J.R. Johansson and P.D. Nation
For more information about QuTiP see http://qutip.org
In [1]:
%matplotlib inline
In [2]:
import matplotlib.pyplot as plt
In [3]:
import numpy as np
In [4]:
from qutip import *
Hamiltonian:
$\displaystyle H = - \frac{1}{2}\sum_n^N h_n \sigma_z(n) - \frac{1}{2} \sum_n^{N-1} [ J_x^{(n)} \sigma_x(n) \sigma_x(n+1) + J_y^{(n)} \sigma_y(n) \sigma_y(n+1) +J_z^{(n)} \sigma_z(n) \sigma_z(n+1)]$
In [5]:
def integrate(N, h, Jx, Jy, Jz, psi0, tlist, gamma, solver):
si = qeye(2)
sx = sigmax()
sy = sigmay()
sz = sigmaz()
sx_list = []
sy_list = []
sz_list = []
for n in range(N):
op_list = []
for m in range(N):
op_list.append(si)
op_list[n] = sx
sx_list.append(tensor(op_list))
op_list[n] = sy
sy_list.append(tensor(op_list))
op_list[n] = sz
sz_list.append(tensor(op_list))
# construct the hamiltonian
H = 0
# energy splitting terms
for n in range(N):
H += - 0.5 * h[n] * sz_list[n]
# interaction terms
for n in range(N-1):
H += - 0.5 * Jx[n] * sx_list[n] * sx_list[n+1]
H += - 0.5 * Jy[n] * sy_list[n] * sy_list[n+1]
H += - 0.5 * Jz[n] * sz_list[n] * sz_list[n+1]
# collapse operators
c_op_list = []
# spin dephasing
for n in range(N):
if gamma[n] > 0.0:
c_op_list.append(np.sqrt(gamma[n]) * sz_list[n])
# evolve and calculate expectation values
if solver == "me":
result = mesolve(H, psi0, tlist, c_op_list, sz_list)
elif solver == "mc":
ntraj = 250
result = mcsolve(H, psi0, tlist, c_op_list, sz_list, ntraj)
return result.expect
In [6]:
#
# set up the calculation
#
solver = "me" # use the ode solver
#solver = "mc" # use the monte-carlo solver
N = 10 # number of spins
# array of spin energy splittings and coupling strengths. here we use
# uniform parameters, but in general we don't have too
h = 1.0 * 2 * np.pi * np.ones(N)
Jz = 0.1 * 2 * np.pi * np.ones(N)
Jx = 0.1 * 2 * np.pi * np.ones(N)
Jy = 0.1 * 2 * np.pi * np.ones(N)
# dephasing rate
gamma = 0.01 * np.ones(N)
# intial state, first spin in state |1>, the rest in state |0>
psi_list = []
psi_list.append(basis(2,1))
for n in range(N-1):
psi_list.append(basis(2,0))
psi0 = tensor(psi_list)
tlist = np.linspace(0, 50, 200)
sz_expt = integrate(N, h, Jx, Jy, Jz, psi0, tlist, gamma, solver)
In [7]:
fig, ax = plt.subplots(figsize=(10,6))
for n in range(N):
ax.plot(tlist, np.real(sz_expt[n]), label=r'$\langle\sigma_z^{(%d)}\rangle$'%n)
ax.legend(loc=0)
ax.set_xlabel(r'Time [ns]')
ax.set_ylabel(r'\langle\sigma_z\rangle')
ax.set_title(r'Dynamics of a Heisenberg spin chain');
In [8]:
from qutip.ipynbtools import version_table
version_table()
Out[8]: