Datasets: Celestial Observations of the Planet Ceres

Open Data Science Initiative

13th November 2014 Neil D. Lawrence

This data set consists of obervations of the dwarf planet Ceres collected by Guiseppe Piazzi from 1st January 1801 to 11th February 1801. The data was published in the September 1801 edition of Monatliche Correspondenz, a volume of astronomical correspondence edited by Franz Xaver von Zach, the Hungarian astronomer who, with the aid of orbital predictions from a 24 year old Carl Friederich Gauss, was able to recover the 'lost planet' in early 1802.

Monatliche Correspondenz

First, here is the volume where the data was originally published.


In [1]:
import pods
pods.notebook.display_google_book(id='JBw4AAAAMAAJ', page='GBS.PA280')


The data can be accessed as a pandas data frame through


In [2]:
data = pods.datasets.ceres()['data']
data.describe()


Acquiring resource: ceres

Details of data: 
Twenty two celestial observations of the dwarf planet Ceres as observed by Giuseppe Piazzi from his Palermo observatory from January 1st to February 11th 1801. Transcribed (perhaps with errors) by Neil Lawrence.

Please cite:
Monatlicher Correspondenz September 1801. Franz von Zach (editor). Summary of data from a Letter of Giuseppe Piazzi.

After downloading the data will take up 2044 bytes of space.

Data will be stored in /Users/neil/ods_data_cache/ceres.

Do you wish to proceed with the download? [yes/no]
yes
Downloading  http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/dataset_mirror/ceres/ceresData.txt -> /Users/neil/ods_data_cache/ceres/ceresData.txt
[==============================]   0.002/0.002MB
Out[2]:
Mittlere Sonnenzeit Gerade Aufstig in Zeit Gerade Aufstiegung in Graden Nordlich Abweich Geocentrische Laenger Geocentrische Breite Ort der Sonne + 20" Aberration Logar. d. Distanz
count 21.000000 21.000000 21.000000 20.000000 19.000000 19.000000 19.000000 19.000000
mean 7.460553 3.474579 52.117897 17.052194 1.867660 1.802494 10.089094 9.993320
std 0.784663 0.055710 0.836052 0.985692 0.036103 0.815463 0.444599 0.000609
min 6.199500 3.424925 51.374056 15.628750 1.832791 0.600806 9.396909 9.992616
25% 6.807333 3.435597 51.533972 16.329201 1.839015 1.153542 9.780756 9.992807
50% 7.400750 3.448292 51.724389 17.015889 1.851418 1.707806 10.084920 9.993189
75% 8.038194 3.504792 52.571889 17.827847 1.889333 2.383375 10.431290 9.993735
max 8.721611 3.618483 54.277250 18.799667 1.952000 3.111694 10.813114 9.994582

In [3]:
right_ascension = data['Gerade Aufstiegung in Graden']
declination = data['Geocentrische Laenger']
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(right_ascension, declination, 'rx')
plt.xlabel('right ascension')
plt.ylabel('declination')


Out[3]:
<matplotlib.text.Text at 0x108f5e390>

Gauss's Prediction

And you can now attempt to make a prediction, as Gauss did, of the orbital position of the dwarf planet in late 1801.


In [4]:
pods.notebook.display_google_book(id='JBw4AAAAMAAJ', page='GBS.PA647')


The Dawn Mission arrived at at Ceres in April 2015. Here is a report from Astronomy Now showing a set of images from May 2015.


In [ ]: