In [1]:
import os
import sys
sys.path.insert(0, os.path.abspath('../../'))
import numpy as np
from matplotlib import pyplot as plt
import arrayfire as af
from dg_maxwell import params
from dg_maxwell import lagrange
from dg_maxwell import wave_equation as w1d
from dg_maxwell import utils
af.set_backend('opencl')
af.set_device(1)
af.info()
plt.rcParams['figure.figsize'] = 12, 7.5
plt.rcParams['lines.linewidth'] = 1.5
plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.weight'] = 'bold'
plt.rcParams['font.size'] = 20
plt.rcParams['font.sans-serif'] = 'serif'
plt.rcParams['text.usetex'] = True
plt.rcParams['axes.linewidth'] = 1.5
plt.rcParams['axes.titlesize'] = 'medium'
plt.rcParams['axes.labelsize'] = 'medium'
plt.rcParams['xtick.major.size'] = 8
plt.rcParams['xtick.minor.size'] = 4
plt.rcParams['xtick.major.pad'] = 8
plt.rcParams['xtick.minor.pad'] = 8
plt.rcParams['xtick.color'] = 'k'
plt.rcParams['xtick.labelsize'] = 'medium'
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.major.size'] = 8
plt.rcParams['ytick.minor.size'] = 4
plt.rcParams['ytick.major.pad'] = 8
plt.rcParams['ytick.minor.pad'] = 8
plt.rcParams['ytick.color'] = 'k'
plt.rcParams['ytick.labelsize'] = 'medium'
plt.rcParams['ytick.direction'] = 'in'
plt.rcParams['text.usetex'] = True
plt.rcParams['text.latex.unicode'] = True
In [8]:
# 1. Set the initial conditions
E_00 = 1.
E_01 = 1.
B_00 = 0.2
B_01 = 0.5
E_z_init = E_00 * af.sin(2 * np.pi * params.element_LGL) \
+ E_01 * af.cos(2 * np.pi * params.element_LGL)
B_y_init = B_00 * af.sin(2 * np.pi * params.element_LGL) \
+ B_01 * af.cos(2 * np.pi * params.element_LGL)
u_init = af.constant(0., d0 = params.N_LGL, d1 = params.N_Elements, d2 = 2)
u_init[:, :, 0] = E_z_init
u_init[:, :, 1] = B_y_init
In [3]:
element_LGL_flat = af.flat(params.element_LGL)
E_z_init_flat = af.flat(u_init[:, :, 0])
B_y_init_flat = af.flat(u_init[:, :, 1])
plt.plot(element_LGL_flat, E_z_init_flat, label = r'$E_z$')
plt.plot(element_LGL_flat, B_y_init_flat, label = r'$B_y$')
plt.title(r'Plot of $E_z(t = 0)$ and $B_y(t = 0)$')
plt.xlabel(r'$x$')
plt.ylabel(r'$y$')
plt.legend(prop={'size': 14})
plt.show()
In [9]:
# Older LF flux code
u_n = u_init[:, :, :]
u_iplus1_0 = af.shift(u_n[0, :], 0, -1)
u_i_N_LGL = u_n[-1, :]
flux_iplus1_0 = w1d.flux_x(u_iplus1_0)
flux_i_N_LGL = w1d.flux_x(u_i_N_LGL)
boundary_flux = (flux_iplus1_0 + flux_i_N_LGL) / 2 \
- params.c_lax * (u_iplus1_0 - u_i_N_LGL) / 2
print(boundary_flux)