In [3]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy import integrate
The 2d polar integral of a scalar function $f(r, \theta)$ is defined as:
$$ I(r_{max}) = \int_0^{r_{max}} \int_0^{2\pi} f(r, \theta) r d\theta $$Write a function integrate_polar(f, rmax) that performs this integral numerically using scipy.integrate.dblquad.
In [4]:
def integrate_polar(f, rmax):
"""Integrate the function f(r, theta) over r=[0,rmax], theta=[0,2*np.pi]"""
integrate=lambda r,t:r*f(r,t)
theta1=0.0
theta2=2*np.pi
r1=lambda t:0.0
r2=lambda t:rmax
res=integrate.dblquad(integrate,theta1,theta2,r1,r2)
return res[0]
In [5]:
assert np.allclose(integrate_polar(lambda r,t: 1, 1.0), np.pi)
assert np.allclose(integrate_polar(lambda r, t: np.exp(-r)*(np.cos(t)**2), np.inf), np.pi)
In [ ]: