J.R. Johansson and P.D. Nation
For more information about QuTiP see http://qutip.org
In [1]:
    
%pylab inline
    
    
In [2]:
    
from qutip import *
from qutip.quantum_info import *
    
In [3]:
    
"""
Plot the process tomography matrices for some 1, 2, and 3-qubit qubit gates.
"""
gates = [['C-NOT', cnot()],
         ['SWAP', swap()],
         ['$i$SWAP', iswap()],
         ['$\sqrt{i\mathrm{SWAP}}$', sqrtiswap()],
         ['S-NOT', snot()],
         ['$\pi/2$ phase gate', phasegate(pi/2)],
         ['Toffoli', toffoli()],
         ['Fredkin', fredkin()]]
    
In [4]:
    
def plt_qpt_gate(gate, figsize=(8,6)):
    name  = gate[0]
    U_psi = gate[1]
    
    N = len(U_psi.dims[0]) # number of qubits
    # create a superoperator for the density matrix
    # transformation rho = U_psi * rho_0 * U_psi.dag()
    U_rho = spre(U_psi) * spost(U_psi.dag())
    # operator basis for the process tomography
    op_basis = [[qeye(2), sigmax(), sigmay(), sigmaz()] for i in range(N)]
    # labels for operator basis
    op_label = [["$i$", "$x$", "$y$", "$z$"] for i in range(N)]
    # calculate the chi matrix
    chi = qpt(U_rho, op_basis)
    # visualize the chi matrix
    fig, ax = qpt_plot_combined(chi, op_label, name, figsize=figsize)
    
    ax.set_title(name)
    
    return fig, ax
    
In [5]:
    
plt_qpt_gate(gates[0]);
    
    
    
In [6]:
    
plt_qpt_gate(gates[1]);
    
    
In [7]:
    
plt_qpt_gate(gates[2]);
    
    
In [8]:
    
plt_qpt_gate(gates[3]);
    
    
In [9]:
    
plt_qpt_gate(gates[4]);
    
    
In [10]:
    
plt_qpt_gate(gates[5]);
    
    
In [11]:
    
fig, ax = plt_qpt_gate(gates[6], figsize=(16,12))
ax.axis('tight');
    
    
In [12]:
    
fig, ax = plt_qpt_gate(gates[7], figsize=(16,12))
ax.axis('tight');
    
    
In [13]:
    
from qutip.ipynbtools import version_table
version_table()
    
    Out[13]: