In [1]:
import os
import sys
sys.path.insert(0, os.path.abspath('../../'))
import numpy as np
from matplotlib import pyplot as plt
import arrayfire as af
from dg_maxwell import params
from dg_maxwell import lagrange
from dg_maxwell import wave_equation as w1d
from dg_maxwell import utils
af.set_backend('opencl')
af.set_device(1)
af.info()
plt.rcParams['figure.figsize'] = 12, 7.5
plt.rcParams['lines.linewidth'] = 1.5
plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.weight'] = 'bold'
plt.rcParams['font.size'] = 20
plt.rcParams['font.sans-serif'] = 'serif'
plt.rcParams['text.usetex'] = True
plt.rcParams['axes.linewidth'] = 1.5
plt.rcParams['axes.titlesize'] = 'medium'
plt.rcParams['axes.labelsize'] = 'medium'
plt.rcParams['xtick.major.size'] = 8
plt.rcParams['xtick.minor.size'] = 4
plt.rcParams['xtick.major.pad'] = 8
plt.rcParams['xtick.minor.pad'] = 8
plt.rcParams['xtick.color'] = 'k'
plt.rcParams['xtick.labelsize'] = 'medium'
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.major.size'] = 8
plt.rcParams['ytick.minor.size'] = 4
plt.rcParams['ytick.major.pad'] = 8
plt.rcParams['ytick.minor.pad'] = 8
plt.rcParams['ytick.color'] = 'k'
plt.rcParams['ytick.labelsize'] = 'medium'
plt.rcParams['ytick.direction'] = 'in'
plt.rcParams['text.usetex'] = True
plt.rcParams['text.latex.unicode'] = True
In [2]:
# 1. Set the initial conditions
E_00 = 1.
E_01 = 1.
B_00 = 0.2
B_01 = 0.5
E_z_init = E_00 * af.sin(2 * np.pi * params.element_LGL) \
+ E_01 * af.cos(2 * np.pi * params.element_LGL)
B_y_init = B_00 * af.sin(2 * np.pi * params.element_LGL) \
+ B_01 * af.cos(2 * np.pi * params.element_LGL)
u_init = af.constant(0., d0 = params.N_LGL, d1 = params.N_Elements, d2 = 2, dtype = af.Dtype.f64)
u_init[:, :, 0] = E_z_init
u_init[:, :, 1] = E_z_init
In [3]:
element_LGL_flat = af.flat(params.element_LGL)
E_z_init_flat = af.flat(u_init[:, :, 0])
B_y_init_flat = af.flat(u_init[:, :, 1])
plt.plot(element_LGL_flat, E_z_init_flat, label = r'$E_z$')
plt.plot(element_LGL_flat, B_y_init_flat, label = r'$B_y$')
plt.title(r'Plot of $E_z(t = 0)$ and $B_y(t = 0)$')
plt.xlabel(r'$x$')
plt.ylabel(r'$y$')
plt.legend(prop={'size': 14})
plt.show()
In [3]:
u_n = u_init[:, :, 0]
# Older surface term code.
L_p_minus1 = params.lagrange_basis_value[:, 0]
L_p_1 = params.lagrange_basis_value[:, -1]
f_i = w1d.lax_friedrichs_flux(u_n)
f_iminus1 = af.shift(f_i, 0, 1)
surface_term = af.blas.matmul(L_p_1, f_i) - af.blas.matmul(L_p_minus1,\
f_iminus1)
surface_term_ref = surface_term.copy()
print(surface_term_ref.shape)
In [3]:
# Arguments
u_n = u_init[:, :, :]
#####################################################
######################CODE###########################
#####################################################
shape_u_n = utils.shape(u_n)
L_p_minus1 = af.tile(params.lagrange_basis_value[:, 0],
d0 = 1, d1 = 1, d2 = shape_u_n[2])
L_p_1 = af.tile(params.lagrange_basis_value[:, -1],
d0 = 1, d1 = 1, d2 = shape_u_n[2])
f_i = w1d.lax_friedrichs_flux(u_n)
f_iminus1 = af.shift(f_i, 0, 1)
surface_term = utils.matmul_3D(L_p_1, f_i) \
- utils.matmul_3D(L_p_minus1, f_iminus1)
print(surface_term.shape)
surface_term_test = surface_term.copy()
In [5]:
print(af.all_true(af.abs(w1d.surface_term_multiple_u(u_n)[:, :, 1] - w1d.surface_term(u_n[:, :, 0])) < 1e-14))
In [ ]: