will use a tool called facet-dive for multidimensional exploration of data
In [7]:
import pandas as pd
In [10]:
df = pd.read_csv("../data/default.csv")
In [11]:
df.head()
Out[11]:
In [18]:
jsonstr = df.to_json(orient='records')
In [20]:
# Display the Dive visualization for this data
from IPython.core.display import display, HTML
HTML_TEMPLATE = """<link rel="import" href="/nbextensions/facets-dist/facets-jupyter.html">
<facets-dive id="elem" height="600"></facets-dive>
<script>
var data = {jsonstr};
document.querySelector("#elem").data = data;
</script>"""
html = HTML_TEMPLATE.format(jsonstr=jsonstr)
display(HTML(html))
In [ ]: