Robert Johansson (robert@riken.jp)
In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import time
import numpy as np
In [2]:
from qutip import *
from qutip.control import *
In [3]:
T = 1
times = np.linspace(0, T, 100)
In [4]:
U = iswap()
R = 50
H_ops = [#tensor(sigmax(), identity(2)),
#tensor(sigmay(), identity(2)),
#tensor(sigmaz(), identity(2)),
#tensor(identity(2), sigmax()),
#tensor(identity(2), sigmay()),
#tensor(identity(2), sigmaz()),
tensor(sigmax(), sigmax()),
tensor(sigmay(), sigmay()),
tensor(sigmaz(), sigmaz())]
H_labels = [#r'$u_{1x}$',
#r'$u_{1y}$',
#r'$u_{1z}$',
#r'$u_{2x}$',
#r'$u_{2y}$',
#r'$u_{2z}$',
r'$u_{xx}$',
r'$u_{yy}$',
r'$u_{zz}$',
]
In [5]:
H0 = 0 * np.pi * (tensor(sigmaz(), identity(2)) + tensor(identity(2), sigmaz()))
In [6]:
from qutip.control.grape import plot_grape_control_fields, _overlap, grape_unitary_adaptive, cy_grape_unitary
In [7]:
from scipy.interpolate import interp1d
from qutip.ui.progressbar import TextProgressBar
In [8]:
u0 = np.array([np.random.rand(len(times)) * (2 * np.pi / T) * 0.01 for _ in range(len(H_ops))])
u0 = [np.convolve(np.ones(10)/10, u0[idx, :], mode='same') for idx in range(len(H_ops))]
In [9]:
result = cy_grape_unitary(U, H0, H_ops, R, times, u_start=u0, eps=2*np.pi/T,
progress_bar=TextProgressBar())
In [10]:
#result = grape_unitary(U, H0, H_ops, R, times, u_start=u0, eps=2*np.pi/T,
# progress_bar=TextProgressBar())
In [11]:
plot_grape_control_fields(times, result.u / (2 * np.pi), H_labels, uniform_axes=True);
In [12]:
# compare to the analytical results
np.mean(result.u[-1,0,:]), np.mean(result.u[-1,1,:]), np.pi/(4 * T)
Out[12]:
In [13]:
U
Out[13]:
In [14]:
result.U_f.tidyup(1e-2)
Out[14]:
In [15]:
_overlap(U, result.U_f).real
Out[15]:
In [16]:
c_ops = []
In [17]:
U_f_numerical = propagator(result.H_t, times[-1], c_ops, args={})
In [18]:
U_f_numerical
Out[18]:
In [19]:
_overlap(U, U_f_numerical).real
Out[19]:
In [20]:
op_basis = [[qeye(2), sigmax(), sigmay(), sigmaz()]] * 2
op_label = [["i", "x", "y", "z"]] * 2
In [21]:
fig = plt.figure(figsize=(8,6))
U_ideal = spre(U) * spost(U.dag())
chi = qpt(U_ideal, op_basis)
fig = qpt_plot_combined(chi, op_label, fig=fig, threshold=0.001)
In [22]:
fig = plt.figure(figsize=(8,6))
U_ideal = to_super(result.U_f)
chi = qpt(U_ideal, op_basis)
fig = qpt_plot_combined(chi, op_label, fig=fig, threshold=0.001)
In [23]:
from qutip.ipynbtools import version_table
version_table()
Out[23]: